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ScienceDirect
Microorganisms are Nature’s little engineers of a remarkable

array of bioactive small molecules that represent most of our new

drugs. The wealth of genomic and metagenomic sequence data

generated in the last decade has shown that the majority of novel

biosynthetic gene clusters (BGCs) is identified from cultivation-

independent studies, which has led to a strong expansion of the

number of microbial taxa known to harbour BGCs. The large

size and repeat sequences of BGCs remain a bioinformatic

challenge, but newly developed software tools have been

created to overcome these issues and are paramount to identify

and select the most promising BGCs for further research and

exploitation. Although heterologous expression of BGCs has

been the greatest challenge until now, a growing number of

polyketide synthase (PKS) and non-ribosomal peptide

synthetase (NRPS)-encoding gene clusters have been cloned

and expressed in bacteria and fungi based on techniques that

mostly rely on homologous recombination. Finally, combining

ecological insights with state-of-the-art computation and

molecular methodologies will allow for further comprehension

and exploitation of microbial specialized metabolites.
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Introduction
Microorganisms are unparalleled with respect to the

chemical diversity of specialized metabolites they pro-

duce. These encompass many chemical classes including

polyketides (PKs), non-ribosomal peptides (NRPs), ribo-

somally synthesized and post translationally modified
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peptides (RiPPs), terpenes, saccharides and alkaloids

[1�]. Until the 1950s the majority of microbial metabolites

were overlooked or merely regarded as waste products

from primary metabolism. By contrast to a general set of

primary metabolites, specialized metabolites are often

specific to a restricted taxonomic range where they facili-

tate dedicated physiological, social or predatory functions

[2]. Moreover, such metabolites have been found to

possess a wide range of biological activities, making them

useful for the development of antimicrobials, anticancer

agents and immunosuppressants for pharmaceutical, agri-

cultural and food manufacturing applications [3–6].

The majority of specialized metabolites result from meta-

bolic pathways, each of which encoded by a suite of genes at

the same chromosomal locus, generally known as biosyn-

thetic gene clusters (BGCs). These BGCs are frequently

‘silent’ in common laboratory media, whereas their expres-

sion is triggered by specific environmental cues [7–9].

Recent developments in genomics and computational biol-

ogy, hand in hand with a vastly increasing number of

sequenced metagenomes and metatranscriptomes, have

led to the discovery of thousands of BGCs [10��,11��].

Modular assembly lines such as PK synthases (PKS) and

NRP synthetases (NRPS) constitute two of the most

important and diverse classes of specialized metabolites

that can theoretically code for a near infinite diversity of

unique molecular architectures [12,13,14��]. Recent anal-

yses based on retro-biosynthesis, that is, the computa-

tional breakdown of PK and NRP chemical molecules

and reversal of their assembly lines to predict their parent

PKS/NRPS BGCs, allow linking BGCs from publicly

available databases to known natural products and define

clusters encoding new products. Such efforts have shown

that thousands of BGCs are likely to be responsible for

the production of novel molecules [10��].

To prevent replication of previous research and yet dis-

cover specialized metabolites from microbes with novel

applicable biological activities, it is important to shift

attention to environments and microbial phyla that have

so far been largely neglected. Moreover, advanced bioin-

formatics analyses must be applied that can quickly assess

the novelty of the gene clusters found and link them to

predicted chemical structures and biological activities.

In this opinion paper, we highlight state-of-the-art

developments regarding discovery, characterization
www.sciencedirect.com

mailto:detmer.sipkema@wur.nl
http://dx.doi.org/10.1016/j.copbio.2018.01.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2018.01.017&domain=pdf
http://www.sciencedirect.com/science/journal/09581669


Novel specialized metabolites from the environment Loureiro et al. 207

Figure 1

Advanced probing
techniques

Gene
cluster ID

Chemical
structure
prediction

Tunable expression of 
transcriptional units

Governance determined
surveying

Sampling the
Environment

Selection for
expression

Pathway design and
heterologous expression

Genomic and
Metagenomic data

Current Opinion in Biotechnology

Approach for specialized metabolite discovery. Microbial specialized metabolites are of great value, and in order to boost their discovery,

exploration of scarcely screened environments is key. Technological advances in sampling tools and techniques play an important role in allowing

researchers to access such locations. At the same time, governmental constraints also dictate which regions will be favoured for exploration and

exploitation of microbial bioactives. Newly developed computational methodologies enable mining of genomic and metagenomic data for

detection of potentially new classes of biosynthetic gene clusters (BGCs). These algorithms are optimized to conduct identification of BGCs and

predict their chemical structures, and are crucial to identify and select the most promising BGCs for further research and exploitation. The next

step in unlocking and systematically exploiting these BGCs involves their controlled expression. Large DNA molecule manipulation involves

assembly and cloning methods often based on homologous recombination mechanisms in both yeast and bacteria. Furthermore, advances in

synthetic biology allowing customisation of transcriptional units’ expression stoichiometry for production of complex chemicals, play an important

role in the creation of automated production platforms.
and exploitation of microbial specialized metabolites,

with a focus on PKS and NRPS. In addition, we identify

environments, bioinformatics approaches and expression

strategies that we consider most promising for future

development of the field [Figure 1].

Environmental sources of specialized
metabolites
Nature has provided mankind with numerous bioactive

compounds for medical purposes for thousands of years,

and even in modern times most drugs are derived from

natural sources [15]. Bacteria and fungi that are responsi-

ble for the production of small bioactive molecules have

been found in widely diverse environmental niches, such

as soil, sediment and aquatic environments, either as free-

living microorganisms or in symbiosis with plants and

animals [15,16]. Soil-dwelling cultivable Actinobacteria,

and members of the genus Streptomyces in particular, have

been in the limelight as proliferous sources of specialized

bioactive metabolites, as witnessed by the discoveries of

the antibiotics actinomycin, streptomycin and chloram-

phenicol in the 1940s, and the antiparasitic agent
www.sciencedirect.com 
ivermectin [17,18,19�]. Also soil-derived isolates from

other bacterial genera, such as Bacillus [20] and Pseudo-
monas [12,21�] are traditionally rich sources of specialized

metabolites. Interestingly, there appear to be important

differences in biosynthetic potential between taxonomic

groups within these genera, according to their ecological

specializations [5,22]. Fungi, historically also mainly iso-

lated from soils, represent a sometimes overlooked, but

prolific source of bioactive molecules (e.g. antibiotics

such as penicillin) [5,23]. A recently published study

explored the environmental factors that drive changes

in PKS and NRPS encoding BGC diversity across geo-

graphically distinct soil environments, and found changes

in biosynthetic domain composition to correlate most

consistently with variations in latitude [24].

However, cultivation-independent methods have shown

that the uncultivated majority of the microorganisms

encode many more BGCs (quantitatively and qualita-

tively) than the ones we know from isolates, a terra

incognita with major potential for applications [4,5].

In addition, the use of these cultivation-independent
Current Opinion in Biotechnology 2018, 50:206–213
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methods shows that the traditional focus on Actinobac-

teria needs a shift towards other microorganisms such as

marine fungi [25], Cyanobacteria [26,27], Proteobacteria

[28] and the novel candidate phylum Tectomicrobia

[29,30��]. For example, the latter, represented by a newly

discovered uncultivated marine sponge symbiont genus

Candidatus Entotheonella which has the genetic capacity

to produce over 40 natural compounds and is widely

distributed in taxonomically diverse sponges [30��].
Other microbial taxa including Clostridium, Planctomycetes,
Burkholderia and Xenorhabdus/Photorhabdus are also

emerging important targets with high biosynthetic poten-

tial [5,22].

Although the terrestrial environment is by no means

exhausted of novel bioactive molecules, a recent large

metagenomics study of the ocean water revealed that a

stunning 90% of the genes detected at a depth of 600 m did

not have a match in public databases [31]. Although the

ocean metagenome appeared to be rich in BGCs, we

propose that the majority of BGCs in ocean water remains

undetected as only the fraction <3 mm was considered in

the aforementionedstudy, excluding small particles thatare

colonised by a community of microorganisms. These in turn

are more likely to produce specialized metabolites of inter-

est required for short-range molecular interactions. The

same may be expected for marine sediments and biofilms

(e.g. on macroalgae) that have been poorly investigated for

their potential to produce specialized metabolites [32,33].

In addition, marine invertebrates display species-specific

symbioses with microorganisms facilitated by unique

metabolites, some of which may be valuable bioactive small

molecules [34]. Particularly sponges, the biomass of which

maybealmostequallydividedbetweenhostandsymbionts,

have been identified as one of the most promising natural

source for future antibiotics [35,36].

In addition to differences in the resource potential of

particular natural environments, the governmental situa-

tion may dictate which regions will be favoured for explo-

ration and exploitation of microbial bioactives. Compli-

ance with the Nagoya Protocol requires the explorer to

legally acquire any genetic resource, prove due diligence

through traceability, risk assessment and risk mitigation

procedures, and enable inspections by national authorities.

Each signatory state may either determine its own access

policy, or provide free access to its genetic resources and

associated traditional knowledge (www.cbd.int/abs).

However, concepts of biological diversity that are the

foundation of the Nagoya Protocol are not directly appli-

cable for microorganisms that do not abide the same

patterns of endemism as plants and animals [37�]. For

example, Streptomyces carpaticus strains isolated from

coastal habitats in four different continents all produced

the same cytotoxic specialized metabolite (Ikarugamycin)

[38]; to a large degree, ‘everything is everywhere’ where

the environment selects for the same molecular functions
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[39]. In addition, structurally very similar polyketides have

been obtained from bacterial symbionts from either insects

or sponges [40]. Therefore, countries that have a more

open attitude and lower administrative burden towards

scientific exploration and commercial application of micro-

bial specialized metabolites will likely be more attractive

for scientists and industries.

Rapid identification and prioritizing
specialized metabolites
In recent years, genome mining for BGCs has become a

key approach for identification of new molecules and

corresponding novel products. For compounds produced

by PKSs and NRPSs, their biosynthetic pathways and

product structures can be predicted using a range of

computational tools and approaches [Table 1] [41–47].

The ability to detect potentially new classes of BGCs,

including those prevailing in the uncultured majority of

microorganisms, is a valuable endeavour as these will

most likely code for molecules with new chemical scaf-

folds [51,52�]. Tools such as ClusterFinder [11��,53] and

EvoMining [48] have been developed for this purpose.

The former queries genome sequences for BGC-like

regions based on the presence of broad Pfam protein

domains associated with enzyme families commonly

recycled in diverse specialized metabolic pathways.

The latter exploits the notion that enzymes involved in

specialized metabolism are paralogs of primary ones,

which have undergone sequence and functional diver-

gence, and utilizes phylogenetic analyses to detect these

outliers [47,54]. Recent developments in high-through-

put, single cell and long-read next-generation sequencing

technologies are leading us to an era of fast, affordable

sequencing and assembly of genomes from microbial

isolates/consortia. Thus, it is becoming increasingly fea-

sible to access culturable bacterial taxa and obtain high-

quality genomes from these strains, despite the presence

of repetitive genomic regions such as those including

BGCs encoding NRPS and PKS enzymes [22,47,54–57].

Moreover, through direct capture of environmental DNA

from microbiomes of macroorganisms, metagenomics

allows efficiently moving biosynthetic diversity from

the environment into the drug discovery space [57].

PCR-based sequence tag approaches that screen meta-

genomic libraries for biosynthetic novelty are considered

well established technologies [4,57,58]. However, despite

being plagued by issues related to acquiring highly con-

tiguous assemblies of BGCs, sequencing and assembly of

environmental DNA by shotgun metagenomics constitu-

tes a much more unbiased approach to profile biosyn-

thetic diversity [22]. Whereas artificial long-read technol-

ogies offer valuable improvements in assembly quality

[59�,60,61], PK and NRP BGCs are usually still hard to

assemble and often remain fragmented across multiple

contigs. Nevertheless, contigs generated by De Bruijn
www.sciencedirect.com
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Table 1

Tools for identification of BGCs.

Tool Approach Reference

antiSMASH Identification or signature genomic and protein domains that are hallmarks of biosynthetic pathways.

Usually making use of profile Hidden Markov Models (HMM), BLAST and both general databases like

Pfam and specialized PKS/NRPS databases for annotation and protein identification.

[46]

SMURF [41]

PRISM [43]

NP.searcher [45]

CLUSEAN [44]

EvoMining Exploits the notion that enzymes involved in specialized metabolism are paralogs of primary ones,

which have undergone sequence and functional divergence to acquire functions in specialized

metabolism. Utilizes phylogenetic mining to detect these outliers.

[48]

ClusterFinder Queries genome sequences for BGC-like regions based on the presence of Pfam protein domain

frequencies associated with enzyme families that are indicative of diverse specialized metabolic

pathways.

[11��]

GRAPE Retro-biosynthesis, that is, computational deconstruction of PK and NRP chemical structures to

predict their parent PKS/NRPS, producing assembly line monomers and tailoring enzymes.

[49]

Bandage Tool for visualizing de Bruijn assembly graphs, allows for a deeper analysis of de novo assemblies

which is not accessible through study of individual contigs.

[50]
Graph assembly algorithms are not islands on their own,

but in fact are connected to other contigs in an assembly

graph. Although information contained in the assembly

graph is lost in the way sequence assemblies are usually

studied, the assembly graph files themselves can be

analyzed with visualization software tools like Bandage

[50]. By performing BLAST similarity searches on such a

graph, one can often derive which BGC fragments belong

to the same gene cluster. Based on this, clusters can

potentially be reconstructed by finding the most plausible

path through the assembly graph based on homology

inference (as recently done for the bananamide BGC

in a fragmented draft genome of Pseudomonas fluorescens
BW11P2 [62] [Figure 2] [21�]) or otherwise by designing

primers to amplify and Sanger-sequence the gaps

between the contigs. Alternatively, long read nanopore

sequencing can also be used [63]. Additionally, binning

metagenomes into metagenome-assembled genomes

(MAGs) based on differential coverage and oligonucleo-

tide frequencies, and subsequently re-assembling/finish-

ing of high-quality MAGs allows increasing the contiguity

of the assembly for particular organisms within a micro-

bial community [64].

These and other computational methodologies are now

making it possible to assemble many complete biosyn-

thetic gene clusters from relatively complex metagen-

omes. The prediction of natural product structures from

gene clusters is still challenging as deviations in gene

order and enzyme modularity occur frequently [49], and

predicting the regioselectivity of tailoring reactions is

very complicated. Nevertheless, computational derepli-

cation strategies based on sequence similarity [1�] or

retro-biosynthesis [49] make it possible to reliably iden-

tify BGCs that are likely to be involved in the production

of novel chemical scaffolds. Moreover, target-based

genome mining based on the detection of resistance

genes within BGCs [65] makes it possible to pinpoint

‘low-hanging fruits’ that are likely to be responsible for
www.sciencedirect.com 
the production of molecules that bind to cellular targets of

interest, as the resistance genes often constitute paralo-

gous copies of these molecular targets that are insensitive

to the product of the BGC. Based on such and other

criteria, at least a sub-set of BGCs can be intelligently

shortlisted for expression studies.

Heterologous expression strategies for
specialized metabolites
Biodiversity profiling of different environmental niches

provides an outline of the phylogenetic composition of

the corresponding communities, and demonstrates that

uncultured species outnumber their cultured counter-

parts. Therefore, the quest to functionally express BGCs

is currently the most urgent issue to unlock and exploit

these gene clusters. However, this is not a straightforward

undertaking. Firstly, because many BGCs are found in

non-model organisms, often with rather distinct codon

usage to general production hosts such as E.
coli. Secondly, they are often encoded by clusters that

can span over 100 kb of DNA, possibly including complex

regulatory mechanisms [66]. Nevertheless, several meth-

ods have been developed allowing PKS and NRPS gene

clusters to be successfully cloned and expressed in bac-

teria and fungi [67–71,72��,73,74].

DNA assembly methods, such as transformation-associ-

ated recombination (TAR) cloning are powerful tools for

manipulating large DNA molecules. TAR makes use of

homologous recombination in yeast and it has been

successfully applied to clone and express the 73 kb gene

cluster encoding the antibiotic taromycin A, originating

from a marine actinomycete [72��]. Furthermore, a num-

ber of direct cloning methods allow integration of gene

clusters at specific sites in the production host’s chromo-

some, mainly via standard recombination methods. Direct

cloning via Red/ET recombineering is based on E. coli
linear plus linear homologous recombination [75], and has

been successfully used to express large biosynthetic
Current Opinion in Biotechnology 2018, 50:206–213
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Figure 2
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Assembly graph of a fragmented draft genome of Pseudomonas fluorescens BW11P2 [54], assembled by SPAdes, containing the reconstructed

bananamide BGC. In the graph, the grey lines represent nodes (contigs) and black lines paths that represent possible connections between

contigs. The upper left corner of the panel depicts a zoom-in visualization for the BLAST result of the genes in this BGC, blue, red and green

represent the BLAST hits for gene banA, banB and banC correspondingly. Co-localization on the same node of banA and part of banB indicates

proximity of these genes on the genome.
pathways such as the NPRS clusters coding for edeine

(48.3 kb) and bacillomycin (37.3 kb) [70].

Advances in synthetic biology (including DNA construc-

tion tools, synthetic regulatory circuits and multiplexed

genome engineering) enable the harnessing of metage-

nomic data for high-throughput molecular discovery, as

well as pathway design for the production of complex

chemicals [66,74,76]. In at least one instance, using a

plug-and-play DNA assembly strategy to achieve full

gene cluster refactoring in a single step manner has

proved more effective than direct cloning and promoter

insertion. This also made it possible to construct an

automated platform with a high degree of flexibility for

generating gene deletions or additions [77��]. As a proof of

principle for this approach, Luo and colleagues succeeded

in expressing and characterizing a cryptic BCG encoding

for the production of a polycyclic tretamate macrolactam

PKS-NRPS hybrid [77��]. With the continuous decrease

in DNA synthesis cost, synthetic (codon-optimized) ver-

sions of many BGCs can be reconstructed in high-

throughput using this technology.

One key issue that is difficult to address, especially for

gene clusters for which the real molecular product is

unknown beforehand, is that of cross-talk between the
Current Opinion in Biotechnology 2018, 50:206–213 
heterologously expressed pathway and the native path-

ways. A recent study by Zhang et al. showed that heterol-

ogous expression of the lyngbyatoxin gene cluster in three

different streptomycete hosts lead to the generation of

different natural product derivatives [78]. Because small

variations in chemical structure can have a major impact

on biological activity, expression studies in multiple hosts

(or multiple versions of the same hosts with different

native BGCs knocked out using, e.g. CRISPR/Cas) are

required to ascertain the true product of a synthetically

reconstructed BGC for which the native product is

unknown. In the more distant future, it might be worth

considering to design ‘orthogonal’ heterologous expres-

sion strategies that isolate the heterologous pathway from

native metabolism, for example, through compartmental-

ization [79,80].

Outlook
Microbial specialized metabolites are a vast and excep-

tional resource that may contribute to solving the current

antibiotic resistance crisis [19�,81,82]. Based on several

technological advances, it is now possible to reach and

sample the most difficult-to-access places on Earth.

Exploration of scarcely touched environments in combi-

nation with the revolutionary developments in metage-

nomics and computational biology has already led to an
www.sciencedirect.com
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explosion in the number of known BGC sequences. Our

greatest current challenge is to systematically use these

sequences for the production of specialized metabolites

and the discovery of their biological functions. Notwith-

standing, we have witnessed a growing number of success

cases in the past decade, including the activation or

heterologous expression of cognate BGCs from non-

model organisms leading to the successful production of

several previously unknown secondary metabolites. Ulti-

mately, the implementation of multi-omics approaches

that combine ecological insights with state-of-the-art com-

putational and molecular genomics developments will lead

to deep understanding and more efficient exploitation of

microbial specialized metabolism.
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