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ABSTRACT 
 

The purpose of this article is to determine the usefulness of the Graphics Processing Unit (GPU) 

calculations used to implement the Latent Semantic Indexing (LSI) reduction of the TERM-BY-

DOCUMENT matrix. Considered reduction of the matrix is based on the use of the SVD (Singular Value 

Decomposition) decomposition. A high computational complexity of the SVD decomposition - O(n
3
), 

causes that a reduction of  a large indexing structure is a difficult task. In this article there is a 

comparison of the time complexity and accuracy of the algorithms implemented for two different 

environments. The first environment is associated with the CPU and MATLAB R2011a. The second 

environment is related to graphics processors and the CULA library. The calculations were carried out on 

generally available benchmark matrices, which were combined to achieve the resulting matrix of high size. 

For both considered environments computations were performed for double and single precision data.  
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1. INTRODUCTION 
 

Nowadays, there is a tremendous increase in the number of text resources associated 

with various themes. The most obvious example of this phenomenon is still growing the World 

Wide Web. With the increase in the number of text documents placed in various  databases 

increasingly important are the methods of automatic documents indexing. The LSI method, 

introduced in 1990, uses the theory of linear algebra to automate the process of indexing and 

retrieval [1]. This method is widely used for the purpose of information retrieval systems, for 

example:   

 

 in  [1] for indexing of medical (1033 documents) and information science (1460 

documents)  abstracts, 

 in  [2] for indexing collection of 382845 documents divided into 9 subcollections, 

 in [3] for indexing patent documents,   

 in [4] for cross language information retrieval (CLIR), more precisely for the Malay-

English CLIR system, 

 in [5] for the Greek-English CLIR system. 

 

Furthermore, application of the LSI can also be found in the field of ontology mapping  [6] or 

even genomic studies  [7]. The LSI offers up to 30% better performance than traditional lexical 

techniques [8]. 

Despite a number of advantages, the LSI method is computationally problematic - 

implementation of the algorithm requires the use of equipment with significant computing 

power. In particular, this drawback is visible in a case of databases of text documents with a huge 
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number of positions (expressed in thousands), where there is a need for continuous updating. In 

relation to such large structures, realization of search system, based on the LSI method is a 

difficult task to perform. The time analysis of the LSI method, applied to a large number of 

documents, can be found in a relatively small number of papers. Referring to [9], application of 

the LSI method for a matrix of size 11,152×3891 (43392432 elements) required calculations that 

lasted 2.3*10
5
 seconds. We used in this article a matrix with a similar number of elements 

(matrix of size 5896×7095 – 41832120 elements). We also used the Matlab environment to 

determine the computation time for the CPU environment. The results are compared to 

computations using the GPU environment. The authors would like to point out that in literature 

known to us nobody made a similar comparison. Taking into account the computational power of 

modern graphics cards, such a comparison is desirable. Usually the computing power of the 

commercial GPUs is much higher for the single precision data than for the double precision. In 

the literature known to us there is not a study to determine the usefulness of the LSI method used 

for the single precision data. Therefore the authors carried out a comparison of the time 

complexity and correctness of the results obtained using the single precision data. 

 

The results are promising. The use of the GPU in place of the CPU from the similar market 

segment has allowed to reduce the computation time almost by half. Additionally, changing the 

data format from the double precision to the single precision allowed to further reduce of the 

computation time. Moreover, regardless of the used environment and the data format, for the 

considered case, precision of the search system remained at a similar level. Despite the fact that 

the metodology proposed in this article allows several times to reduce the computation time, we 

realize that the use of the GPUs to LSI method has its limitations. Application of LSI for 

indexing of huge documents collection may be achievable with the combine of decompositotinal 

techniques and parallel computing using the computer cluster with the GPUs. 
 

2. VECTOR SPACE MODEL 
 

The Vector Space Model in the information retrieval is a widely used technique [10,11], in which 

both documents and queries are represented by vectors. Each element of the vector represents the 

weight of a given expression in a given document or query.  

 

The first step of building the Vector Space Model is to identify occurrences of keywords in the 

entire collection of documents. Selection of the appropriate list significantly affect the 

performance of a retrieval system. In the next step the index structure is being built. Each 

keyword is mapped in a multidimensional space in such a way to make correlation of all 

documents containing that phrase with the same phrase. The result is the TERM-BY-

DOCUMENT matrix, which contain weighted connections between the documents and the 

concepts.  

 

There are several methods of selection factors lie at the intersection of the columns and rows of 

the TERM-BY-DOCUMENT matrix. The most commonly used are: 

 

• Boolean model – the occurrence of concepts in the document is marked by one, the lack of 

concepts is marked by zero, 

• Term Frequency model (TF) – the values contained in the matrix specifies the number of 

occurrences of concept in a document, 

• Term Frequency – Inverse Document Frequency model (TF-IDF) – the model takes into 

account both – the frequency of occurrence of a concept in a document and its power of 

discrimination (measure of the prevalence of concept). 
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In the space of concepts (term space) each document creates a vector while each concept (term) 

represents dimension. In the documents space, terms are represented by vectors located between 

the axes defined by the documents. 

 
Figure 1.  The sample TERM-BY-DOCUMENT matrix 

The idea of both spaces,  for example TERM-BY-DOCUMENT matrix in fig. 1, is shown in fig. 2. 

 

 
Figure 2.  Terms’ space (left part) and Document’s space (right part) of the sample TERM-BY-

DOCUMENT matrix 

 
The two most commonly used measures of similarity between two vectors are the scalar product 

(1) and the cosine distance (2). 
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In practice, frequently used is a cosine distance. The smaller angle between two vectors means 

closer similarity. The value of cosine distance varies between -1 (180 degrees – vectors not 

similar) to 1 (0 or 360 degrees – a hundred percent similarity). 

 

3.  SVD DECOMPOSITION AND REDUCTION 
 

The high-order matrix is decomposed using SVD transformation into product of three matrices 

(3). 

 
T

nnmnmmmn
VSUA   (3) 

where: 
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The columns of the matrix mm
U  are orthonormal eigenvectors of the matrix product 

T

mnmn
AA . 

The columns of the matrix nn
V  are orthonormal eigenvectors of the matrix product mn

T

mn
AA . 

The matrix mn
S is a diagonal matrix containing the square roots of the eigenvalues (singular 

values) of the product of matrices 
T

mnmn
AA

 and mn

T

mn
AA

. The diagonal values of mn
S are 

sorted in non-increasing order. 

 

In order to determine the low rank approximation of the original TERM-BY-DOCUMENT 

matrix, it is possible to use equation (4). 

 

 
T

nkkkmkmnmn
VSUAA 


 (4) 

 
The low rank representation of TERM-BY-DOCUMENT matrix is obtained by removing the last 

(m-k) and (n-k) columns of a matrices mm
U

 and nn
V

 respectively and by retain only the k 

largest singular values of the matrix mn
S

. As shown in [8], the matrix mn
A


is the best 

approximation of the matrix mn
A

 with respect to the Frobenius norm (5).  
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The approximation error can be determined from (6). 
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 (6) 

 

where σ denotes the removed singular values. 

 

In order to reduce size of the original TERM-BY-DOCUMENT matrix, it must be mapped into 

the space of a smaller number of dimensions. The linear transformation (7) 

 

 
xUSx

RR:L

T

mk

1

kk

km






 (7) 

is used to transform mn
A  into (8). 
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After the reduction of multidimensional space, linked documents are closer to each other. The 

relative distance between points in the reduced space represents the semantic similarity between 

documents.  

 

Mapping of the user questions to the reduced vector space is done by (9) 

 

 qUSq
T

mk

1

kk


  (9) 

 

where q denotes pseudo-document (keywords entered by the user build the vector in the original 

space). 

 

4.  THE EXPERIMENT 
 

This chapter provides information about the data and equipment used to perform the calculations. 

The results of the study are also included here. The chapter also includes the results of the 

experiment. 

 

4.1. Data 
 

The study, which is presented in this article, was made on generally available benchmark 

including connected sets of documents: 

 

• CACM: 3204 documents, 

• CISI:  1460 documents, 

• CRAN: 1398 documents, 

• MED:  1033 documents. 

 

The TERM-BY-DOCUMENT matrix is organized in such a way that its columns represent the 

documents from collection while rows represent words. The size of the matrix is 5896 rows per 

7095 columns. The structure of the original TERM-BY-DOCUMENT matrix is shown in the fig. 

3. 

 
Figure 3. The structure of the TERM-BY-DOCUMENT matrix 

This is a sparse TF matrix with 247,157 elements different form zero. 
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4.2. Implementation and hardware 

 
The LSI algorithm has been developed for two parallel computing environments to compare the 

time and the accuracy of the calculations. The first environment – related to CPU – MATLAB 

R2011a,  which use the Intel Math Library version 10.2, which supports multi-core and data 

parallelism [12]. The second environment – related to GPU – developed programs in C++ 

language with use of CUDA, CULA [13] and CULYA [14] libraries.  

 

The CULYA library (described in details in [15]) uses the CULA, CUBLAS and CUDA libraries 

to provide basic linear algebra operations for vectors and matrices. The library includes 115 

methods and overloaded operators (e.g. +,-,*,^), which makes operations on matrices more 

intuitive. The table 1 presents the description of the selected methods of the CulyaMatrix class, 

which is the main class of the library. 

 
Table 1. The selected methods of the CulyaMatrix class 

 

Method Description 

to_card copies the matrix from the main memory to the graphics card 

memory 

from_card copies the matrix from the graphics card memory to the main 

memory 

del_dev removes the matrix from the graphics card memory 

del_host removes the matrix from the main memory 

operator * matrices product 

operator + matrices addition 

operator - matrices subtraction 

operator ++(int) returns matrix transpose 

operator ++ transposes matrix, overwriting the source data 

dup returns a copy of the matrix 

inv matrix inversion 

qr_full the QR decomposition of the matrix. The method returns an object 

of class Tqr containing matrices R and Q of the decomposition 

eig_full(char 

vector) 

the eigenvalues and the eigenvectors of the matrix. The method 

returns an object of class Teig containing the eigenvalues vector, 

the right and the left eigenvectors 

svd(char param) the SVD decomposition. The method returns an object of class 

TSvd containing the singular values vector, the U and VT matrices. 

 
The difference in the architecture of conventional processors and GPUs mainly based on the 

number of cores and cache size (fig. 4). 

 
Figure 4. Comparison of CPU and GPU architectures 
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The GPUs have large number of cores, performing basic arithmetic operations and small cache. 

This architecture is very effective to process the matrix/block data. The basic unit of code that is 

responsible for performing computations using GPU is the CUDA kernel. The structure of a 

simple program that performs addition of two vectors, using the computing power of the graphics 

card, is presented below: 

 
1.  

2.   

3.   

4.   

5.   

6.   

7.   

8.    

9.   

10.   

11.   

12.   

13.   

14.   

15.   

16.   

17.   

18.   

19.   

20.   

21.   

22.   

23.   

24.   

  

25.   

  

26.   

  

27.   

28.   

29.   

30.   

__global__ void add(double*a, double*b, double*c) 

{ 

  int tid=threadIdx.x+blockIdx.x*blockDim.x; 

  if(tid<N) 

   c[tid]=a[tid]+b[tid]; 

} 

 

… 

 

double vector1[N];  

double vector2[N];  

double vector3[N]; 

double *vect1;  

double *vect2;  

double *vect3; 

for (long int i=0; i<N; i++) 

{ 

  vector1[i]=i; 

  vector2[i]=N-i; 

} 

cudaMalloc((void**)&vect1, N*sizeof(double)); 

cudaMalloc((void**)&vect2, N*sizeof(double)); 

cudaMalloc((void**)&vect3, N*sizeof(double)); 

cudaMemcpy(vect1, vector1, N*sizeof(double), 

cudaMemcpyHostToDevice); 

cudaMemcpy(vect2, vector2, N*sizeof(double), 

cudaMemcpyHostToDevice); 

add<<<(N+127)/128, 128>>>(vect1, vect2, vect3);  

cudaMemcpy(vector3, vect3,N*sizeof(double), 

cudaMemcpyDeviceToHost); 

cudaFree(vect1); 

cudaFree(vect2); 

cudaFree(vect3); 

 
In the lines 1 – 6 there is the CUDA kernel code, which will be run on the GPU. The declaration 

of the function is similar to the C language, however, it must be preceded by the __global__ 

directive.  The function cannot return a value via the stack (void). Despite that the CUDA kernel 

will perform the operation of addition of two vectors, the code does not contain any software 

loop that would occur with a classic solution to this problem. The CUDA computing 

environment automatically allocates the GPU computing resources, for each data element, 

calling kernel code many times simultaneously. 

 

After starting the application on the GPU environment, execution of the CUDA kernel is 

equivalent to running multiple threads simultaneously, each of which performs the same 

operation  (SIMT architecture – Single Instruction  Multiple Thread). The threads are combined 

into groups called threads blocks. The threads blocks are grouped in grids, each grid contains 
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only blocks belonging to the same CUDA kernel. Each block and each thread has its identifier 

that uniquely identifies their location respectively in the block and grid. Each running thread has 

a structure that determine the coordinates of its block in the grid – blockIdx, and coordinates of 

the thread in the block – threadIdx. The CUDA kernel code refers to the specific coordinates by 

field componens x,y,z. Threads have also ability to determine the dimension of the block and the 

grid with use of the structure blockDim and gridDim.  

 

The application developer has a direct impact on the division of computational problem for a 

certain number of threads and blocks. This is done by specifying two parameters contained in 

brackets <<<…>>> in place of the CUDA kernel invocation. The first value determines the 

segmentation of computational problem into a certain number of  blocks. The second value 

determines the number of threads running in each block. In the fig. 5 there is an example of 

division of computational problem into 4 blocks of 5 threads each. 

 

 
 

Figure 5. Example of division of computational problem 

 
It should also be mentioned, that the modern x86 processors have a whole range of solutions that 

affect the calculations time. The first important solution accelerating the calculations is the multi-

core architecture. However the number of cores in the CPU is not as large as the number of cores 

in the GPU (for example, the unit used in our case – Core i7 3770 has 4 cores). Another element 

worthy of mention are vector extensions supporting matrix computations [16] (also used by 

MATLAB R2011a).  The comparison of the used equipment is summarized in table 2. 

 

Table 2. Comparison of used equipment 

 

UNIT CPU GPU 

MODEL Intel Core i7 3770 Nvidia GTX580 

NUMBER OF CORES 4 + AVX extensions 512 CUDA cores 

MEMORY 16GB DDR3 (host memory) 4GB GDDR5 
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4.3. The reduction error 
 

As a reduction error, a difference between the cosine distance of vectors of the original and the 

reduced TERM-BY-DOCUMENT matrix is assumed. The sample error maps for the case of 

reduction to k=100 rows, for double precision calculations, for the MATLAB and GPU 

environments, are shown in fig. 6. 

 
 

Figure 6.   Reduction error maps for k=100 (MATLAB – left part, GPU – right part) 

In order to present reduction error for the all studied cases, the mean square error was used (10). 
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where: 

n=7095, ij
ORGCOS _ - the cosine distance between the i'th and j’th documents in original TERM-

BY-DOCUMENT matrix, ij
REDCOS _ - the cosine distance between the i'th and j’th documents 

in reduced TERM-BY-DOCUMENT matrix. The MSE errors are shown in fig. 7. 

 

 
Figure 7. The MSE errors of reduction 

 
The results are consistent with initial expectations. The error decreases with increase of the size 

of the reduced TERM-BY-DOCUMENT matrix. It should be noted, however, that the results 

determine only the similarity of the reduced matrix relative to the original. This measure does not 

take into account the positive effects of the application of the LSI method. The LSI method is 

able to detect the existing relationship between the semantic content of various documents. 
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Search systems based on the LSI are able to return a list of documents related to terms of a user’s 

query, despite the difference in keywords used by him. 

 

4.4. Reduction time 
 

The reduction times, depend on environment and precision, are shown in fig. 8. Due to the fact 

that the main operation, which affect the computation time is the SVD decomposition (which 

takes the same time in each case),  the results are given for the reduction for k=100 rows. 

 
 

Figure 8. The reduction time depending on the environment and precision 

The times of search the most similar document, according to the cosine distance, depending on the size of 

the TERM-BY-DOCUMENT matrix are shown in fig. 9. 

 
Figure 9. The times of search the most similar document, depending on the rank of the TERM-BY-

DOCUMENT matrix  
 

Summarizing the results, the calculation of the reduced TERM-BY-DOCUMENT matrix using 

the GPU environment brings a reduction in calculation time by almost half compared to the time 

obtained for the CPU environment (fig. 8). In addition, the search system using the reduced 

TERM-BY-DOCUMENT matrix in place of the original one is able to find the closest match 

document (considering the cosine distance) in time which is only a fraction of the original 

searching time (fig. 9). 
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4.5. Search engine precision 
 

The final evaluation of the used environments has been determined in the following way. For the 

100 randomly generated user’s query vectors (the number of non-zero elements in the vector 

equals 5, the value of each non-zero element varies from 1 to maximum value of the original 

TERM-BY-DOCUMENT matrix) the most matched document (based on the cosine distance) are 

determined from the original TERM-BY-DOCUMENTS matrix.  Then, for the same query 

vector, p (where p=1, 10, 20, 30 …, 100) the most matched documents in the reduced TERM-

BY-DOCUMENT matrix are determined. The precision is computed as a percentage of the same 

documents in both collections. The obtained results are shown in fig. 10-12.  
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Fig. 10. Precision for reduced matrix obtained in MATLAB environment (double precision) 
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Fig.11. Precision for reduced matrix obtained in GPU environment (double precision) 
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Fig. 12. Precision for reduced matrix obtained in GPU environment (single precision) 

 
The charts show that regardless of the used computational environment, the precision associated 

with searching for the most similar documents (relative to the set obtained for the original 

TERM-BY-DOCUMENT matrix) is at a comparable level. What is interesting, the graphs show 

also, that change the arithmetic form the double precision to single precision (for calculations on 

the GPU environment) does not make a drastic deterioration of the results. Considering the fact 

that the calculation time for the single precision arithmetic is faster, this suggests the possibility 

of using only calculations using the single precision values in a target retrieval system. 

  

5. CONCLUSIONS 
 

The LSI method based on the SVD decomposition is an effective way to reduce the size of the 

original TERM-BY-DOCUMENT matrix. Referring to the literature, the method is frequently 

applied to a collection of homogeneous documents. Applying it to large collections of 

heterogeneous documents is problematic mainly due to long time of computation. This is caused 

by the high computational complexity of the SVD decomposition - O(n
3
). One step towards 

solving this problem could be the use of parallel computing, in this article, the authors focused 

on the application of the graphics processor. In the literature, up to now, there was no 

comparison of the efficiency and precision of the two possible computing environments – 

associated with the CPU and GPU, for the purpose of the LSI method.  

 

The article shows that the use of GPU can reduce time needed to reduce TERM-BY-

DOCUMENT matrix – application of the presented equipment allowed reducing computational 

time by almost half (comparing the time obtained in the GPU environment to the time for the 

CPU). The precision obtained in both environments was similar. We should also clearly indicate 

that despite the fact that we do not use the most modern equipment available on the market 

(mostly for financial reason), both devices were released at the similar time (Core i7 3770 – 

Q2'12, GTX580 – Q4'2010) and the two devices belong to the similar segment of the market.   

The presented methodology allows almost by half to reduce the computation time, but it does not 

give the possibility of reducing a huge index structures, where the number of documents is 

counted in the hundreds of thousands. Our future experiments will focus on the different 

decomposition methods of TERM-BY-DOCUMENT matrix before the reduction (like K-means 

and Epsilon decomposition) and the use of the Krylov methods to replace the original SVD 

decomposition. This will allow for multiple increase of the size of considered indexing 

structures. The decomposition of one large computational problem into a number of smaller has a 

number of advantages. The first is associated with a reduction of the computational complexity. 

Assuming that the original TERM-BY-DOCUMENT matrix will be divided into k parts of equal 



International Journal of Soft Computing, Mathematics and Control (IJSCMC) Vol 6, No 2/3, August 2017 

                                                                                                                                                                       13 

size, we get the computational complexity equals k*O( (n/k)^3) from the original equals O(n^3). 

Moreover, the obtained matrices from the decomposition process, could be reduced 

simultaneously by using parallel computer cluster equipped with the GPU’s.  
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