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Abstract 

Making machines understand us has been a challenging issue in the later years. Although 
reverberation is an omnipresent phenomenon in our daily lives, computers are still not 
prepared to handle it correctly. A study to help machines overcome reverberation when 
estimating fundamental frequency is presented. 

The study focuses on the singing voice since it is the form of human expression with 
more complex fundamental frequency contours. There have been selected four fundamen-
tal frequency estimation algorithms (YIN, TWM, SAC, MELODIA) common for this task 
in dry conditions. The study evaluates them following the MIREX Audio Melody Extrac-
tion evaluation criteria.  

First, the algorithms are evaluated in dry conditions and different reverberant condi-
tions. It is shown how an increasing reverberation time supposes an increasing loss in ac-
curacy for all algorithms. Besides, MELODIA exhibits a special robustness compared to 
its competitors. 

Then, we try to improve fundamental frequency estimators’ performance using different 
de-reverberation methods (NML, NMF, ITD) as preprocessors. Only NML succeeds in 
such a task for all algorithms except MELODIA, which keeps performing the best. Any-
way, it demonstrates that de-reverberation methods can be used to improve fundamental 
frequency estimators’ results in reverberant conditions. 

Finally, the insights of the study results are analyzed. In order to exemplify how the 
results of this study can be used to improve algorithms’ accuracy, a proof-of-concept algo-
rithm (MIX) is presented. MIX combines MELODIA with SAC and NML de-
reverberation. It has a general improvement in accuracy of 2% in reverberant conditions 
and, in addition, it performs as good as the best algorithms in dry conditions: 91% overall 
accuracy.  
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1 Introduction 

This chapter introduces the problem that will be faced and the motivations that justify its 
interest of study. Then our objectives are presented and, finally, a brief overview of this 
dissertation is outlined. 

1.1 Motivation 

Since the most remotely times, the singing voice has been our most accessible instrument 
for the simple fact it comes incorporated in our body. Consequently, it has always been a 
powerful tool of expression; be it for praying to some God to make it rain or to remember 
a friend about that tune you love. But it is not just this universality that makes it special. 
It is the ability of creating a channel of communication that goes beyond the rationality of 
speech and becomes closer to the expression of feelings what makes it unique. Moreover, it 
is the only immediate tool we posses for expressing melodic content. 

Since the last three decades, there has been a significant effort in the audio and music 
signal-processing field to make computers able to capture and understand some of this ex-
pressiveness, especially for the melodic content. This dissertation pretends to contribute in 
this same direction. 

Nowadays, it is possible for computers to “listen” to a human singing and be able to 
transcribe more or less accurately the score of the sung melody. This accuracy depends on 
many factors as the style of singing, the range of the voice, the microphone used, interfer-
ing noises, environmental effects, etc. We focus on a particular environmental effect: re-
verberation. Reverberation has been shown to be an injurious effect for computers when 
trying to extract the pitch of a sung melody and, more importantly, they suffer significant 
accuracy degradation for reverberations that humans handle easily. 

Lately, thanks to the technology expansion, we are living the mobile device era. There 
have become more common scenarios where machines have to deal with the singing voice 
with a significant reverberation amount. For example, singing to mobile phones to identify 
a particular song we cannot recall. Or singing in Karaokes that rank our performance. 
Even some standard-bearer artists feed their voices in special devices to get them trans-
formed in new creative ways. Indeed, my personal motivation for this study came from 
the idea of analyzing the singing voice to control artificial synthesizers. 
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In the past few years, there have appeared multiple approaches for removing the rever-
beration effect from speech signals, but a very few have tackled the problems it causes to 
fundamental frequency estimation. Several degradation problems have been observed: non-
existing pitch is detected on silences after sounds, unvoiced consonants disappear being 
surpassed by vocals or pitch detection is just wrong because old sounds keep still sounding. 
This dissertation studies these problems. 

1.2 Goals 

The main goal of this thesis is to study the negative effects that reverberation introduces 
when trying to estimate the fundamental frequency of a singing voice signal and, having 
this knowledge, point out the direction for removing these effects. Some questions we 
want to answer are: 
! What are the (negative) effects that reverberation produces on fundamental frequency 

estimation algorithms? 
! From the existing fundamental frequencies estimators, which one is the most robust 

to reverberation effects? Why? Can we take advantage of some robust strategy it is 
using? 

! Can we achieve better results on fundamental frequency estimation applying current 
reverberation reduction algorithms? 

! If so, which is the reverberation reduction algorithm that improves more the results? 
Why? Can we take advantage of some robust strategy it is using? 

! Do reverberation reduction algorithms improve more the results of some fundamental 
frequency estimators than others? Why? 

! Which are the best evaluation methods for getting the answer to the precedent ques-
tions? 

Once these questions have been answered, it will be proposed an algorithm for funda-
mental frequency estimation, created from the extracted ideas, and finally evaluated and 
compared to the previous ones. 
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1.3 Thesis overview 

This dissertation is organized as follows. Section 2 presents an overview on fundamental 
frequency estimators; how they operate, their parts, how their different algorithms operate 
and a final special mention for those estimators dedicated to the singing voice or reverber-
ated signals. Section 3 describes the reverberation topic. First, acoustic room principles 
are described. Second, speech reverberation reduction methods are outlined. And finally, 
the effects that reverberation produces on the singing voice are explained. Section 4 ex-
plains the insights of the study carried out in this thesis; methodology, evaluation meth-
ods, algorithms used and datasets selected. Section 5 analyses the results obtained from 
the study, presenting partial conclusions that are then summarized as final conclusions in 
Section 6. Section 7 points out the next steps to be carried to further research in the di-
rection of this study. Finally, an appendix with the numerical results is attached in Sec-
tion 8. 
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2 Fundamental frequency estimation 

This chapter introduces the concept of fundamental frequency. Then, it presents an over-
view (based on [1]) of the existing methods for fundamental frequency estimation and de-
scribes their process steps. Finally, it focuses on the current methods that are of interest 
for this study, i.e. those involving the singing voice and reverberated signals. 

2.1 Introduction 

The fundamental frequency ( f0 ), also simply referred to as fundamental, is defined as the 
lowest frequency of a periodic waveform. In terms of a superposition of sinusoids, the fun-
damental frequency is the lowest frequency sinusoidal in the sum. All sinusoidal and many 
non-sinusoidal waveforms are periodic, which is to say they repeat exactly over time. A 
single period is thus the smallest repeating unit of a signal, and one period describes the 
signal completely. We can show a waveform is periodic by finding some period T0  (the 
fundamental period) for which the following equation is true: 
 x(t) = x(t + nT0 )   (2.1) 

where x(t)  is the function of the waveform, t  indicates time and  n∈ . Then, the rela-
tion with the fundamental frequency is f0 = 1 T 0  (see Figure 2.1). It is important to note 
that while f0  and pitch are different concepts (the former being a physical measurement 
and the latter a perceptual one) they are commonly used indistinguishably in the litera-
ture. 

 

Figure 2.1 Fundamental period (above) in time domain and fundamental frequency (below) in frequency domain  
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All fundamental frequency algorithms give a measure corresponding to a portion of the 
signal (analysis frame). The fundamental frequency estimation process can be subdivided 
into three main steps (according to [2]) that are passed through successively: the pre-
processor, the basic extractor, and the post-processor (see Figure 2.2). The basic extractor 
performs the main task of measurement: it converts the input signal into a series of fun-
damental frequency estimates. The main task of the pre-processor is to reduce the amount 
of data in order to facilitate the fundamental frequency extraction. Finally, the postpro-
cessor is a block that performs more diverse tasks, such as error detection and correction, 
or smoothing of an obtained contour. 

 

Figure 2.2 Steps of the fundamental frequency estimation process 

2.2 Extractor methods 

Current algorithms for estimating the fundamental frequency are presented in this section. 
Different classifications can be used for their categorization. The approach of distinguish-
ing them by their processing domain is used here, separating them in time-domain and 
frequency-domain algorithms. 

2.2.1. Time-domain algorithms 

These algorithms try to find the periodicity of the input sound signal in the time domain. 

a. Zero-crossing rate (ZCR) 

ZCR is among the first and simplest techniques for estimating the frequency content of a 
signal in time domain, and consists in counting the number of times the signal crosses the 
0-level reference (see Figure 2.3) in order to estimate the signal period. This method is 
very simple and inexpensive but not very accurate when dealing with noisy signals or 
harmonic signals where the partials are stronger than the fundamental. ZCR has also been 
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found to correlate more with timbre than pitch and, thus, this method and its variants 
are not very much used for fundamental frequency estimation. 

 

Figure 2.3 Zero-crossing of a signal 

b. Auto-correlation function (ACF) 

The ACF is a function that calculates the cross-correlation of a signal with itself, thus, 
returning the resemblance of a part of the signal with a preceding one. This allows finding 
the part that gets repeated, i.e. the period, that will correspond to the maximum value of 
auto-correlation (see Figure 2.4). 

 

Figure 2.4 Waveform of a signal above, its corresponding ACF output below 

ACF based algorithms [3], [4] have been among the most frequently used fundamental 
frequency estimators. For optimization reasons, they can also be computed in the frequen-
cy domain [5]. They have been reported to be relatively noise immune but sensitive to 
formants an spectral peculiarities of the analyzed sound [5]. Also, according to [5], ACF 
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algorithms are more like to have “twice-too low” octave errors than “too high” octave er-
rors, which are not probable. 

In this kind of algorithms there must be conferred a special mention to the YIN algo-
rithm [6] because of the wide use it has acquired nowadays. It is a modified version of the 
ACF that instead of using a multiplication for calculating the cross-correlation it uses the 
squared difference. This makes it robust to amplitude changes and solves the “too low” 
octave error. Moreover, it is a relatively simple method that may be implemented effi-
ciently with low latency and has no upper limit for the f0  search range. 

 

Figure 2.5 Waveform of a signal above, its corresponding YIN output below 

c. Envelope periodicity 

This model is based on the observation that signals with more than one frequency 
component exhibit periodic fluctuations (beatings) in its time domain amplitude envelope. 
The rate of these fluctuations depends on the frequency difference between each pair of 
frequency components. In the case of a harmonic sound, the f0  interval outstands and the 
fundamental frequency is clearly visible in the amplitude envelope of the signal. Some es-
timators [7], [8] have included models of human pitch perception. These methods attempt 
to estimate the perceived pitch, not the pure physical periodicity. 

d. Parallel processing  

This model comes from [9] and [10], an algorithm purely based on time domain processing 
that has been used in a wide variety of applications. It is conceived in three steps (depict-
ed in Figure 2.6): 
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1. The speech signal is processed to create a number of impulse trains that retain the pe-
riodicity of the original signal and discard features that are irrelevant to the pitch de-
tection method. This can be considered as the pre-processing part of the algorithm. 

2. Simple estimators are used to detect the period of the impulse trains. 
3. All estimates are combined to infer the fundamental frequency of the speech wave-

form. 

 

Figure 2.6 Steps of the parallel processing approach 

This algorithm has the advantage that several different processes analyze in parallel 
the same problem, thus, when one fails the other ones still succeed. This redundancy 
strategy is believed to exist in the human perception [11]. This algorithm has a very low 
computational complexity and performs relatively well. 

2.2.2. Frequency-domain algorithms 

These algorithms estimate the fundamental frequency using the spectral information of 
the signal, obtained by the Discrete Fourier Transform (DFT) or another transform. 

a. Cepstrum analysis 

Cepstrum is the inverse Fourier transform of the logarithm of the power spectrum of the 
signal (see Figure 2.7). Thanks to the logarithm operation, the source and the transfer 
functions are separated. Consequently, the pulse sequence originating from the source pe-
riodicity re-appears in the cepstrum as a strong peak at “quefrency” (lag time) T0 . 
Cepstrum was introduced in [12] for determining the fundamental frequency of speech sig-
nals. 
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Figure 2.7 Logarithmic magnitude spectrum of a signal above, its corresponding cepstrum below 

The cepstrum fundamental frequency estimation model is similar to autocorrelation 
systems, just that, while the frequency domain ACF is based on the logarithm of the 
magnitude spectrum, cepstrum uses the power magnitude. Cepstrum also shares the de-
fect of committing “too low” octave errors. On the other hand, unlike ACF systems, 
cepstrum fo  estimators perform poorly in noise but have good performances with for-
mants and spectral peculiarities [5]. 

b. Spectrum auto-correlation 

These methods are based on the idea that a periodic but non-sinusoidal signal has a peri-
odic magnitude spectrum, the period of which is the fundamental frequency. This period 
can be estimated with the ACF (see Figure 2.7). These algorithms are robust against “too 
low” octave errors since there is no spectral periodicity at half the fundamental frequency 
rate, but “too high” octave errors may occur [5]. An implementation of this method is de-
scribed in [13]. 
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Figure 2.8 Magnitude spectrum of a signal above, its corresponding ACF below 

c. Harmonic pattern matching 

These algorithms are based on finding patterns on the magnitude spectrum of the signal. 
Their main idea comes from the fact that harmonic sounds present a regular structure, i.e. 
a pattern, which can be detected and used to estimate the fundamental frequency. 

A first simple approach is to use comb filtering. A comb filter is band filter that re-
peats over all the frequency range, thus, it can be used to compute the energy for the dif-
ferent frequencies inside the f0  search range in a way that harmonics will contribute when 
appropriate (see Figure 2.9). Comb filters are easy to implement and compute but any 
other filters with a different “template” can be used. 

 

Figure 2.9 Harmonic pattern matching using comb filtering. In the left, a comb filter with half the f0 is used. In 
the right, a comb filter with the correct f0 is used. 

A better approach for harmonic pattern matching consists on finding the spectral peaks 
in the magnitude spectrum. Then, a set of f0  candidates is generated and the identified 
peaks are compared to the predicted harmonics (multiples of the f0  candidate) for all 
candidates. The strategy used for comparing is called the fitting measure. 
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Some fitting measures were developed in [14] and [15], but the latter Two Way Mis-
match method (TWM)[16] has acquired the most relevance. In this method, the discrep-
ancy between the measured and the predicted sequence of harmonic partials is called the 
mismatch error. For each of the f0  candidates, two mismatch errors are calculated; one 
from the measured partials to their nearest neighbor predicted partial, and the other from 
the predicted partials to their nearest neighbor measured partial (see Figure 2.10). This 
strategy avoids octave errors by applying a penalty for partials that are present in the 
measured data but are not predicted, and vice versa. It also benefits from the effect that 
any spurious components or partial missing from the measurement can be counteracted by 
the presence of uncorrupted partials in the same frame. The two mismatching errors as 
well as the final function for merging them are weighted with parameters empirically re-
fined to make the procedure robust to the presence of noise or the absence of certain par-
tials.   

 

Figure 2.10 Two-way mismatch error method 

d. Wavelet based algorithms 

Some methods [17] try to take advantage of the wavelet transform (WT) to estimate the 
fundamental frequency. The main strength of the WT is that it performs a multi-
resolution, multi-scale analysis that has been shown to be very well suited for music pro-
cessing because of its similarity to how the human ear processes sound. In the STFT, 
which uses a single analysis window, a compromise between having enough resolution for 



25 
 

low frequencies and not using a window to large to allow significant changes in high fre-
quencies has to be done. In the other hand, WT uses short windows at high frequencies 
and long windows for low frequencies. That solves the problem having a good resolution 
for low frequencies while maintaining small enough windows for high frequencies. 

e. Band-wise processing algorithms 

Following the idea of constant frequency analysis using WT, [5] proposes an algorithm 
that calculates independent fundamental frequency estimates at separate frequency bands 
and combines them to yield a global estimate. This solves the problem of inharmonicity; 
partial intervals in inharmonic sounds are still constant at narrow enough bands. It also 
provides robustness against corrupted signals and interferences since these defects will be 
isolated at particular bands. 

2.3 Voice/Unvoiced decision 

Fundamental frequency estimation algorithms do not only have the mission of detecting 
the f0  of a given signal, they also have to be able to distinguish segments that have f0  
(or pitch) versus those that do not, e.g. silences and percussion or noise segments, and 
consequently perform the f0  estimation only for the pitched parts of the signal. 

Typical techniques for accomplishing this distinction consist on using the estimated 
fundamental frequency itself, other measures derived from the method (e.g. the error 
measure in the TWM procedure) and relevant descriptors easy to compute (e.g. ZCR, en-
ergy, noisiness or harmonic distortion). 

2.4 Multi-pitch estimation methods 

Until now, only mono-pitch estimation methods have been presented. Those methods as-
sume that a single fundamental frequency is present on the signal and, therefore, they re-
turn a single value for each time frame. Since there are situations were more than one 
pitch (being it from the same instrument or different ones) is present simultaneously, 
some methods for multi-pitch estimation have been proposed (a list of methods can be 
found in [18]). 
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This dissertation focuses on the study of the singing voice and as it fits the described 
case of mono-pitch, there is no need to review multi-pitch estimators. In the other hand, it 
is important to point out that because of the effects of reverb we will face situations were 
more than one fundamental frequency will co-exist at the same time (this will be ex-
plained in section 3.3.2.c). Even though this is a different scenario were we do not want to 
detect various fundamental frequencies but only the actual one, some ideas found in the 
literature of multi-pitch estimation could be useful to overcome this problem. 

2.5 Estimators for the singing voice 

Although the first algorithms to estimate the fundamental frequency for musical signals 
came from the speech literature [2], there are not specific monophonic estimators for the 
singing voice. Normally, the singing voice is considered as a special case of speech, where 
the same instrument is behaving a bit different. Because of that, the common speech es-
timators are used adapting them to the specificities of the singing voice (like in [19]), e.g. 
wider f0  search ranges or specific pre-processing blocks for signal enhancement. Conse-
quently, our study will consider speech specific algorithms for fundamental frequency es-
timation, like e.g. YIN [6]. 

In the other hand, we are actually aware of some f0  estimation algorithms specifically 
designed to work with the singing voice but for contexts more similar to multi-pitch. One 
case is [20], that proposes an algorithm that performs singing voice f0  estimation at the 
same time that separates this same singing voice from a music accompaniment (a task 
known as speech segregation). Another case is MELODIA [21], which is focused on ex-
tracting the main melody (the score, not the audio) of musical audio signals and, based on 
the assumption that the main melody in popular music is most of the times performed by 
a singer, it is optimized for the singing voice. Both methods use a process in which, fol-
lowing different strategies, a set of fundamental frequency candidates are extracted for 
every frame. Then, a decision function is responsible of choosing the more appropriate 
candidates, having in consideration the candidates of the neighboring frames. It is of our 
interest to also study the performance of these algorithms in our reverberation context 
and, after observing the results, analyze the possible advantageous strategies they have 
implemented.  



27 
 

2.6 Estimators for reverberated signals 

In the later years there has been a lot of effort in improving and developing algorithms for 
reducing reverberation in signals, i.e. de-reverberation. Despite of that, few authors ad-
dressed the subject of robustly extracting the fundamental frequency of reverberated sig-
nals. This section will give an overview of the single proposed methods tackling with 
mono-pitch estimation that will be further studied and evaluated in the next sections of 
this dissertation. 

Tomohiro Nakatani presented a f0  estimator robust to background noise and spectral 
distortion [22] that was further exploited for his de-reverberation methods. It must be 
pointed out that he considers reverberation as one possible spectral distortion. Nakatani’s 
method consists on a frequency method that creates a dominance spectrum, which is a 
spectrum where the amplitude is obtained from the instantaneous frequencies (IFs) [23] 
and a dominance measure that enhances the peaks of harmonics, suppresses variations 
produced by noise and whitens the spectral envelope eliminating spectral distortions (see 
Figure 2.11). Finally, a decision measure that summarizes the dominance of all harmonic 
components, called harmonic dominance, is used to determine f0 . The implementation 
was not publicly available and, thus, it could not be considered for our study. 

 

Figure 2.11 Dominance spectra [(a), (d), and (g)], logarithmic power spectra [(b), (e) and (h)], and power spec-
tra [(c), (f), and (i)] of clean speech (left three panels), speech with white noise (middle three panels, SNR: 0 dB), 

and speech convolved with a SRAEN filter (right three panels) 
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3 Reverberation 

Reverberation is the effect produced by the combination of acoustic reflections when 
sound waves propagate in enclosed spaces. Lets consider a single omnidirectional source of 
sound located within an enclosed space such as an office or living room with walls and 
other surfaces that reflect sound to some extent. If we assume that the source starts to 
emit at some instant in time t = t0  and that the room was silent for t < t0 , then, the sound 
emanating from the source will be reflected multiple times in a manner that depends on 
the geometry of the source and the room as well as the nature of the reflective surfaces. 
This process produces a sound energy distribution that becomes increasingly uniform with 
time t > t0  across a wide range of frequencies of interest. 

This dissertation studies the effects of reverberation on fundamental frequency estima-
tion algorithms. It is, then, capital to comprehend how reverberation works. This section 
presents an overview with the acoustic principles, models and measures for room reverber-
ation. This builds the essential base of knowledge for the next subsection where current 
methods for speech de-reverberation, i.e. eliminating the effects of reverb from a speech 
signal, are presented. Finally, the effects that reverberation produces in a signal and the 
consequences they produce when estimating the fundamental frequency are described. 
This section is inspired by the introduction chapters in [24], which are recommended for 
further information. 

3.1 Room acoustics 

This section explains the basic physical processes of room acoustics, which are needed to 
know to understand reverb and de-reverberation methods. 

3.1.1. Acoustical attributes 

This section presents the attributes used for measuring reverberation. 
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a. Acoustic impulse response 

The Acoustic Impulse Response (AIR) characterizes the acoustics of a given enclosure. 
Whereas AIR is used to refer to acoustic impulse responses in general, there are some cas-
es where it is more appropriate to limit the acoustic context to be within a room, in which 
case, the impulse response is referred to as a Room Impulse Response (RIR). In this dis-
sertation it will be used AIR and also RIR, depending on the acoustic scenario being con-
sidered. 

The RIR is defined as the acoustic pressure pattern induced at a particular point in a 
room in response to a pressure impulse of unity magnitude at another point in the room. 
Between this to points, the room's acoustical properties can be seen as a linear and time-
invariant filter that produces a known acoustical output for every input. In signal pro-
cessing this filter is the impulse response, in this case, of the room. The impulse response 
of a linear system is the waveform that appears at the output of a system when a unit 
impulse (Dirac delta function) is presented at the input. The output y(t)  for arbitrary in-
put x(t)  is obtained by convolving the input with the impulse response h(t) . 

 y(t) = x(t)∗h(t) = h(τ )x(t −τ )dτ
−∞

∞

∫   (3.1) 

The lower limit for integration is set to zero for physically realizable causal systems. The 
system is said to be BIBO stable (Bounded-Input, Bounded-Output) if the output is 
bounded for every bounded input. If the impulse response h(t)  does not change with time, 
the system is time-invariant. Finally, if the superposition principle holds, the system is 
linear. Systems that fulfill the two previous conditions are called Linear Time-Invariant 
(LTI) systems. When moving to the world of discrete-time systems, the convolution inte-
gral in (3.1) becomes a convolution sum, 

 y[t]= x[t]∗h[t]= h[k]x[n − k]
k=−∞

∞

∑   (3.2) 

where n  is the discrete time index. The output sequence y[n]  is thus related to the input 
sequence x[n]  by a linear combination of the past and future values, the weights being 
given by the unit sample response h[n] . For causal systems the lower limit for the sum is 
zero. 

Several models of room impulse response have been considered in the literature [25], 
[26], [27], [28], [29], [30], being the main ones Finite Impulse Response (FIR) systems and 



31 
 

Infinite Impulse Response (IIR) systems, where h[t]  does not depend on itself for the for-
mer but it does for the last. Typically, the AIRs are divided in two distinct regions; the 
early and the late reflections. The early reflections are often taken as the first 50ms of the 
impulse response [31], and constitute well defined impulses of large magnitude relative to 
the smaller magnitude and diffuse nature of the late reflections. 

Figure 3.1 shows an example room impulse response. Direct-path propagation from the 
sound source to the microphone gives rise to an initial short period of near-zero amplitude, 
sometimes referred to as the direct-path propagation delay, followed by a peak. The am-
plitude of this peak due to direct-path propagation may be greater or less than the ampli-
tude of the later reflections depending on the source-microphone distance and the reflec-
tivity of the surfaces in the room. The example of Figure 3.1 shows a relatively strong di-
rect-path component, indicating that the source- microphone distance is relatively short. 

 

Figure 3.1 An example room impulse response 

b. Wave-equation 

In physics, a sound field can be understood as a superposition of plane waves. Typically, 
several simplifications are assumed: the medium in which the waves travel is homogeneous, 
it is at rest, and its characteristics are independent of the wave amplitude. Then, the 
propagation of such acoustic waves through a material can be considered to be a linear 
process and this propagation can be described by the (second order partial differential) 
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wave equation. The wave equation describes the evolution of sound pressure p(q,t) , with-
out any driving source, as a function of position q = (qx ,qy ,qz )  and time t  and is given by 

 ∇2p(q,t)− 1
c2

∂2 p(q,t)
∂t 2

= 0,   (3.3) 

  where 

 ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.   (3.4) 

The wave equation can be expressed in the frequency domain by taking the Fourier trans-
form of sound pressure, p(q,t) , given by 

 P(q,ω ) = p(q,t)e− jωt dt,
−∞

∞

∫   (3.5) 

to give the Helmholtz equation 
 ∇2P(q,ω ) + k2P(q,ω ) = 0,   (3.6) 

where 

 k = ω
c
= 2π

λ
  (3.7) 

is the wavenumber, ω  is the angular frequency and λ  is the wavelength. 

c. Sound field in a reverberant room 

When sound is produced in a room or other reverberant environment, a listener will hear 
a mixture of direct sound and reverberant sound. The direct-path component is the sound 
that travels from the source to the listener without reflection whereas the reverberant 
component is the sound that travels from the source to the listener via one or more reflec-
tions. The effect of increasing the distance between the sound source and the listening lo-
cation is to reduce the energy of the direct-path component. The energy of the reverber-
ant sound is not in general affected by the source-listener distance but instead is depend-
ent on the acoustic properties of the room. 

The sound energy density, i.e. sound energy per unit volume, due to the direct-path 
component is given by 

 Ed =
QWs

4πcD2   (3.8) 
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where Ws  is the power output from the sound in watts, D  is the distance from the source 
and Q  describes the directivity of the source (e.g. for an omnidirectional source Q = 1). 

Similarly, the sound energy density due to the reverberant component is given by 

 Er =
4Ws

cR
,   (3.9) 

with the room constant, R , given by 

 R = αA
1−α

,   (3.10) 

where α  and A  denote the average absorption coefficient of the surfaces in the room and 
the total absorption surface area, respectively. 
It can be seen that the energy density of the reverberant sound is independent of the dis-
tance D , whilst the direct sound energy density is related to D  by an inverse square law.   

d. Reverberation time 

The Reverberation Time (RT or T60 ) is the time interval in which the reverberating 
sound energy, due to decaying reflections, reaches one millionth of its initial value, i.e. the 
time interval it takes for the reverberation level to drop by 60 dB [32]. 
In a diffuse sound field, the ideal room decay process exhibits a purely exponential decay 
curve 
 p2 (t) = p0

2e−kt   (3.11) 

where p0  is the sound pressure at zero time, and p(t)  is the sound pressure at time t . 
The decay parameter k  is related to the room properties by 

 k = cA
4V

  (3.12) 

where  c  340m / s  is the velocity of sound, A  the total absorption area in the room, 
and V  the volume of the room. According to Sabine [31], the reverberation time is de-
fined as 

 T60 =
0.16V
A

  (3.13) 

The coefficient 0.16 is empirically determined, and shows some variance with tempera-
ture. Combining equations (3.12) and (3.13), the parameter k  is related to the reverbera-
tion time by 
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 k = 13.6
T60

  (3.14) 

We can also define the reverberation time related with the average absorption constant, 
α , of the resonant modes in the room as: 

 T60 =
3ln(10)

α
  (3.15) 

Combining the equations (3.14) and (3.15) a relation between the average damping con-
stant α  and k  can be observed: 2α ≈ k . Furthermore, the reverberation time for a given 
room is seen from these expressions to be independent of the position within the room of 
the sound source and the measurement location. 

e. Energy decay curve 

Energy Decay Curve (EDC) is the decay of the squared sound pressure against time from 
the instant a broadband sound source is switched off after having obtained a steady state 
uniform sound energy distribution. If the Acoustic Impulse Response (AIR) of the room, 
h(t) , is known, the EDC can be obtained from the Schroeder integral [31] 

 EDC(t) = h2 (τ )δτ
t

∞

∫   (3.16) 

In practice the upper limit of integration in (3.16) is set to a time instant at which the 
decay curve is still a little bit above the noise floor. The practical formula for obtaining 
the decay curve then becomes [33] 

 EDC(t) = N h2 (τ )δτ
t

Ti∫   (3.17) 

where N  is a constant proportional to the Power Spectral Density of the noise on the fre-
quency range measured and Ti  is the upper limit of integration. According to [33], the 
choice of Ti  should be made so that it is close to the point where the decaying signal 
"dives" into the noise floor. ISO 3382 standard specifies that Ti  should be set to a point 
where the impulse response is 5 dB above the noise floor. 

Converting levels to a decibel scale, the decay can be described by a linear equation 
y = ax + b , where the decay curve of slope a  is at level y  at time x . Offset b  is usually 
equal to zero, as the curve is commonly normalized to begin at a level of 0 dB, thus pass-
ing through the origin. 
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Figure 3.2 shows an example of the Schroeder integration curve calculated from a room 
impulse response. An example of straight-line fits to the first 30 dB. 

 

Figure 3.2 Energy Decay Curve (EDC) 

f. Energy decay relief 

To give additional insight, the impulse response can be split into frequency sub-bands and 
the EDC computed in each sub-band to give the Energy Decay Relief (EDR) as a func-
tion of both time and frequency, EDR(t, f) [31], [34]. This is typically presented as a 2-D 
surface plot and enables the frequency dependence of reverberation time to be studied. 

g. Early decay time 

Early Decay Time (EDT) is defined as the time interval required for the sound energy 
level to decay 10 dB after excitation has stopped. In a direct comparison with reverbera-
tion time the result is scaled by a factor of 6. 

h. Critical distance 

The critical distance is defined as the distance Dc  from the source at which the sound en-
ergy density due to the direct-path component, Ed , and the sound energy density due to 
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the reverberant component, Er , are equal. It is evaluated by equating (3.8) and (3.9) to 
give 

 Q
4πDc

2 =
4
R
,   (3.18) 

so that 

 Dc =
QR
16π

  (3.19) 

As shown in [31], the critical distance can also be expressed in terms of Q , V  and the 
reverberation time T60  as 

 Dc ≈ 0.1
QV
πT60

  (3.20) 

An example of sound energy density in a room as a function of the distance from the 
source is shown in Figure 3.3. 

 

Figure 3.3 Direct energy density, Ed, and reverberant energy density, Er, against distance from a 1 watt source in 
a room of dimensions 3×4×5m with T60 ≈ 0.29s (using the Eyring sound absorption coefficient α=0.3) and 

c=344m/s. The vertical dashed line indicates the critical distance, Dc ≈ 0.9m, computed using the approximate 
formula in (3.20). 
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3.1.2. Models of room reverberation 

Three main models (see Figure 3.4) can be considered for modeling reverberation: first, 
wave based modeling which is based on the wave equation and is a fundamental approach, 
second, ray based modeling which leads to ray tracing methods and, third, the image 
method for modeling reverberation using virtual sources. Indeed, different analysis tech-
niques are appropriate for different ranges of frequency of sound. Therefore, a combination 
of modeling techniques is necessary to achieve accuracy over the full audio spectrum. 
However, speech signals have a limited bandwidth that allows a simpler modeling. 

 
 

 

Figure 3.4 Methods for modeling and simulating room acoustics 

  



38 
 

3.2 Speech de-reverberation 

De-reverberation is the process to reduce the reverberation effects in a signal, be it by 
means of processing the signal or re-synthesizing it. De-reverberation methods may be di-
vided considering different classifications, for example, single vs. multi-microphone tech-
niques, those primarily affecting coloration vs. those affecting late reverberation, or those 
that need to estimate the AIR vs. those that do not. This dissertation categorizes speech 
de-reverberation methods in two classes. The first approach, called linear filtering, de-
reverberates time-domain signals or STFT coefficients. The second approach, called spec-
trum enhancement, de-reverberates corrupted power spectra while ignoring the signal 
phases. 

It must be pointed out that even though the object of study of this dissertation is the 
singing voice, here we present de-reverberation speech methods. That is because currently 
no specific methods for the singing voice exist in the literature, thus, the singing voice will 
be considered as a particular case of speech. 

Before surveying the three approaches in more detail, we summarize the notations. The 
STFT of reverberant signal y(t)  is denoted by yn[k] , where n  represents the index of a 
time frame and k  refers to a frequency bin. The various representations of x(t)  are de-
fined similarly. 

3.2.1. Linear filtering 

The linear filtering approach attempts to remove the effect of reverberation in the time or 
STFT domain taking consecutive reverberant observations into account. In contrast to 
the other approach, linear filtering exploits both the amplitudes and phases of the signal, 
which is advantageous in terms of accuracy because reverberation is a superposition of 
numerous time-shifted and attenuated versions of a clean signal so that both the ampli-
tudes and phases are useful for de-reverberation. In addition, taking the signal phases into 
account enables us to effectively exploit the acoustical differences between multiple micro-
phone positions [35], but this is not the case for this dissertation since it only focuses on 
single microphone methods as this is the typical set-up for capturing the singing voice and, 
thus, multi-microphone methods will not be considered; for more information see [24] and 
the references in there. Therefore, the algorithms of this approach are explained assuming 
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a single microphone and the STFT representation, even though many of the algorithms 
can be extended to benefit from multiple microphones as discussed in [24]. 

To represent the relationship between clean and reverberant STFT coefficients, xn[k]  
and yn[k] , the following representation is often assumed in the literature [36], [37]: 

 yn[k]≈ hτ [k]
*xn−τ [k],

τ=0

T

∑   (3.21) 

where the superscript *  stands for complex conjugation and T  is the number of time 
frames over which reverberation continues to have an effect. The complex conjugate of 
hn[k]  is used for consistency with the notation commonly accepted in the field of adaptive 
filtering [38]. Equation (3.21) means that the effect of reverberation may be represented as 
a one-dimensional convolution in each frequency bin, and therefore sequence (hn[k])0≤n≤T  
can be viewed as an STFT-domain counterpart of the time-domain room impulse response. 
The objective is to recover the corresponding clean STFT coefficients (xn[k])n∈Τ  for each k, 
given a sequence of reverberant STFT coefficients (yn[k])n∈Τ . Below, the frequency bin in-
dex k  is omitted for conciseness. 
As the name suggests, linear filtering methods employ a linear filter to perform de-
reverberation according to 

 xn = gτ
*yn−τ ,

τ=Τ⊥

T⊥

∑   (3.22) 

where G = {gτ }T −≤τ ≤Τ+  is a set of adjustable linear filter coefficients. Generally, T − ≤ 0  and 
T + > 0 . The clean STFT coefficient xn  is estimated based on T − +T + +1 consecutive re-
verberant frames, and thus the linear filtering methods naturally allow us to take the 
long-term acoustic context into account. The goal is to find an optimal filter G  that can-
cels the room impulse hn . Denoting the convolution of the room impulse response and the 

linear filter fn = gτ
*hn−ττ=Τ−

T +

∑ , the objective is to set G  so that fn  is nonzero if n = 0  and 
zero otherwise. This problem is called blind de-convolution and has been studied exten-
sively, especially in the field of digital communications [38]. Different blind de-convolution 
methods for speech signals are discussed in [27], [39]. 

In the following, we look more closely at blind de-convolution based on long-term linear 
prediction [36], [40], [41], [42]. It leverages an explicit speech model to determine the filter 
G . In one exemplary concept [36], which has been applied to various speech recognition 
tasks including meeting recognition, the speech model defines the probability density 
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function (pdf) of a clean STFT coefficient xn  and is assumed to be a normal distribution 
with zero mean and variance θn  . The time varying modeling, i.e., the dependence on 
frame index n , of the variance was shown to play a critical role in precise adjustment of 
the filter coefficients [36]. Since Θ = {θn}n∈Τ  is unknown in advance, the filter G  is opti-
mized jointly with Θ  by using the method of maximum likelihood. Specifically, the likeli-
hood of the combination of G  and Θ  given the sequence Y = (yn )n∈Τ  of observed reverber-
ant STFT coefficients is maximized according to 
 (Ĝ,Θ̂) = argmax

(G ,Θ)
log p(Y |G,Θ).   (3.23) 

To facilitate the definition of the pdf p(Y |G,Θ) , the concept of multistep prediction 
[42] is introduced. With multistep prediction, it is assumed in (3.22) that g0 = 1  and that 
gn = 0  when T − ≤ n < Tδ , where Tδ  is a positive integer that approximately corresponds to 

the boundary Δ  between early reflections and late reverberation. This approach is called 
multistep prediction because, with these assumptions, (3.22) can be rewritten in the form 
of long-term Tδ -step forward prediction of yn  as 

 yn = xn + gτ
*yn−τ ,

τ=Τδ

Tδ

∑   (3.24) 

representing the current reverberant observation yn  as the sum of the clean signal xn  and 
a signal predicted from past observations with filter G = {gn}Tδ ≤n≤T + . The sign of gt  has 

been inverted when deriving (3.24) from (3.22). Thanks to the predictive form of (3.24), 
p(Y |G,Θ)  can be easily defined and the optimization problem in (3.23) is finally rewrit-
ten as the following minimization problem: 

 (Ĝ,Θ̂) = argmin
(G ,Θ)

yn − gτ
*yn−ττ=Tδ

T +

∑
2

θn

+ logθn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟n∈Τ

∑ ,   (3.25) 

which can be solved by an iterative algorithm updating estimates of G  and Θ  alternately 
[36]. If multiple microphones are available, (3.24) is modified so that the current reverber-
ant observation at a microphone is predicted from past observations from all the micro-
phones, i.e., (3.24) is rewritten in the form of multi-channel prediction [36], [42]. 

The long-term prediction method has been successfully applied to actual meeting data. 
Furthermore, by extending the observation pdf p(Y |G,Θ) , this method can be modified 
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to deal jointly with multiple speakers, additive background noise and reverberation as de-
scribed, for example, in [43]. 

3.2.2. Spectrum enhancement 

As an alternative to linear filtering, enhancement may be performed after taking the 
squared magnitudes of the STFT coefficients. The objective of the resulting spectrum en-
hancement methods is to restore the clean power spectrum coefficients ( xn[k]

2 )n∈Τ , given 

a sequence of the corresponding reverberant power spectrum coefficients ( yn[k]
2 )n∈Τ . The 

advantage of spectrum enhancement over linear filtering is its high robustness against 
speaker movement, which derives from the fact that the magnitude of the late reverbera-
tion is largely insensitive to changes in speaker and microphone positions. Furthermore, 
spectrum enhancement methods can be easily combined with conventional additive noise 
reduction techniques, such as spectral subtraction, as shown in [44]. 

The spectrum enhancement methods can be categorized into two classes according to 
the estimator of the reverberation power spectrum: moving-average estimator and predic-
tive estimator. The moving-average estimator is based on the power spectrum-domain re-
verberation model given by  

 yn[k]
2 ≈ hτ [k]

2 xn−τ [k]
2 ,

τ=0

T

∑   (3.26) 

which is derived from (3.21) by disregarding the cross-terms between different time frames. 
To estimate the power spectrum of late reverberation or clean speech with this model, we 
need to know the power spectrum-domain representation ( hn[k]

2 )0≤n≤Τ  of the room im-
pulse response. This can be achieved by techniques such as correlation analysis [45], non-
negative matrix factorization [46], [47], and an iterative least squares method [48]. 

The predictive reverberation estimator employs a much simpler model [44], [49]. As-
suming a strict exponential decay of the late reverberation magnitude, the power spec-
trum rn[k]

2  of the late reverberation at frame n  can be predicted from the power spec-

trum yn−Tδ [k]
2
 of the reverberant observation at frame n −Tδ  via a scalar predictor a[k]  

as 
 rn[k]

2 = a[k] yn−Tδ [k]
2   (3.27) 
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Tδ   is set at a value corresponding to approximately 50 ms. The predicted late reverbera-

tion is removed from the reverberant power spectrum yn[k]
2  with spectral subtraction. 

The predictor a[k]  is determined based on the knowledge of T60 . 

3.3 Effects of reverberation on voice analysis 

This section describes the effects that reverberation produces on a clean anechoic speech 
signal. First, the general effects are presented, those perceivable from the signal point of 
view, and then those indirectly produced when we try to estimate the fundamental fre-
quency. 

3.3.1. General effects 

Reverberation is a superposition of numerous time-shifted and attenuated versions of a 
clean signal. The interaction of this versions, or repetitions, produces mainly two effects: 

a. Spectral coloration 

The spectral coloration is the effect of changing the color (quality, timbre) of the original 
signal. Using the Fourier transform in equation (3.2) to move to the spectral-domain 
 Y [k]= X[k]H[k]   (3.28) 

it can be seen that the impulse response h[n]  is equivalent to the filter H[k]  and thus, 
reverberation produces the same effect an LTI system could produce on the signal; it 
causes spectral changes and lead to a perceptual effect referred as coloration [31]. This ef-
fect is typically associated to the early-reflections part of the impulse response (around the 
first 50 ms) 

b. Temporal tail 

The late reflections of the impulse response (typically 50 ms after the direct-path signal) 
are referred to as the tail of the impulse response and constitute closely spaced, decaying 
pulses, which are seemingly randomly distributed. The late reflections cause a ‘distant’ 
and ‘echo-ey’ sound quality we refer to as the reverberation tail and provide the major 
contribution to what is generally perceived of as reverberation in everyday experience. 
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A graphical example can be seen in the spectrogram of a sweep (a pure sine wave with 
linearly increasing frequency over time) in Figure 3.5. When the sweep is reverberated its 
lower frequency in past samples keeps sounding for a while with decreasing intensity. 

 

Figure 3.5 Sweep spectrogram. Clean signal above, reverberated signal below. Horizontal axis represents time 
and vertical axis frequency. 

3.3.2. Fundamental frequency estimation effects 

The general effects presented on the previous section have negative consequences when 
trying to estimate the fundamental frequency of speech or the singing voice. There is little 
literature [50] that studies the effects of reverberation on fundamental frequency estima-
tors because most of the research has been focused only on automatic speech recognition 
(ASR), but the results found are highly coincident: in summary, detrimental effects are 
observed after a certain early reflections time limit around 25-50ms. This means early re-
flections are less problematic because they usefully increase the level of the speech and 
introduce spectral distortions that can be addressed using within-frame processing 
schemes (such as cepstral mean normalization). On the other hand, late reflections have a 
temporal smoothing effect that extends over several frames presenting a particular prob-
lem for F0 estimators. In other words, spectral coloration, despite changing the harmonic 
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amplitudes of the signal, does not produce any relevant change for most estimators. And 
the temporal tail causes important disorders to estimation algorithms, which will decrease 
its accuracy as the late reflections acquire more length. 

a. Unvoiced frames become voiced 

The unvoiced frames are those where there is speech but it has no fundamental frequency, 
such as when there are unvoiced consonants. Because of the effects of the reverberation 
tail, vowels endure longer in time. This produces that when an unvoiced consonant is af-
ter a vowel, or even a voiced consonant, it can be ‘shaded’ by them and their frequency 
would be detected. Figure 3.6 illustrates an example with the waveform in red, the spec-
trogram with the white-yellow-blue range of colors, on top of it a dark blue line for the 
detect fundamental frequency and with red circles the zones of interest where the de-
scribed effect happens. A clean singing voice signal has been used and it is shown in the 
upper part. After applying a reverb, depicted in the part below, we can observe how the 
algorithm is assigning a frequency to frames where there was not before and that corre-
sponded to unvoiced consonants. 

 

Figure 3.6 Effects of reverb in fundamental frequency estimation. Unvoiced frames become voiced 
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b. Silence becomes voiced 

Similarly to the preceding effect, the voiced frames of vowels or voiced consonants endure 
in time, and this produces that, if there is a silence at the end of words or sentences, it 
will be detected with the frequency of the preceding frames. The same example as in Fig-
ure 3.6 is now presented in Figure 3.7 but with a single circle pointing to the end of a 
word where a silence has ‘acquired’ a the preceding frequency. 

 

Figure 3.7 Effects of reverb in fundamental frequency estimation. Silence becomes voiced 

c. Monophonic becomes polyphonic 

This is probably the most challenging effect to overcome for estimators but, luckily, 
greater reverberation times are normally required, compared to the already discussed ef-
fects, for the problem to appear. Basically, the fact that a certain frequency persists more 
in time than its original clean version (see Figure 3.5) causes that, in a particular instant, 
more than one fundamental frequency will co-exist. For example, if the current pro-
nounced vowel is a C3 note, we could also be hearing the preceding vocal, for instance A3. 
If it happens that they have different fundamental frequencies a previous monophonic sit-
uation with a single source has become equivalent to a polyphonic situation where more 
than one fundamental frequency is present at the same time. Because the estimator is ex-
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pecting a singing voice, thus, a monophonic source, it will not be prepared to deal with 
simultaneous fundamental frequencies and, consequently, its estimation will start failing. 

It is certain that, often, the preceding note, A3 in our example, will be in the back-
ground, i.e. C3 will be more loud and it will sound on top of A3. This is why estimators 
that consider predominance in amplitude, are less affected by this issue. 

The same example as in Figure 3.6 and Figure 3.7 is presented in Figure 3.8. This time 
a reverberation with longer decay has been applied. It can be observed inside the red cir-
cle how a previous decaying melody becomes the first note enlarged.  

 

Figure 3.8 Effects of reverb in fundamental frequency estimation. Monophonic becomes polyphonic 

d. Expressive features are smeared 

The effects explained above produce the smearing of characteristic expressive resources 
used in the singing voice. Smearing is referred as loosing precision and, consequently, ob-
taining results less accurate where this expressive features are incorrectly detected, less 
notorious or not present at all. Typical effects that will be smeared by reverberation are: 
1. Vibrato: it consists on modulating the frequency of a note. When reverb is applied 

really close fundamental frequencies will be co-existing during a note with vibrato. 
From the spectrum point of view, this will produce that really close main lobes (for 
the different fundamental frequencies) will be summed up indistinguishably forming a 
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wider main lobe, probably leading to less precision when picking up the its peak. Thus, 
even if a predominant amplitude is supposed for the current fundamental frequency, 
the modulation of the vibrato will be detected smaller than the real one. It could also 
happen that those really close fundamental frequencies are seen as a single fundamen-
tal frequency by the estimator, something similar to a unique fundamental frequency 
result of the mean of all of them, and no vibrato is detected at all but a plain note. 

2. Portamento: it consists on the pitch sliding from one note to another (also referred 
as glissando). This feature suffers the same problem as vibrato; really close fundamen-
tal frequencies will be co-existing. A continuous case of portamento is a sweep (see 
Figure 3.5). 

3. Attack: it consists on how the start of a note, in terms of amplitude, is produced. 
When reverberation is present changes in amplitude are generally smeared, especially 
if the critical distance is surpassed. This can lead to detecting the start of the note 
imprecisely. Moreover, when introducing a reverb on a clean signal, the direct-path 
introduces a constant delay. This fact will have to be considered when evaluating 
with a ground truth. 
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4 Study 

In this section, the approach to solve the questions posed (see Section 1.2) in this thesis is 
presented. 

4.1 Overview 

A schematic view of the approach used in this study is presented in Figure 4.1. 

 

Figure 4.1 Schematic overview of the study 

First, it is needed to choose a dataset to perform the study on. This dataset must provide, 
in one hand, clean excerpts of singing voice audio and, on the other hand, a ground truth 
indicating the fundamental frequency corresponding to the different frames of the excerpts. 
It is of utter importance that the audio is clean in terms of being dry, i.e. in reverb-free 
conditions. Second, it will be selected a set of fundamental frequency estimation algo-
rithms that are considered of interest for our purpose and an evaluation method to con-
trast their output with the ground truth. Finally, every F0 estimation algorithm will be 
run and evaluated using: first, clean audio, second, clean audio reverberated, third, rever-
berated audio being de-reverberated and, eventually, clean audio being de-reverberated. 

This methodology allows extracting different information in every stage. First, when 
considering only clean audio, the most accurate algorithm in normal conditions is found 
but also it allows us to decide if the chosen dataset is good enough (e.g. if it is clean 
enough) depending on the final accuracies obtained. Second, when evaluating the rever-
berated audio, the most robust algorithm against reverberation is discovered by means of 
observing the accuracy drop compared to clean audio results. Third, when evaluating re-
verberated audio that is de-reverberated, it is observed if some de-reverberation method 
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can be used to improve the accuracy of the algorithms. Finally, the stage that runs clean 
audio directly through de-reverberation methods unveils if these de-reverberation methods 
have any deleterious effects in the F0 estimation algorithms accuracy in reverb-free condi-
tions. 

4.2 Audio dataset: MIR-1K 

In the previous section it was explained we first needed a dataset with singing voice ex-
cerpts that were dry enough for our task. The main concern is that they are noise-free, so 
there is no interference for the F0 estimators, and they are reverberation-free, so we can 
artificially add it later to observe its effects. At present days there is a significant amount 
of speech datasets but not much with singing voice and most of them are small, lack F0 
ground truth information or are not much clean. Luckily, a complete dataset with all the-
se requirements was available and accessible for free: MIR-1K [51]. Here not many argu-
ments can be added to the decision of choosing MIR-1K over other datasets since it could 
not be found any other one that satisfied totally all our requirements, but MIR-1K fit per-
fectly for our purposes. 

MIR-1K is a dataset created by Chao-Ling Hsu and Jyh-Shing Roger Jang conceived 
for singing voice separation from music [52]. Even though it is not our task, its excerpts 
have the singing voice and music separated in channels. Actually, its excerpts were com-
posed using karaoke Chinese pop songs as the background music and then they recorded 
its lab-mates singing over those songs. It contains 1,000 excerpts that range from 4 to 13 
seconds and provide a total length of the dataset of 133 minutes. Having such a big da-
taset provides a high confidence in the results extracted from it. The singers are 8 males 
and 11 females, a fact that provides a good variety in pitch range, but most of them are 
amateur. This is acceptable since pitch contours of amateur singers will be more unstable 
and complicated to track for F0 estimators, thus the idea is that if it works with amateurs 
it is highly probable that will work with professionals and not the other way around, but 
a comparison with professional singers would be desirable for some applications. MIR-1K 
also provides a manually labeled ground-truth with pitch contours and voiced/unvoiced 
frames information. The audio quality, 16kHz and 16bit, is good enough since it covers 
the human singing pitch range. Besides of that, we also studied the noise conditions of the 
recordings. Recording quality does not comply with studio standards for many of the ex-
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cerpts. Most of them have noticeable ground noise, they may have clicks and clip at some 
points. These interferences are not strong enough in the recordings to disturb a human in 
the task of extracting the pitch but it is known they could affect computer algorithms to 
do so. It will be shown later (in Section 5.1) that an accuracy of more than 90% is 
achieved with current F0 estimators in MIR-1K dataset, thus the interferences are not 
significant to alter our results significantly. This is probably due to the big amount of da-
ta in MIR-1K and the robustness of current methods to some of this interferences (i.e. 
background noise). 

It is also interesting to point out that MIR-1K is one of the datasets used in the annual 
MIREX contest since 2009. This gives it an important credibility since many researchers 
in the field of MIR have used it. In 2009 it was created a special version of MIR-1K to 
comply with their requirements, e.g. 10ms frame for pitch information. Since this pitch 
information was calculated using linear interpolation from the original 20ms frame pitch 
information [53], this study uses the original dataset. 

As pointed before, MIR-1K has a huge amount of excerpts (1,000). This is generally an 
advantage because it gives reliability to the results but highly increases the computation 
time. In this study a smaller dataset had to be created out of MIR-1K that was called 
MIR-1K-Micro; there were algorithms whose computation time was practically endless 
and others that had to be run manually file-by-file. MIR-1K-Micro was created randomly 
selecting a single excerpt for every singer, thus obtaining a dataset with 19 excerpts. It 
was checked that this smaller dataset is still representative of the original one; it gave 
very similar results compared to the complete MIR-1K. In this study the complete MIR-
1K results are provided by default and MIR-1K-Micro results appear only were the full 
dataset could not be used. 

Another interesting fact to consider when using datasets for F0 extraction is its 
voiced/unvoiced frames percentage that is shown in the Figure 4.2 below. The first thing 
to notice is how the MIR-1K-Micro dataset preserves the same relation between percent-
ages; a fact that allows us to directly compare MIR-1K results with MIR-1K-Micro results 
with confidence. The other issue is that there is a significant percentage of voiced frames 
compared to unvoiced ones. This means that, for example, a no-analysis strategy for an 
algorithm to discriminate voiced/unvoiced frames could be to label everything as voiced 
and it would obtain a 70% of accuracy. Since a voicing accuracy of 90% or more is desira-
ble to obtain good results it can be said that the voiced/unvoiced frame factor in MIR-1K 



52 
 

is valid for our study. Nevertheless, the ideal number of this factor should be similar to 
the data analyzed in a final application and this will always depend on the final applica-
tion. This study is focused towards a general idea but not a final application, thus there is 
not an exact number to pursue. 

 

Figure 4.2 Percentage of voiced/unvoiced frames 

4.3 Evaluation: MIREX audio melody extraction 

To evaluate the results of the F0 estimation algorithms it is necessary some way to com-
pare them with the ground truth and obtain a score that can be finally used to compare 
scores between different algorithms. For this study the audio melody extraction evaluation 
method from MIREX [54] was chosen. It was considered that the most standard method 
in the field was preferable over creating a specific one since it facilitates future compari-
sons with other studies. MIREX is an annual contest where different algorithms compete 
to get the best results in different categories of MIR research of current interest. The aim 
of the MIREX audio melody extraction evaluation is to identify the melody pitch contour 
from polyphonic musical audio. Pitch is expressed as the fundamental frequency of the 
main melodic voice, and is reported in a frame-based manner on an evenly-spaced time-
grid. Although in this study there is no background music the evaluation method of 
MIREX audio melody extraction is perfectly suitable for our task. Indeed, this category 
evaluates monophonic F0 estimators just with the addition of background interferences 
(music in this case) because without them the problem is considered “solved”. Moreover, 
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reverberation can be seen as an interference of a different kind and makes sense to evalu-
ate it with the same methodology. 

4.3.1. Evaluation procedures 

MIREX audio melody extraction evaluation consists of two parts: 
• Voicing detection: deciding whether a particular time frame contains a melody 

pitch or not. 
• Pitch detection: deciding the most likely melody pitch for each time frame. 

There is a global score but these two parts are evaluated independently. This allows 
analyzing results with more detail and discriminating which of the parts is failing.  

For the evaluation of the voicing detection of frames the following matrix is considered, 
  Detected  
  unvoiced voiced sum 

Ground 
truth 

unvoiced TN FP GU 
voiced FN TP GV 

 sum DU DV TO 
Table 4.1 MIREX evaluation procedure matrix 

where the acronyms mean: 
• TP (True Positives): voiced frames correctly detected. 
• TN (True Negatives): unvoiced frames correctly detected. 
• FP (False Positives): unvoiced frames incorrectly detected as voiced. 
• FN (False Negatives): voiced frames incorrectly detected as unvoiced. 
• GU (Ground truth Unvoiced) = TN + FP 
• GV (Ground truth Voiced) = FN + TP 
• DU (Detected Unvoiced) = TN + FN 
• DV (Detected Voiced) = FP + TP 
• TO (Total number of frames) = DU + DV = GU + GV 
 

For the evaluation of the pitch detection the fundamental frequency detected has to be 
less than a half semitone close to the F0 ground truth. It does not matter how the algo-
rithm labeled the frame in terms of voicing to check the pitch detection. The same rules 
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apply for Chroma detection, only that all notes are fit in a single octave to no consider 
octave errors. Thus the there are the following breakdowns: 

• TP = TPC + TPI 
• TP = TPCch + TPIch 
• FN = FNC + FNI 
• FN = FNCch + FNIch 

where the acronyms mean: 
• TPC: True Positives Correct (they have a correct pitch) 
• TPI: True Positives Incorrect 
• TPCch: True Positives Correct chroma 
• TPIch: True Positives Incorrect chroma 
• FNC: False Negatives Correct 
• FNI: False Negatives Incorrect 
• FNCch: False Negatives Correct chroma 
• FNIch: False Negatives Incorrect chroma 
 

All the evaluation procedures presented above are then used to obtain the final evalua-
tors. The evaluators currently used in MIREX [54] have been included (with the exception 
of voicing d-prime because it is not specified how to obtain it) as well as other evaluators 
used in older editions [55] for the sake of completeness of the study. Even though most of 
the evaluators are not needed for the analysis required in this study, all results are pro-
vided in the results appendix for future use in other research. 

It is important to point out that when averaging pitch statistics in MIREX the perfor-
mance of each excerpt is calculated individually and then the average of these measures is 
reported while, for the voicing detection, the average is simply made over all frames di-
rectly. They argue that, in the case of pitch, it helps increasing the effective weight of 
some minority genres that have shorter excerpts and, in the case of the voicing, some ex-
cerpts have no unvoiced frames and that can give misleading results. In the results analy-
sis of this study it has been only used the averaging per excerpt. Indeed, MIREX audio 
melody extraction is using more datasets than only MIR-1K, which does not have these 
problems. Besides, we had calculated results with both strategies and there was no signifi-
cant difference.  
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4.3.2. Voicing evaluation 

Voicing evaluators used are the following: 
• Voicing Detection: probability that a frame which is truly voiced is labeled as 

voiced (also known as “hit rate”) 

 TP
GV

  (3.29) 

• Voicing False Alarm: probability that a frame which is actually unvoiced is 
labeled as voiced 

 FP
GU

  (3.30) 

• Voicing Accuracy: probability that the voicing of a frame is labeled right 

 TP +TN
TO

  (3.31)  

4.3.3. Pitch evaluation 

Pitch evaluators used are the following: 
• Raw Pitch Accuracy: probability of a correct pitch value (to within ±¼ tone) 

given that the frame is indeed pitched. This includes the pitch guesses for 
frames that were judged unvoiced 

 TPC + FNC
GV

  (3.32) 

• Raw Chroma Accuracy: probability that the Chroma (i.e. the note name) is 
correct over the voiced frames. This ignores errors where the pitch is wrong by 
an exact multiple of an octave (octave errors) 

 TPCch + FNCch
GV

  (3.33) 

4.3.4. Overall evaluation 

Evaluators used that consider both voicing and pitch are the following: 
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• Overall Accuracy: probability that a frame is correctly labeled with both 
pitch and frame 

 TPC +TN
TO

  (3.34) 

• Voiced Pitch Accuracy: probability that a truly voiced frame is correctly la-
beled as voiced and the right pitch 

 TPC
GV

  (3.35) 

• Voiced Chroma Accuracy: probability that a truly voiced frame is correctly 
labeled as voiced and the right Chroma 

 TPCch
GV

  (3.36) 

• Precision [55], [56]: probability that a frame was correctly labeled both with 
voicing and pitch without taking into account wrongly labeled unvoiced frames. 

 TPC +TN
TP +TN + FP

  (3.37) 

• Recall [55], [56]: probability that a frame was correctly labeled both with voic-
ing and pitch without taking into account wrongly labeled voiced frames 

 TPC +TN
TP +TN + FN

  (3.38) 

• F-measure [55], [56]: weighted average of the precision and recall. 

 2* precision*recall
precision + recall

  (3.39) 

• Chroma Precision [55], [56]: probability that a frame was correctly labeled 
both with voicing and Chroma without taking into account wrongly labeled un-
voiced frames 

 TPCch +TN
TP +TN + FP

  (3.40) 

• Chroma Recall [55], [56]: probability that a frame was correctly labeled both 
with voicing and Chroma without taking into account wrongly labeled unvoiced 
frames 

 TPCch +TN
TN +TP + FN

  (3.41) 
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• Chroma F-measure [55], [56]: weighted average of the Chroma precision and 
Chroma recall. 

 2*chroma_ precision*chroma_ recall
chroma_ precision + chroma_ recall

  (3.42) 

4.4 Reverberation dataset: AIR 

In order to obtain reverberated versions of the clean audio from the MIREX dataset dif-
ferent strategies were considered: 

• Record audio reverberated: reproduce the clean audio with a speaker in different 
environments (e.g. rooms) and record the audio reverberated with a microphone. 
This option was quickly discarded when the MIREX was selected as the dataset; 
it would have been endless to record 1,000 excerpts in different scenarios. Be-
sides, this process carries a significant amount of difficulties: speaker response, 
microphones distance and position, microphone response, etc. that need to be 
taken into account.  

• Simulate spaces: use artificial impulse responses to convolve the clean audio or 
some kind of room/reverb simulator. This method is better than the previous 
one but results depend on a simulation or a specific model of reverberation. 

• Convolve with real reverbs. This implies recording the impulse responses of dif-
ferent rooms and then using them to reverberate the clean audios. This option 
has the addition that you can study how the different properties of the impulse 
response (e.g. reverberation time) affect the results, but it is a long and meticu-
lous process to obtain those impulse responses precisely. Luckily, the Institue of 
Communication Systems and Data Processing (IND) from Aachen, Germany, 
had already created a dataset of impulse responses perfectly suitable for our 
purposes, the Aachen Impulse Response dataset (AIR) [57], [58], [59] and that is 
what we used. 

 
The Aachen Impulse Response (AIR) dataset is a set of impulse responses that were 

measured in a wide variety of rooms. The aim of the AIR dataset is to allow for realistic 
studies of signal processing algorithms in reverberant environments with a special focus on 
hearing aids applications. That is why it comes with binaural room impulse responses 
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(BRIRs) measured with a dummy head in different locations with different acoustical 
properties, such as reverberation time and room volume. It also provides impulse respons-
es for hands-free reference point (HFRP) and hand-held position (HHP) (see Figure 4.3). 

 

Figure 4.3 Dummy-head used in AIR dataset with the two-microphone mock-up clamped in the hand-held posi-
tioner. 

In this study were always used monophonic impulse responses (using only one channel 
of the two provided) since we are not studying reverberation for our perception (with 
head-shadowing, etc.) but for machines. Thus, in all the selected rooms a configuration 
without dummy-head was used from the different distances available. Moreover, it was 
considered interesting to include both HHP and HFRP because are scenarios directly 
linked with mobile devices. Dummy-head results were computed and are available in the 
results appendix but have not been used in this study. 

In  

Table 4.2 is found the selection of rooms from the AIR dataset for this study as well as 
some data related to them. To further extend the information on rooms’ characteristics 
see [57], [58], [59]. 
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Rooms Dimensions Distance RT60 Abbreviation 
name 

Studio booth 3 x 1.8 x 
2.2 m 

0.5 m 80 ms booth_1 
1 m 110 ms booth_2 

1.5 m 180 ms booth_3 
Meeting room 8 x 5 x 3.1 

m 
1.45 m 210 ms meeting_1 
1.70 m 220 ms meeting_2 
2.25 m 240 ms meeting_3 
2.80 m 250 ms meeting_4 
HHP 254 ms* meeting_hhp 
HFRP 337 ms* meeting_hfrp 

Lecture room 10.8 x 10.9 
x 3.15 m 

2.25 m 700 ms lecture_1 
4 m 720 ms lecture_2 

5.56 m 790 ms lecture_3 
7.1 m 800 ms lecture_4 
8.68 m 810 ms lecture_5 
10.2 m 830 ms lecture_6 
HHP 236 ms* lecture_hhp 
HFRP 818 ms* lecture_hfrp 

Office room 5 x 6.4 x 
2.9 m 

1 m 370 ms office_1 
2 m 440 ms office_2 
3 m 480 ms office_3 
HHP 390 ms office_hhp 
HFRP 520 ms office_hfrp 

 

Table 4.2 Rooms selected from the AIR dataset. Values with * were calculated directly from the impulse re-
sponse using the Schroder method [60] because the original AIR papers [57], [58] did not include that information. 
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4.5 F0 estimation algorithms 

Fundamental frequency estimation algorithms were selected taking into account, in one 
hand, their current relevance in the field of F0 estimation (i.e. the most used and accurate) 
and, in the other hand, those specially focused towards the singing voice (or speech) and 
with background interferences overcoming capabilities. 

The fundamental frequency estimation algorithms selected were: 
• Two Way Mismatch (TWM)[16]: it is a frequency-domain algorithm based 

on harmonic pattern matching (see Section 2.2.2.c). It is widely used nowadays 
for its accuracy and efficiency. It was used a proprietary implementation from 
the MTG that could be fine-tuned to adapt to the singing voice. 

• Spectral Auto-Correlation (SAC)[13]: it is a frequency-domain algorithm 
base on spectrum auto-correlation (see Section 2.2.2.b). It is interesting for its 
special accuracy and robustness. As it happened with TWM, it was used a pro-
prietary implementation from the MTG that could be fine-tuned to adapt to the 
singing voice. 

• YIN[6]: it is a modification of the time-domain auto-correlation algorithm (see 
Section 2.2.1.b). It is one of the currently most used algorithms, especially for 
voice because it was specially conceived for speech. Among its virtues excels its 
speed (it is the fastest of the four algorithms used here), being able to run in re-
al-time needing only to buffer twice the period to detect (other methods usually 
require a bare minimum of four periods). It was used the original implementa-
tion from the author described in [6]. 

• MELODIA[21]: it is a frequency-domain algorithm based on harmonic summa-
tion to calculate a salience function. It is different than the previous ones be-
cause it is especially designed to perform in a multi-pitch environment, i.e. it ex-
tracts the main melody of songs that have background music. This is exactly 
what makes it interesting for our study because this inherent capacity to over-
come background interferences can make it more robust facing reverberation. It 
was used the original Vamp plugin implementation from the author described in 
[21]. A disadvantage of MELODIA is that its methodology can only be applied 
offline, i.e. not in real-time. 
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4.5.1. Algorithm fine-tuning 

In order to compare the performance of the algorithms in the best conditions its execution 
parameters were carefully selected. In one hand, all algorithms had to use a fundamental 
frequency search range of 63.1883 to 706.3069 Hz. It is exactly the range that the ground 
truth covers plus a half tone in both extremes. This half tone is added so algorithms still 
fail on the extremes (remember that our evaluation considers a pitch correct if it is closer 
than a quarter tone). Besides, all algorithms used the same hop size (20ms) and window 
size (40ms) than the ones used for the MIR-1K ground truth. Nevertheless, it had to be 
made an exception with MELODIA because window and hop size are fixed and cannot be 
changed. Because its the fixed values were smaller, it was safely used linear interpolation. 
On the other hand, the policy to follow regarding the other parameters, which are differ-
ent in every algorithm, was to keep them with the default value as long as it was reason-
ably optimum for our task. Besides, for optimization it was always considered a scenario 
with clean audio (no reverberation) because the goal of the study is to observe the per-
formance degradation of the algorithms when set to properly work in standard conditions 
with singing voice, but not to see which of them performs better when best optimized 
with reverberated audio. That being said, the rest of the parameters were set to the de-
fault value with the following exceptions: 

• TWM and SAC were actually set to the default parameters adequate for voice, 
i.e. the voice profile. 

• In YIN existed a doubt about the parameter that decides the voicing of a frame. 
YIN outputs, along with the F0 contour, an aperiodicity measure (AP0) that is 
used to detect the voicing. When a frame is substantially aperiodic, i.e. it is 
above a threshold (0.2 by default), it is considered unvoiced, or voiced otherwise. 
To prove the default value was reasonably optimum there were generated two 
histograms. The first one was an histogram of the aperiodicity measure of all 
voiced frames in MIR-1K (see Figure 4.4), and the second one the same for un-
voiced frames (see Figure 4.5). It is easy to see on those histograms how this de-
fault threshold of 0.2 is correctly placed to discriminate the voicing of a frame. 
It could have been used a more complex strategy (e.g. grid-search) to find exact-
ly the most optimum threshold but, since the goal was only to corroborate the 
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reasonable suitability of the parameter value for our task, it was considered 
enough. 

 

Figure 4.4 Aperiodicity histogram of voiced frames 

 

Figure 4.5 Aperiodicity histogram of unvoiced frames 

 
• MELODIA offered two extra parameters that needed to be properly set to work 

with monophonic audio: voicing tolerance, a threshold to discard weak salience 
contours, and monophonic noise filter, a voicing filter to label as unvoiced 
frames with low loudness. It was performed a grid search using the MIR-1K-
Micro dataset evaluating 10 steps for voicing tolerance (also called minpeaksali-
ence) and 14 steps for monophonic noise filter (also called voicing). Results, 
which can be seen in Figure 4.6, show how the best accuracy is obtained with 
the maximum of both values (3 for monophonic voice filter and 100 for voicing 
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tolerance). It is interesting to observe that the monophonic voice filter has a big 
influence in the final accuracy while voicing tolerance has practically no effect. 

  

Figure 4.6 Results of the grid-search (3D representation) for MELODIA 

4.6 De-reverberation algorithms 

The last task was to de-reverberate already reverberated signals to see if the robustness of 
F0 estimation could be improved and, at the same time, see if this de-reverberation had 
any negative effects if applied on non-reverberated signals. The de-reverberation methods 
for this study needed to be blind, i.e. with no knowledge of the reverberation or its prop-
erties, and focused on the singing voice. Indeed, speech focused de-reverberation tech-
niques were considered since there are none specifically for the singing voice. There exist 
many proposals for de-reverberation given these constraints but it is actually an unre-
solved problem in blind conditions and there are few implementations. Finally, all the 
(very few) publicly available implementations were considered. It is important to point 
out that, in a similar fashion than what was done with the F0 estimation algorithms, the 
de-reverberation algorithms were used with the default parameter values, adapting only to 
the sample rate in case of needed. 

4.6.1. NMF de-reverberation 

NMF de-reverberation [47] is a method based on linear filtering (see Section 3.2.1) in the 
spectral domain. It considers a different and time-varying impulse response filter for every 
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gamma-tone sub-band (gamma-tone sub-bands are a spectral representa-
tion useful to emulate human perception [61]). It then de-convolves rever-
berated speech into clean speech and the impulse response filter using 
Non-negative Matrix Factorization (NMF). NMF is constraint to the non-
negativity of the spectral amplitude values and the sparsity of the speech 
matrix. Finally, the difference between the magnitude of the observed sig-
nal and the estimated signal is minimized using the mean-squared error. 
Figure 4.7 shows a schematic overview of the process. 

This method was conceived to improve Automatic Speech Recognition 
(ASR) results in reverberant environments. Probably because of this (it 
has a different target than F0 estimators) and because of the weak con-
straints imposed in the NMF decomposition it did not improve our results 
but got them lightly worst. This is why this method is not presented in 
our results. 

4.6.2. ITD de-reverberation 

ITD de-reverberation [48] is a modification on NMF de-reverberation and, 
thus, has the same basic processing steps (see ). The difference is that 
when de-convolving the signal it uses the NMF decomposition as an ini-
tialization step and then uses an iterative process to improve this de-
convolution using a constraint of non-negativity of the speech spectra 
magnitude. 

Even though this method performs slightly better than NMF de-
reverberation in our results it has the same weaknesses, thus it does give 
any improvement in our results and consequently it is neither present in 
our results. Besides, the iterative process supposed a drastic increase in 
computation time, so results were only calculated for the MIR-1K-Micro 
dataset.   

  

Figure 4.7 NMF 
de-reverberation 

processing 

Figure 4.8 ITD 
de-reverberation 

processing 
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4.6.3. NML de-reverberation 

NML de-reverberation [62] is a method based on spectrum enhancement (see Section 
3.2.2). It models the signal as a convolution in time, separating the direct-path of the sig-
nal, early reflections and late reflections: 

 x(n) = h(0)s(n)+ h(i)s(n − i)
i=1

τ

∑ + h(i)s(n − i)
i=τ+1

T −1

∑   (3.43) 

where x(n)  is the captured signal (with reverberation), s(n)  is the clean signal without 
reverberation, h(n)  is the impulse response of the reverberation, T  is the duration of h(n)  
and τ  is a number between T  and 0  (typically around 50ms) that separates the early 
and late reflections. This method then applies a multi-step linear predictor [63] that pre-
dicts the coefficients w(n)  of the late reflections: 

 x(n) = w(p)x(n − p −τ )
p=0

N−1

∑ + e(n)   (3.44) 

where N  is the number of coefficients of the multi-step prediction as well as the number 
of points of the predicted late reflections impulse response and e(n)  is the error to mini-
mize using the mean-squared error minimization process. Then these coefficients are used 
to obtain the actual late reflections by means of convolving the coefficients with the cap-
tured signal in the time domain. Finally, the late reflections are removed from the cap-
tured signal using spectral subtraction [64]. NML de-reverberation also applies a process 
of pre-whitening, using a short 20-steps linear predictor, in order to de-correlate early and 
late reflections. A schema of the process is depicted in Figure 4.9. 

    

Figure 4.9 NML de-reverberation processing 
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 NML de-reverberation has been used for ASR improvement [42], [65], [66] as well as 
reverb reduction for studio production [62]. Even though there is not a public implemen-
tation of the system it exists an RTAS (Real Time AudioSuite) implementation, i.e. an 
audio plugin to be used with the industry standard DAW Pro-Tools. This supposed that 
every single file had to be processed one by one and, thus, the results were only computed 
for the MIR-1K-Micro dataset. This is the only tested de-reverberation algorithm that 
improved our results and it is analyzed in Section 5.3. 
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5 Results analysis 

In this section the results of the study are depicted and analyzed to extract conclusions. 
To understand the following subsections is essential to know it was proposed, as an im-
provement, a new fundamental frequency algorithm that is called MIX in this dissertation. 
This method, instead of being a complete new algorithm, is just a proof of concept on how 
the results of this study can be used to improve the state of the art F0 estimators to be-
come more robust in reverberant conditions. MIX uses the voicing detection mechanism of 
MELODIA and the pitch detection algorithm of SAC using the NML de-reverberation as 
a preprocessor (only for SAC). It is a mix (hence its name) of the best performing parts of 
the methods evaluated in this study. 

5.1 Dry conditions 

In this section are analyzed the results of the all the rooms selected from the MIR-1K dataset (in-
cluding HHP and HRFP, see  

Table 4.2 in page 59) in dry conditions, i.e. using the dataset as it is. These results are the 
average of the individual results of every excerpt; being these individual results the aver-
age of all the frames of the excerpt. The overall results in dry conditions are depicted in 
Figure 5.1. 

 The best performing algorithms in accuracy are YIN, MELODIA and MIX, shortly fol-
lowed by SAC. This classification can be corroborated with the f-measure (an evaluator 
also widely used), where the results are in general slightly higher but the classification 
remain practically identic. These good results, above 90% of accuracy, prove the validity 
of both MIR-1K dataset, despite its recording interferences, and selected F0 estimators. 
Those overall accuracies are achieved in slightly different ways. YIN is obtaining the best 
voicing accuracy thanks to the good compromise between its voicing false alarm and voic-
ing detection, but is being overpassed by all but MELODIA in pitch accuracy. MELODIA 
is getting much of its score thanks to its good voicing detection; observe how it has a 
practically 0% voicing false alarm (less is better). SAC is performing the best in terms of 
pitch detection and has a decent voicing mechanism. TWM is obtaining not very good 
results, with 77% of accuracy, but this is not because of its pitch detection, which is very 
good (95%), but because it has a faulty voicing mechanism; it is considering voiced most 
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of the frames (it has a very high voicing false alarm). It is important to note how MIX, 
that is our final proposal for F0 estimation in reverberant conditions, performs as good as 
the best algorithms in dry conditions. This makes this algorithm ideal for situations where 
noticeable reverberation can be captured or not, for example mobile devices, without hav-
ing to worry about reverberation presence. It can be seen that raw pitch accuracy of MIX 
is slightly lower than SAC and they are supposed to be the same. This is due to the NML 
de-reverberation method shortening some of the excerpts that finish with voiced frames.  
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Figure 5.1 Overall results in dry conditions 
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5.2 Reverberant conditions 

In this section are analyzed the results obtained after applying reverberation (using the AIR da-
taset impulse responses). These results are analyzed in function of the reverberation time (RT60) 

taking into account a higher reverberation time produces, in general, more degradation. To see the 
correspondence between the figures’ points and the rooms use  

Table 4.2 in page 59. It is important to see that in the figures the points corresponding to 
the same room are clustered together, so rooms appear in the following order (from less to 
more RT60): studio booth, meeting room, office room and lecture room. This fact explains 
the “jumps” (i.e. change in tendency) between some points that are due to a change in 
room. Moreover, in this section will be only studied the degradation produced in the al-
ready existing F0 algorithms and, thus, MIX is no considered. 

The first results to analyze are the overall accuracy, depicted in Figure 5.2. The first 
thing to corroborate is the negative effects that reverberation produce for all F0 estima-
tors. YIN performs the best in dry conditions but it degrades the most in presence of re-
verberation. TWM and SAC degrade similarly and MELODIA is the more resilient. The 
main conclusion to extract here is that YIN is a bad choice for reverberated signals and 
MELODIA is the best choice but, anyway, there is no F0 estimator capable of preserving 
acceptable accuracies when surpassing reverberation times higher than 200ms. To analyze 
more profoundly why this is happening and how can it be improved the results are going 
to be analyzed with pitch and voicing isolated. 

Raw pitch accuracies can be seen in Figure 5.3, those accuracies refer to how good the 
algorithm is capable of detecting the pitch without considering its voicing mechanism. 
The first noticeable issue is that, although MELODIA was the algorithm with the best 
accuracy, SAC is the best performing algorithm with pitch. MELODIA is still the algo-
rithm that degrades the least but SAC has better performance for all reverberations. 
TWM is close to be as good as SAC in its pitch detection. YIN, instead, degrades very 
fast. In a few words, using the pitch detection mechanism of SAC would be the best 
choice. 

Voicing accuracies can be seen in Figure 5.4, those accuracies refer only to the voicing 
mechanism of the algorithms with no consideration for the pitch detection. MELODIA 
degrades the least and with a huge difference in contrast with its competitors. Is this very 
good voicing mechanism that is giving it the best overall accuracies to MELODIA. YIN is 
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still better only for short reverberation times that are less than 100ms long. This is the 
first clue to observe that there is some kind of threshold between 100 and 200ms of RT for 
which algorithms do not degrade much. Nevertheless, YIN is degrading vertiginously fast-
er than the other algorithms, so its voicing detection mechanism is in any way robust to 
reverberation. Here SAC is close to be as bad as YIN. TWM, in the other side, seems not 
to degrade much but it has to be considered that it already starts from a very low value 
compared with the other algorithms and, thus, it is far more complicated to get worse 
when you are already bad. 

In conclusion, it was observed that even though MELODIA has the best overall accu-
racy it is very good with voicing but not that much with pitch detection, where SAC out-
performs it. 
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Figure 5.2 Overall accuracy in reverberant conditions 
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Figure 5.3 Raw pitch accuracy in reverberant conditions 

65%#

70%#

75%#

80%#

85%#

90%#

95%#

0# 100# 200# 300# 400# 500# 600# 700# 800#

Ra
w
'P
itc
h'
Ac

cu
ra
cy
'

RT60'(ms)'

YIN# TWM# MEL# SAC#



74 
 

 

Figure 5.4 Voicing accuracy in reverberant conditions 
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5.3 Using de-reverberation 

In this section the results analyzed make use of the NML de-reverberation method. Even 
though we evaluated three de-reverberation methods (see Section 4.6) this was the only 
one that improved results. The graphics follow the same disposition than in the previous 
section (read Section 5.2 for more information). Indeed, there will be presented the same 
graphics with the addition of the same algorithms with NML as a preprocessor. For ex-
ample, YIN is the solid blue line and YIN+NML is the dotted blue line. MIX is also in-
cluded to observe the final results of our proposed estimator. 

In Figure 5.5 can be seen the overall accuracy. The first thing to notice is that NML 
improves the accuracy of all algorithms with the exception of MELODIA, which gets no-
tably worst. Despite of that, MELODIA by itself (without NML) is still the best perform-
ing algorithm of the originally selected ones in this study. Only SAC+NML gets close to 
MELODIA performance. The improvement experienced in YIN is subtle while for TWM 
is big, getting to overpass the original YIN. Nevertheless, it can be seen how our estimator 
MIX is the best of all estimators, being SAC+NML superior only with RTs inferior to 
100ms. This confirms again the existence of a threshold for short RTs to be treated differ-
ently. It is also interesting to observe that with dry conditions (RT=0ms) all algorithms 
but MELODIA also improve. Noticeable is the improvement of SAC and TWM.  

Regarding the raw pitch accuracy, depicted in Figure 5.6, all algorithms improve but 
MELODIA, again. It seems very clear, due to how much worst MELODIA gets, that 
NML is not helping it in the voicing mechanism. The best performing algorithm is 
SAC+NML being closely followed by TWM+NML, which is the only one to improve with 
NML in dry conditions. It is interesting to point out that here also can be seen a thresh-
old for short reverberation times where NML starts improving results instead of getting 
them worst. This totally makes sense since applying a de-reverberation method to a dry 
or close-to-dry signal should only get it worst or untouched at least. Eventually, from this 
graphic can be concluded that, although MELODIA has the best overall accuracy, it can 
be significantly improved using SAC+NML (even SAC alone). In this figures MIX is not 
plotted since it is exactly the same as SAC+NML. 

In Figure 5.7 is shown the voicing accuracy, where MELODIA without NML continues 
to be the best performing one. Once again, all algorithms improve but MELODIA with 
the use of NML. It is noticeable how we can find the short RT threshold present here also. 
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This time it can be observed that below 200ms there are better performing algorithms 
than MELODIA, for example SAC+NML. Besides, SAC and TWM are improving with 
NML in dry conditions. It has to be pointed out that in this graphic MIX has been plot-
ted because, although it is using the same voicing detection mechanism than MELODIA, 
it does not have the same exact results. This is because when SAC labels a frame as un-
voiced but MELODIA says it is actually voiced we do not have the pitch information 
(SAC does not provide it) so the frame must remain as unvoiced. 

In conclusion, it can be seen how NML de-reverberation improved the performance of 
all methods except MELODIA that, because of its different target of working with back-
ground interferences, does not fit with NML as a preprocessor. It is also observable that 
NML generally improves results for reverberation times longer than 100-200ms but not 
always with shorter ones, where there seems to be a different behavior. This is possibly 
because short reverberation times do not interfere enough the algorithm until a certain 
reverberation time. Something probably linked with the window length the algorithms use. 
In this case, a simple solution would be to treat reverberation as a common filter and use 
Cepstrum Mean Normalization (CMN) on a frame basis to reduce it. Another explanation 
would be that short RTs belong to the studio booth, that has a flat frequency response 
opposed to the other rooms and, thus, produces different and less harming interferences. 
Another possibility would be that as NML is using fixed parameters they expect a certain 
reverberation length and consequently do not handle properly too short and too large RTs. 
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Figure 5.5 Overall accuracy using NML 
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Figure 5.6 Raw pitch accuracy using NML 
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Figure 5.7 Voicing accuracy using NML  
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6 Conclusions 

In this section the final conclusions of this study are presented. For partial conclusions or 
to see where the conclusions here come from please refer to Section 5 Results analysis. 

This thesis is a study to observe the weaknesses of fundamental frequency estimation 
algorithms with reverberated signals and its goal is to find the most robust ones. First of 
all, it has been found that F0 estimators behave similarly than human perception in the 
sense that short reverberations do not affect them much (in humans it even helps) but 
long reverberations affect its performance. Nevertheless, humans still accept larger 
amounts of reverberation than those that machines can handle and, thus, it is a field with 
much research to be still carried on. 

There were tested four F0 estimators focused towards the singing voice: YIN, TWM, 
SAC and MELODIA. It was shown that the best performing one was MELODIA. This 
best response is due to the special design of MELODIA; prepared to extract the main 
melody of a song with background music. Is this capability of discarding background in-
terferences that made it outstand. Anyway, a deeper insight showed this discarding capac-
ity was very good in terms of voicing decision but not for pitch detection, where it was 
surpassed by SAC and TWM even under reverberation conditions. 

Later, in order to improve the state of the art of F0 extraction methodologies we ap-
plied three different de-reverberation techniques as preprocessors. Only one of them, NML, 
could improve the previous results. The other two, NMF and ITD were not useful for our 
task because they where too focused on just automatic speech recognition (ASR) and they 
where using a non-negative matrix factorization to de-convolve clean signal and reverbera-
tion with too weak constrains. NML, in the other hand, besides of having proved its value 
in improving ASR algorithms in the past, is being used for studio production de-
reverberation. Indeed, this is the implementation that was used here. NML improved re-
sults for all algorithms except MELODIA, which did not fit with a preprocessor because it 
is already focused on handling with interferences. Despite of the improvement NML gave 
on the other algorithms, MELODIA still performed generally the best. Anyway, we con-
tinued observing that the pitch decision mechanism of MELODIA could be improved. So, 
as a proof of concept on how the results of this study can be used to advance on the field, 
the MIX fundamental frequency estimator was ideated. MIX combines the best perform-
ing parts of this study, i.e. the voicing mechanism of MELODIA and the pitch detector of 
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SAC using NML as a preprocessor. With this combination it was possible to get an aver-
age improvement of 2% comparing with MELODIA results (the best ones) and, very im-
portantly, it performed as good as the best F0 estimators (91% accuracy) in dry condi-
tions, i.e. with no reverberation. 

In other words, MIX produced the best results when estimating the fundamental fre-
quency of reverberated signals. As MIX is not actually implemented but just a proof of 
concept the best performing F0 estimator that can be used “as it is” is MELODIA. De-
reverberation techniques are still a work in progress but can be used as a preprocessor of 
standard F0 estimators to improve its results. It is needed to take into account that not 
any de-reverberation method will be suited for such a task and more research is needed to 
be done in this direction. Nonetheless, MIX had a 25% less accuracy for the longest rever-
berations using recordings a human can still comfortably understand and this indicates 
there is still a lot of margin to improve F0 estimators to be more robust to de-
reverberation. 

Finally, it would be interesting to think out of box. This dissertation is completely sig-
nal oriented. But we should not forget that we are trying to solve a concrete problem: 
overcome the detrimental effects of reverberation for machines, specifically for fundamen-
tal frequency estimators. Nowadays, it is becoming more common in the audio computing 
field to understand that most of the unsolved problems cannot be sorted out with just the 
signal processing but adding context information. It would be an enriching activity that 
some whiles we stop our mechanical solving strategies to approach things in a different 
way. We, as humans, posses a lot of extra information (e.g. source distance, room dimen-
sions, temperature and a very large etc.) that machines do not, and that could be very 
useful to solve our research problems. To point out a simple example, our mobile phones 
have a light sensor that change screen luminosity automatically depending on the dark-
ness they perceive. Another example is that some mobile phones have a second micro-
phone to cancel background noise. Then, it would not be that rare to see mobile devices 
in some years with ultrasound sensors capable of emitting ultrasounds to perceive an ap-
proximate of the room dimensions surrounding it. That would help, for example, location, 
automatic sound level control and, why not, reverberation cancellation. That might not be 
the best example but it is useful to understand that sometimes signal processing ap-
proaches cannot just go further. In this dissertation it was believed and then corroborated 
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that there is still work to do in making machines understand reverberation through signal 
processing, but would that be enough?  
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7 Future work 

This section proposes different tasks to accomplish in order to extend this study and/or 
progress in the consecution of a reverberation robust fundamental frequency estimation 
algorithm. 

• This study has focused on finding the most robust F0 estimation algorithm 
when the estimators where set to work properly with dry signals. It would an 
evident next step to fine-tune the algorithms parameters to perform the best in 
reverberant conditions. 

• In this dissertation it has been shown that NML de-reverberation method im-
proves F0 estimators performance in reverberant conditions. NML was set to 
work with default parameters. It would be interesting to explore the possibility 
to adapt NML parameters depending on the input signal. More specifically, 
NML has to main parameters: late reflections length and late reflections delay 
(i.e. how far in time are late reflection from the direct path), it makes sense to 
adapt these parameters if we have some previous (even if approximate) 
knowledge of the reverb characteristics; e.g. use some reverberation time estima-
tor. Indeed, NML uses a multi-step linear predictor that is used to obtain late 
reflections. This late reflections could be analyzed to recalculate iteratively the 
multi-step linear predictor until some convergence criteria. Besides, this approx-
imate information about the amount of reverberation in the signal could be used 
to change the parameters of the F0 estimator in real-time. Moreover, this same 
information could be used to change the strategy (F0 algorithm, NML on or off, 
etc.) taking into account the threshold detected in our results analysis (Section 5, 
RT of 100-200ms). 

• Only one out of three de-reverberation methods succeeded in improving F0 es-
timators’ results. We could not try more de-reverberation methods mainly due 
to lack of them being publicly available. An effort on sharing more openly the 
de-reverberation methods proposed is needed and of general interest, specially 
considering that this field still needs lots of research. In our particular case, test-
ing more de-reverberation methods would be essential to find what do they have 
in common that helps F0 estimators. Having this information, a special strategy 
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could be integrated in the F0 estimator eliminating, then, de-reverberation pre-
processing and, thus, reducing computing overhead. 

• In this study it has been used the MIREX audio melody extraction evaluation in 
order to use the currently most extended evaluation method. Despite of that, 
depending on the final application that the F0 estimators will be used on this 
evaluation could not be appropriate and so, a different evaluation would be 
needed. A clear example would be that, while our evaluation method considered 
a pitch correct with a maximum deviation of a quarter of tone, many applica-
tions need more precision. 

• MIR-1K has been very useful for our study, it is very large and the results ob-
tained from it have en extra of confidence for this reason. But it has also been 
observed some weaknesses in it (see Section 4.2) as recording interferences and 
having used mostly amateur signers. It would be useful to compare results using 
studio standard quality recordings and professional singers. 

• This dissertation was focused on monophonic signals since it is the general sce-
nario when capturing the singing voice. On the other hand, nowadays, it is be-
coming more common to have multi-channel recordings (e.g. most new mobile 
devices integrate two microphones), that could be used both to use multi-
channel de-reverberation methods and multi-channel F0 estimators that take 
advantage of this extra information (spatial cues, sound location, etc.).  
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Results appendix 

In this section the numerical results of the study are included. Because the dataset used, 
MIR-1K, has so many excerpts (1,000) we needed to create a smaller subset of it, MIR-
1K-Micro; see Section 4.2 for more details on its creation and an explanation on why it is 
acceptable to compare results from the different datasets. By default, all results pre-
sented are extracted from the complete MIR-1K dataset with the following ex-
ceptions: 

• Results where NML de-reverberation has been used are computed with the 
MIR-1K-Micro dataset. Our implementation consisted on a RTAS plugin that 
needed to be executed excerpt by excerpt in the Pro-Tools DAW without possi-
ble automation. 

• Results where ITD de-reverberation has been used are computed with the MIR-
1K-Micro dataset. The iterative process that the ITD algorithm slows down it to 
the point it would have been technically endless to use the complete MIR-1K. 

 
Numerical results are presented in tables. The first table contains dry results, with different F0 

algorithms in columns and evaluators in rows. Then, following tables correspond to a single evalua-
tor with different F0 algorithms in columns and different impulse responses in rows. An abbreviat-

ed name has been used for the impulse responses that can be found at  

Table 4.2 (page 59). The abbreviation “dry” means it was used no impulse response 
just the dataset as it is. Regarding the F0 algorithms’ name it has been added NML to 
the end of its name when NML de-reverberation was used as a preprocessor, e.g. YIN 
NML for YIN. Reverberation time (RT60) is expressed in milliseconds. All evaluators 
have a value range of [0,1] being 1 the best result and 0 the worst, except for the voicing 
false alarm that works the opposite way. 

For more details on the different rooms and distances used to reverberate the signal see  

Table 4.2 (page 59). To extend evaluators’ information see Section 4.3.  
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Dry results 

Results for dry excerpts, i.e. MIR-1K as it is. All the rooms from  

Table 4.2 (page 59), including HHP and HFRP have been used. 
 YIN TWM MEL SAC MIX 

Overall  
Accuracy 0.91089378 0.773665165 0.905363007 0.888691586 0.909224376 

Voicing  
Accuracy 0.9393083 0.809527809 0.913013025 0.905283868 0.914807908 

Voicing False 
Alarm 0.100028113 0.654046238 0.003460538 0.296280634 0.003458967 

Voicing  
Detection 0.952218869 0.99834949 0.877206184 0.983764904 0.881185376 

Raw Pitch  
Accuracy 0.931407144 0.946640946 0.874813882 0.959897325 0.955573669 

Voiced Pitch 
Accuracy 0.911834824 0.946640946 0.866175817 0.959897325 0.873487836 

F-measure 0.939125742 0.852140022 0.946130905 0.931791842 0.94928794 

Precision 0.941764283 0.774580449 0.990510253 0.898432415 0.99283092 

Recall 0.936943412 0.953633674 0.90630817 0.96947688 0.910132145 

Overall Chro-
ma Accuracy 0.927714548 0.788869605 0.906587496 0.893395498 0.907836509 

Raw Chroma 
Accuracy 0.969673454 0.969019864 0.897903243 0.968728003 0.968179727 

Voiced Chroma 
Accuracy 0.935760189 0.968758965 0.868025045 0.966754144 0.871166822 

Chroma  
F-measure 0.956546121 0.868981923 0.947415278 0.936768639 0.947836648 

Chroma  
Precison 0.959305594 0.789807654 0.991857114 0.903231064 0.991312008 

Chroma Recall 0.954254766 0.972609127 0.907535954 0.974653782 0.90873983 
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Overall accuracy 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.91089378 0.773665165 0.905363007 0.888691586 0.906762952 0.847343855 0.847772784 0.925338415 0.909224376 
booth_1 80 0.884294396 0.758402852 0.890685306 0.867470239 0.866100589 0.830522324 0.813954187 0.897038611 0.887593557 
booth_2 110 0.864647389 0.737585741 0.900226332 0.879324656 0.854184227 0.799960892 0.813647591 0.90230526 0.901316349 
booth_3 180 0.830600312 0.700188952 0.904753756 0.836907739 0.852756623 0.801151685 0.843312503 0.899016916 0.913948478 
meeting_1 210 0.814554112 0.723503635 0.886031638 0.825657718 0.822174565 0.815301842 0.800168597 0.871922117 0.888855429 
meeting_2 220 0.811719495 0.713115317 0.886072635 0.817099605 0.817758927 0.820184658 0.807158072 0.867061184 0.889607494 
meeting_3 240 0.799247306 0.715310619 0.874383298 0.807373563 0.812406049 0.808490548 0.800233354 0.852950258 0.880027923 
meeting_4 250 0.781920327 0.710226609 0.869830816 0.802148504 0.809082253 0.806794004 0.800985712 0.854299441 0.876494749 
office_1 370 0.731749054 0.678911743 0.823425193 0.759451523 0.771947619 0.778447732 0.762681199 0.820062613 0.848879194 
office_2 440 0.683011943 0.623609061 0.773640501 0.703108927 0.709932035 0.729156138 0.754287925 0.771034243 0.790700449 
office_3 480 0.656439105 0.587365912 0.747912266 0.669325324 0.669946009 0.689421683 0.692364471 0.735761934 0.760750571 
lecture_1 700 0.728754707 0.651976944 0.840649209 0.747125397 0.792886205 0.767765779 0.801899978 0.821714938 0.859330358 
lecture_2 720 0.666591082 0.603423602 0.766941068 0.686290076 0.716849377 0.717507053 0.732453516 0.759174401 0.787349193 
lecture_3 790 0.650537957 0.591556585 0.751561617 0.677046222 0.690459243 0.700803302 0.704988301 0.741403842 0.762082238 
lecture_4 800 0.637459188 0.579385342 0.740956208 0.665337771 0.683457717 0.680481262 0.697368467 0.737376962 0.766326057 
lecture_5 810 0.628390054 0.567540791 0.727114846 0.650262432 0.663787845 0.666286281 0.669715089 0.706279586 0.738209409 
lecture_6 830 0.628096751 0.573800536 0.730959875 0.655395916 0.65968295 0.673464922 0.688946224 0.704745386 0.733941737 
lecture_hfrp 818 0.839198799 0.750764845 0.892655228 0.818964385 0.865067107 0.841491563 0.806736784 0.880386468 0.891498611 
lecture_hhp 236 0.898674994 0.776576038 0.906111866 0.884287763 0.897150619 0.858416036 0.858276939 0.916410475 0.907644887 
meeting_hfrp 337 0.853697557 0.752813161 0.894948876 0.839318333 0.866774244 0.848009935 0.812255319 0.894190738 0.894579542 
meeting_hhp 254 0.898479082 0.775421384 0.905914602 0.882488333 0.894829237 0.856359288 0.856387391 0.918693011 0.908534145 
office_hfrp 390 0.765606091 0.705234914 0.845145343 0.769303868 0.798447605 0.812803106 0.739801075 0.837172871 0.852297265 
office_hhp 520 0.870672627 0.753485503 0.909462077 0.84474067 0.886243213 0.854327483 0.861270754 0.907988721 0.915272875 
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Voicing accuracy 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.9393083 0.809527809 0.913013025 0.905283868 0.935636511 0.877088199 0.856685138 0.943682112 0.914807908 
booth_1 80 0.921413477 0.799802573 0.908158593 0.889176257 0.912784091 0.864872041 0.832511808 0.92109211 0.897048298 
booth_2 110 0.915255177 0.793635527 0.917036158 0.902062647 0.914857216 0.844646216 0.842164382 0.925479346 0.912887609 
booth_3 180 0.887220025 0.76756485 0.923866606 0.861000286 0.912517215 0.8485417 0.863121071 0.922270297 0.927838665 
meeting_1 210 0.877268863 0.782036436 0.912834495 0.863569807 0.896073423 0.87029286 0.817419982 0.905788758 0.910101028 
meeting_2 220 0.87265585 0.777175792 0.91375969 0.858623432 0.884500506 0.873986414 0.823110184 0.90184894 0.911589236 
meeting_3 240 0.867609239 0.78110203 0.909168369 0.855196659 0.885235392 0.865415034 0.819188253 0.891508907 0.904633256 
meeting_4 250 0.864181026 0.78447631 0.910078632 0.854740716 0.891409851 0.873283451 0.826388312 0.899033107 0.905207522 
office_1 370 0.822231795 0.763378112 0.887646721 0.828137407 0.848938105 0.838120479 0.802550489 0.871721917 0.885483198 
office_2 440 0.809721155 0.751109389 0.87898393 0.81215699 0.822953522 0.830625294 0.80368477 0.864192967 0.86582487 
office_3 480 0.795460997 0.744651536 0.867760845 0.795436973 0.807832856 0.821508937 0.75673558 0.85430334 0.855281145 
lecture_1 700 0.8216477 0.755312197 0.894097939 0.817984375 0.867104827 0.840625276 0.832214948 0.872511506 0.899600225 
lecture_2 720 0.797381267 0.752232327 0.874572755 0.806553887 0.830249909 0.831201986 0.790802205 0.861151649 0.872937838 
lecture_3 790 0.792989601 0.752838825 0.872757345 0.813025352 0.81748754 0.829935147 0.773045447 0.855068583 0.856020291 
lecture_4 800 0.79057751 0.753268037 0.869107804 0.808233475 0.809774744 0.828472784 0.76228458 0.854082488 0.862941314 
lecture_5 810 0.788994524 0.753120983 0.864890298 0.804962897 0.804649932 0.825655593 0.74962009 0.847440148 0.856024835 
lecture_6 830 0.789994389 0.757814947 0.86318927 0.810348421 0.810044273 0.836005313 0.767459789 0.848309041 0.85176117 
lecture_hfrp 818 0.883116121 0.79308549 0.906318533 0.847738247 0.910058856 0.876022425 0.818521991 0.905500212 0.90074392 
lecture_hhp 236 0.932509989 0.806166418 0.916213362 0.901923125 0.933238746 0.888127458 0.868673686 0.93435834 0.913210425 
meeting_hfrp 337 0.902198497 0.800051837 0.911679712 0.869230116 0.917810481 0.886878992 0.828117304 0.91999808 0.905912631 
meeting_hhp 254 0.932311957 0.804926731 0.915838661 0.89975209 0.932196379 0.885105347 0.867938164 0.938544673 0.914794744 
office_hfrp 390 0.837999388 0.776229291 0.890851773 0.827586769 0.868013389 0.863552033 0.775398325 0.881994792 0.877029912 
office_hhp 520 0.906737523 0.788071965 0.921406564 0.866141425 0.924785664 0.884363218 0.87212648 0.928285921 0.922203166 
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Voicing false alarm 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.100028113 0.654046238 0.003460538 0.296280634 0.095285863 0.40890406 0.005605925 0.162899837 0.003458967 
booth_1 80 0.119027113 0.690917582 0.006147571 0.329407382 0.131480452 0.447928704 0.002663117 0.19929224 0.005718047 
booth_2 110 0.142990795 0.713776743 0.009824121 0.301307455 0.136192245 0.512009268 0.003953221 0.205006813 0.007990354 
booth_3 180 0.210425695 0.786976889 0.011138092 0.408157867 0.145449458 0.511267391 0.006574523 0.218302911 0.008437174 
meeting_1 210 0.293576625 0.763513405 0.056964897 0.471584445 0.208873073 0.452277203 0.00596444 0.292718921 0.047585691 
meeting_2 220 0.301007286 0.774796827 0.065815955 0.485866586 0.227728723 0.437112963 0.004917418 0.3146194 0.06028094 
meeting_3 240 0.31825207 0.76492104 0.081831378 0.499052872 0.215677431 0.455490821 0.005942284 0.33418682 0.071736934 
meeting_4 250 0.323059635 0.755138053 0.08451621 0.498633297 0.221355524 0.427034002 0.007317908 0.330963224 0.078462148 
office_1 370 0.442947432 0.827316833 0.17738566 0.592140968 0.341806229 0.57265665 0.015363967 0.443179113 0.163557275 
office_2 440 0.452740718 0.859369246 0.216717135 0.624252677 0.383122113 0.596493347 0.046957226 0.434458623 0.234416108 
office_3 480 0.463335297 0.876239862 0.237468317 0.658859512 0.384335168 0.623771645 0.041228729 0.457873289 0.23532029 
lecture_1 700 0.436586272 0.846516378 0.184307927 0.625006449 0.295396114 0.555202036 0.012290994 0.432171051 0.159870108 
lecture_2 720 0.470815135 0.855693511 0.240727405 0.639407172 0.369197998 0.6014701 0.050943624 0.460743756 0.24755162 
lecture_3 790 0.4783158 0.854913935 0.234191782 0.631815851 0.363813825 0.589420234 0.049886931 0.454962279 0.235270326 
lecture_4 800 0.48291568 0.853659247 0.253067258 0.646574524 0.410193702 0.597145511 0.047039217 0.478790153 0.252587101 
lecture_5 810 0.482874455 0.852580183 0.258285513 0.650240304 0.390940971 0.602034151 0.073251916 0.486553099 0.269739078 
lecture_6 830 0.4918697 0.840348002 0.254422167 0.639022346 0.383454459 0.572029336 0.054256084 0.490160037 0.258139933 
lecture_hfrp 818 0.278519577 0.713678228 0.035639355 0.532957403 0.181350843 0.408362629 0.003637233 0.311745927 0.025593587 
lecture_hhp 236 0.134439767 0.674332402 0.005493189 0.327735905 0.125514571 0.379972274 0.004857398 0.197264214 0.00420969 
meeting_hfrp 337 0.224083615 0.690531816 0.033186387 0.448878312 0.147776538 0.372803726 0.005336834 0.263439705 0.022632456 
meeting_hhp 254 0.135242374 0.678500164 0.005737206 0.334885911 0.129288946 0.388659295 0.004322263 0.191662495 0.006441392 
office_hfrp 390 0.393219972 0.778380548 0.109248595 0.597544816 0.254214869 0.457701565 0.007582783 0.394396932 0.09350951 
office_hhp 520 0.219469382 0.735306568 0.01734692 0.464309652 0.157718808 0.392993118 0.004103794 0.2419343 0.009156791 
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Voicing detection 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.952218869 0.99834949 0.877206184 0.983764904 0.945221656 0.993422645 0.799379415 0.981320467 0.881185376 
booth_1 80 0.935024116 0.998893466 0.871451448 0.973349709 0.926331723 0.989922333 0.768870735 0.962661494 0.857941369 
booth_2 110 0.935051228 0.998756687 0.88500833 0.979299795 0.930932451 0.993565379 0.781586283 0.972581301 0.881071892 
booth_3 180 0.930011695 0.998597197 0.895627602 0.969414964 0.931126284 0.996095496 0.81026567 0.970823794 0.902185633 
meeting_1 210 0.939791958 0.999461745 0.898301279 0.989088742 0.931302749 0.995331626 0.745701378 0.9777956 0.892482131 
meeting_2 220 0.936100338 0.999422708 0.903286373 0.98879118 0.922070685 0.993105621 0.75477012 0.978245977 0.897307874 
meeting_3 240 0.935420905 0.999346123 0.902640507 0.988807183 0.91922015 0.99288699 0.749666584 0.973144782 0.895276451 
meeting_4 250 0.93337471 0.999228255 0.905286482 0.987672907 0.929976356 0.993211372 0.760016195 0.98097239 0.898374488 
office_1 370 0.920866693 0.999881864 0.909325182 0.988666668 0.913800495 0.995720025 0.730348793 0.986466042 0.904536993 
office_2 440 0.906124252 0.999755517 0.912133292 0.98018421 0.89113238 0.995213582 0.741047149 0.973694311 0.902724925 
office_3 480 0.889388764 0.999717095 0.904248085 0.97238807 0.869454222 0.996677279 0.67829295 0.969450509 0.88738873 
lecture_1 700 0.918021307 0.999636871 0.921997411 0.988279754 0.921491971 0.993691231 0.771199381 0.983099103 0.921018241 
lecture_2 720 0.896709432 0.999517629 0.915845853 0.9785501 0.900597679 0.997071567 0.728729991 0.979553106 0.916697057 
lecture_3 790 0.89295169 0.999426077 0.910519066 0.983895489 0.878217704 0.99226865 0.69849305 0.968194943 0.88816929 
lecture_4 800 0.891640936 0.999238353 0.912664809 0.983154042 0.881830643 0.991237533 0.687435524 0.975098541 0.902654568 
lecture_5 810 0.890041768 0.99900244 0.90861515 0.979786919 0.870775525 0.990781058 0.678370759 0.968063823 0.900731603 
lecture_6 830 0.895135265 0.999062634 0.904758426 0.983013126 0.87436037 0.994217256 0.695668593 0.971494698 0.891300717 
lecture_hfrp 818 0.943840102 0.998232435 0.880584553 0.991570136 0.94025705 0.991898682 0.748647757 0.982773963 0.870133601 
lecture_hhp 236 0.956257672 0.999126701 0.882169329 0.988435464 0.952902921 0.995462413 0.816868329 0.98216029 0.880829327 
meeting_hfrp 337 0.947858964 0.998380837 0.887164971 0.989802892 0.939572244 0.991794127 0.760571977 0.983640323 0.875706291 
meeting_hhp 254 0.956110877 0.999119377 0.881764866 0.988284837 0.952747302 0.995030105 0.815621519 0.985007213 0.883274676 
office_hfrp 390 0.924124451 0.998902126 0.888286418 0.989502036 0.908738706 0.988055526 0.688433533 0.98209501 0.864011605 
office_hhp 520 0.954191685 0.999366254 0.894239703 0.99084467 0.95273268 0.994525359 0.821191803 0.988138108 0.894751902 
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Raw pitch accuracy 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.931407144 0.946640946 0.874813882 0.959897325 0.928746408 0.951494659 0.804887625 0.955573669 0.955573669 
booth_1 80 0.906010624 0.938646251 0.854951401 0.942002584 0.885202489 0.941338948 0.762969939 0.928899823 0.928899823 
booth_2 110 0.885301712 0.917196182 0.870231751 0.946584103 0.869419305 0.930151084 0.764675474 0.939632644 0.939632644 
booth_3 180 0.871871732 0.901781254 0.877547625 0.934774108 0.871172032 0.929224669 0.80531877 0.938139343 0.938139343 
meeting_1 210 0.871604272 0.914929208 0.86624747 0.93479008 0.856291072 0.919437706 0.748037467 0.930157987 0.930157987 
meeting_2 220 0.871925287 0.907096491 0.869011036 0.929342474 0.859243796 0.916957392 0.755457366 0.928933532 0.928933532 
meeting_3 240 0.860962882 0.904567411 0.860780498 0.920385002 0.845449775 0.913415634 0.756842592 0.918489487 0.918489487 
meeting_4 250 0.839466836 0.892657446 0.855635349 0.912605279 0.839460312 0.900427623 0.75467668 0.918385181 0.918385181 
office_1 370 0.820970155 0.878660704 0.824170261 0.890869036 0.846466058 0.912919283 0.6937318 0.913343758 0.913343758 
office_2 440 0.756545994 0.817359076 0.771965857 0.824414855 0.775534056 0.853098096 0.707638588 0.842628112 0.842628112 
office_3 480 0.726212033 0.774516889 0.745381191 0.792101233 0.723957108 0.811123754 0.633805155 0.802785022 0.802785022 
lecture_1 700 0.81423438 0.851197876 0.851953194 0.88701515 0.849779059 0.891252861 0.751466663 0.911493261 0.911493261 
lecture_2 720 0.744727951 0.786869468 0.76842342 0.807414022 0.778572336 0.839286904 0.670221079 0.837714192 0.837714192 
lecture_3 790 0.724826388 0.768495842 0.744961923 0.78998984 0.750036242 0.81119036 0.626914444 0.809066291 0.809066291 
lecture_4 800 0.706701817 0.750588558 0.736869362 0.77949836 0.748328901 0.784637302 0.621873626 0.812341277 0.812341277 
lecture_5 810 0.692932137 0.733524916 0.718803132 0.759197315 0.718492074 0.767132393 0.59220831 0.770654615 0.770654615 
lecture_6 830 0.69369118 0.735881051 0.726511632 0.761781129 0.703268461 0.76688544 0.624968882 0.769758078 0.769758078 
lecture_hfrp 818 0.902387043 0.937026975 0.870068016 0.9502053 0.903005579 0.943273614 0.757669668 0.947054349 0.947054349 
lecture_hhp 236 0.924081496 0.956312715 0.875772689 0.962990346 0.919715043 0.953528423 0.819138278 0.956612393 0.956612393 
meeting_hfrp 337 0.89722798 0.930133842 0.871387272 0.947068635 0.892149403 0.937501799 0.763281294 0.947391189 0.947391189 
meeting_hhp 254 0.923957236 0.956426563 0.875308272 0.963405039 0.917423849 0.9541403 0.814736432 0.95679753 0.95679753 
office_hfrp 390 0.849488875 0.897095282 0.835153133 0.906244226 0.849440332 0.916801474 0.683988881 0.918509775 0.918509775 
office_hhp 520 0.91978378 0.949476397 0.884319789 0.960065053 0.916816149 0.95166497 0.822282595 0.959141539 0.959141539 
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Voiced pitch accuracy 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.911834824 0.946640946 0.866175817 0.959897325 0.905548301 0.951494659 0.786628784 0.955573669 0.873487836 
booth_1 80 0.882064577 0.938646251 0.846263858 0.942002584 0.861505443 0.941338948 0.743027881 0.928899823 0.844838432 
booth_2 110 0.863139918 0.917196182 0.860545864 0.946584103 0.84671804 0.930151084 0.741240284 0.939632644 0.864482066 
booth_3 180 0.849428876 0.901781254 0.868250736 0.934774108 0.84804101 0.929224669 0.782612236 0.938139343 0.882766443 
meeting_1 210 0.850585775 0.914929208 0.859851885 0.93479008 0.829492683 0.919437706 0.721428253 0.930157987 0.862760147 
meeting_2 220 0.849247191 0.907096491 0.863550593 0.929342474 0.829460761 0.916957392 0.731966117 0.928933532 0.866367003 
meeting_3 240 0.838228546 0.904567411 0.852575537 0.920385002 0.818407536 0.913415634 0.723212163 0.918489487 0.8597059 
meeting_4 250 0.816307923 0.892657446 0.847628302 0.912605279 0.816401762 0.900427623 0.724212887 0.918385181 0.857876443 
office_1 370 0.791828364 0.878660704 0.817736043 0.890869036 0.807088487 0.912919283 0.673870748 0.913343758 0.852569183 
office_2 440 0.725386839 0.817359076 0.761864203 0.824414855 0.73250817 0.853098096 0.672336251 0.842628112 0.796520251 
office_3 480 0.690651926 0.774516889 0.732686464 0.792101233 0.676446101 0.811123754 0.587185276 0.802785022 0.754225876 
lecture_1 700 0.785641199 0.851197876 0.845464696 0.88701515 0.819412439 0.891252861 0.730559406 0.911493261 0.864009635 
lecture_2 720 0.710313245 0.786869468 0.762630647 0.807414022 0.741632654 0.839286904 0.64568047 0.837714192 0.797399404 
lecture_3 790 0.68968179 0.768495842 0.73796899 0.78998984 0.700642199 0.81119036 0.603504991 0.809066291 0.756227201 
lecture_4 800 0.673358473 0.750588558 0.730015042 0.77949836 0.705149023 0.784637302 0.596536325 0.812341277 0.767903941 
lecture_5 810 0.660869923 0.733524916 0.711853516 0.759197315 0.673681316 0.767132393 0.565241572 0.770654615 0.735590915 
lecture_6 830 0.663949585 0.735881051 0.716192918 0.761781129 0.66332447 0.76688544 0.585358194 0.769758078 0.725218203 
lecture_hfrp 818 0.881392538 0.937026975 0.860868868 0.9502053 0.878731228 0.943273614 0.732328891 0.947054349 0.857039528 
lecture_hhp 236 0.908453763 0.956312715 0.867549075 0.962990346 0.903825213 0.953528423 0.802329541 0.956612393 0.872902231 
meeting_hfrp 337 0.87914499 0.930133842 0.8629908 0.947068635 0.869622276 0.937501799 0.738343624 0.947391189 0.860032338 
meeting_hhp 254 0.908305877 0.956426563 0.867465636 0.963405039 0.901844645 0.9541403 0.799467742 0.95679753 0.874413167 
office_hfrp 390 0.820761331 0.897095282 0.822508496 0.906244226 0.811861681 0.916801474 0.638661905 0.918509775 0.828809167 
office_hhp 520 0.903229375 0.949476397 0.877005624 0.960065053 0.90038824 0.95166497 0.805893061 0.959141539 0.88485683 
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F-measure 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.939125742 0.852140022 0.946130905 0.931791842 0.93669835 0.901235452 0.912291478 0.951875501 0.94928794 
booth_1 80 0.919830599 0.839706367 0.932644721 0.917299629 0.904890072 0.88891117 0.882490431 0.933336409 0.934680671 
booth_2 110 0.902267075 0.819141655 0.938674108 0.923944601 0.891761242 0.864554167 0.877380267 0.936902693 0.941944902 
booth_3 180 0.878943223 0.788806976 0.940089346 0.897236211 0.89137612 0.864649476 0.904004408 0.935017213 0.947955059 
meeting_1 210 0.867005034 0.809430162 0.92588994 0.885339568 0.866887545 0.870612159 0.877722113 0.914544655 0.930132915 
meeting_2 220 0.865964509 0.799869687 0.925375324 0.87831236 0.867207777 0.87468053 0.882157915 0.911281596 0.930287494 
meeting_3 240 0.855026411 0.800572036 0.915504804 0.869513922 0.861012193 0.865688048 0.875698196 0.901218173 0.92336564 
meeting_4 250 0.838002966 0.793609439 0.910346378 0.864019916 0.855113929 0.859851302 0.871981557 0.899191457 0.919358119 
office_1 370 0.801721271 0.767558266 0.871625168 0.829707119 0.834106564 0.845756801 0.841713859 0.875659302 0.899562739 
office_2 440 0.753141501 0.7095845 0.822698273 0.774377948 0.777871198 0.794605279 0.833265108 0.826026302 0.846322755 
office_3 480 0.729323484 0.670382693 0.799974482 0.743451215 0.739942251 0.755259699 0.784562471 0.792613886 0.818918927 
lecture_1 700 0.798737213 0.740233852 0.88702196 0.820675886 0.848572029 0.833220277 0.872382941 0.876695032 0.90436956 
lecture_2 720 0.740036427 0.686287449 0.817471806 0.758253388 0.782478555 0.782248838 0.814319908 0.815001067 0.840370817 
lecture_3 790 0.72380843 0.672610474 0.801699228 0.745685897 0.758855046 0.764050268 0.790917175 0.798423518 0.820199544 
lecture_4 800 0.710158602 0.658624066 0.791949017 0.73457275 0.754227775 0.742867825 0.78741245 0.794677754 0.821985641 
lecture_5 810 0.700680195 0.645228537 0.778904059 0.719134456 0.734790704 0.728410524 0.763430005 0.763696622 0.794398713 
lecture_6 830 0.699943126 0.650548779 0.783625723 0.72280188 0.728040309 0.732259421 0.777550662 0.761675917 0.79136473 
lecture_hfrp 818 0.89056336 0.834959765 0.935771026 0.885537613 0.905382506 0.895129658 0.883209196 0.923583025 0.937325084 
lecture_hhp 236 0.929747922 0.857271453 0.945381528 0.929244688 0.927862988 0.907671869 0.917174585 0.947209912 0.948518786 
meeting_hfrp 337 0.897073903 0.833874441 0.935756684 0.8972913 0.903575177 0.897479212 0.88420838 0.931166861 0.938076407 
meeting_hhp 254 0.929647638 0.856563172 0.945358497 0.928408062 0.925975771 0.907005431 0.915690033 0.947587257 0.94867461 
office_hfrp 390 0.831794696 0.791774518 0.892502856 0.840664869 0.853952539 0.871090912 0.825350191 0.889061868 0.907033014 
office_hhp 520 0.912794091 0.840215866 0.946345065 0.904462393 0.920607208 0.90518504 0.918704655 0.941462261 0.9520894 
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Precision 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.941764283 0.774580449 0.990510253 0.898432415 0.943107858 0.851338561 0.987794899 0.937370646 0.99283092 
booth_1 80 0.925696084 0.759023656 0.978272999 0.883370483 0.913115591 0.836744247 0.97547493 0.920209572 0.987450566 
booth_2 110 0.904633372 0.738265421 0.978664049 0.891852462 0.897607982 0.803813233 0.958686497 0.920038966 0.985081542 
booth_3 180 0.872106292 0.70092231 0.975884403 0.854316082 0.896092005 0.803397512 0.975238292 0.917403664 0.982461967 
meeting_1 210 0.849527874 0.723793451 0.95405585 0.831769582 0.864027291 0.818026203 0.977329948 0.885556868 0.963344437 
meeting_2 220 0.848683884 0.713414387 0.950416789 0.823265992 0.864988129 0.824337496 0.979111769 0.880427145 0.959521085 
meeting_3 240 0.835971936 0.715648743 0.938547685 0.813522942 0.860755773 0.812490067 0.97451787 0.868782972 0.951850703 
meeting_4 250 0.819101623 0.710627839 0.931768022 0.808789143 0.85107846 0.810742507 0.96564158 0.865932343 0.946405456 
office_1 370 0.77400941 0.678966028 0.879096313 0.765262869 0.822490597 0.780997109 0.942804248 0.827796137 0.912558037 
office_2 440 0.729879982 0.623717456 0.82418271 0.712398929 0.769401104 0.731718662 0.926621191 0.7851028 0.850349775 
office_3 480 0.709819732 0.587487841 0.801475885 0.681572525 0.737549215 0.691119938 0.899512135 0.752147377 0.827731785 
lecture_1 700 0.772284948 0.652147437 0.889553029 0.75308851 0.839418353 0.771331175 0.959170855 0.83137806 0.911775344 
lecture_2 720 0.717796046 0.603629534 0.8149182 0.696178342 0.771737036 0.718956435 0.911050098 0.770466568 0.83859724 
lecture_3 790 0.702248035 0.591787349 0.80150326 0.684385836 0.756099453 0.704814037 0.894580099 0.758640707 0.829295898 
lecture_4 800 0.688583369 0.579686545 0.789071502 0.672859159 0.746029553 0.685004086 0.897008752 0.750442867 0.823598848 
lecture_5 810 0.679981794 0.567934756 0.7768227 0.659110264 0.731243462 0.670898004 0.872236785 0.722297402 0.794580088 
lecture_6 830 0.676847243 0.57417364 0.782938239 0.662947353 0.724301054 0.676239295 0.880372061 0.719215556 0.79579004 
lecture_hfrp 818 0.872970365 0.751740896 0.974256802 0.823682627 0.903352186 0.846344797 0.981852304 0.891334533 0.98287236 
lecture_hhp 236 0.926390075 0.777079281 0.987384336 0.891269997 0.927662376 0.861058512 0.986351649 0.928279324 0.992717614 
meeting_hfrp 337 0.885254411 0.753698298 0.971975531 0.845134867 0.905419367 0.853105772 0.977039236 0.904468023 0.981194483 
meeting_hhp 254 0.926288233 0.775928532 0.987535313 0.889556712 0.925385452 0.859286243 0.98512609 0.928653233 0.991509811 
office_hfrp 390 0.807649714 0.705804005 0.916226229 0.774754066 0.853533493 0.820080485 0.94442469 0.848168059 0.944979888 
office_hhp 520 0.898904522 0.75384077 0.982183153 0.850016194 0.916653033 0.857720392 0.986146569 0.915656621 0.990092918 
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Recall 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.936943412 0.953633674 0.90630817 0.96947688 0.930685051 0.960915054 0.849015092 0.967256744 0.910132145 
booth_1 80 0.915128519 0.946092457 0.892283449 0.95549911 0.897801993 0.9521652 0.814742759 0.947205524 0.889105522 
booth_2 110 0.900601403 0.926396654 0.90272884 0.959444652 0.88633778 0.941369203 0.814615793 0.95487139 0.903343718 
booth_3 180 0.888415574 0.910124132 0.907579107 0.94825811 0.887076751 0.941063684 0.844840252 0.953809217 0.91625406 
meeting_1 210 0.88625943 0.923651827 0.900354992 0.947708794 0.870592793 0.933349253 0.801431286 0.946060324 0.900336642 
meeting_2 220 0.885061084 0.916203107 0.902658733 0.94288624 0.87036364 0.932980901 0.808394442 0.945408368 0.903712525 
meeting_3 240 0.876088287 0.91408982 0.894565933 0.935410341 0.862155604 0.92903382 0.801640785 0.936816418 0.898015444 
meeting_4 250 0.859050938 0.903868212 0.890926744 0.929060496 0.859856824 0.918653716 0.802498378 0.935870695 0.89565979 
office_1 370 0.834064366 0.888334405 0.865765335 0.908300347 0.84855169 0.925629294 0.766168053 0.930500497 0.889134123 
office_2 440 0.780363074 0.829448563 0.822623148 0.850756108 0.7891473 0.872690208 0.763592131 0.872629574 0.844198051 
office_3 480 0.752566219 0.787307231 0.799919149 0.820933959 0.744009368 0.835735843 0.700603207 0.839329089 0.81208893 
lecture_1 700 0.82942644 0.862146184 0.885959352 0.904089739 0.859387519 0.908437492 0.804898121 0.928559971 0.898143548 
lecture_2 720 0.766811041 0.801258947 0.821610045 0.8351228 0.795658764 0.860298155 0.742401214 0.866028012 0.843582363 
lecture_3 790 0.749896498 0.784658222 0.803278343 0.82136567 0.764233119 0.837420147 0.714130464 0.844056159 0.813568595 
lecture_4 800 0.7359151 0.768089636 0.796325122 0.811272151 0.764739431 0.814304551 0.705938096 0.845578497 0.821989335 
lecture_5 810 0.725712172 0.752270705 0.782472303 0.793714999 0.741266613 0.799474325 0.683037986 0.81115005 0.796019192 
lecture_6 830 0.727428555 0.755499441 0.785800415 0.796814432 0.733791818 0.801107098 0.699209987 0.810686224 0.788684393 
lecture_hfrp 818 0.910175613 0.94450093 0.901668733 0.959358678 0.908146269 0.954075659 0.807614138 0.95905152 0.897290469 
lecture_hhp 236 0.933505107 0.962019389 0.907472966 0.971729724 0.928430672 0.96305962 0.859378546 0.967366594 0.908660659 
meeting_hfrp 337 0.909871559 0.93891116 0.903270928 0.957753505 0.902373621 0.949576319 0.813356063 0.959906025 0.899766992 
meeting_hhp 254 0.933401107 0.96203778 0.907303049 0.971952333 0.926918207 0.963676269 0.857415066 0.967650505 0.909961651 
office_hfrp 390 0.859535311 0.907058465 0.87205047 0.921224675 0.855926914 0.932095567 0.741437222 0.935640921 0.874509694 
office_hhp 520 0.927917022 0.955156918 0.913709156 0.968109343 0.925031771 0.961645513 0.862224137 0.969142465 0.917358139 
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Overall chroma accuracy 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.927714548 0.788869605 0.906587496 0.893395498 0.924909257 0.86253346 0.850135789 0.933338067 0.907836509 
booth_1 80 0.909066693 0.775627323 0.900522262 0.873900914 0.89958591 0.845930094 0.825776343 0.908604259 0.889305506 
booth_2 110 0.899225517 0.763817009 0.908624168 0.889090507 0.896932016 0.821020085 0.833629339 0.912137711 0.904379963 
booth_3 180 0.86950823 0.727533511 0.915279646 0.84563488 0.896835084 0.820874693 0.854855678 0.909714889 0.918695748 
meeting_1 210 0.858930313 0.753636327 0.899594379 0.843812863 0.878811817 0.844911293 0.809042408 0.890762294 0.900056349 
meeting_2 220 0.855060537 0.745916343 0.90251534 0.83721287 0.867802971 0.848930276 0.815906359 0.886756458 0.901018127 
meeting_3 240 0.848814728 0.748816982 0.895538172 0.832223799 0.870186333 0.841715312 0.813942059 0.871573712 0.890791008 
meeting_4 250 0.840985339 0.748635398 0.89261252 0.828903388 0.871449879 0.842713522 0.812695307 0.878688594 0.890501183 
office_1 370 0.796628807 0.719967419 0.864439891 0.797750032 0.826094975 0.809044375 0.790835778 0.849457418 0.869075006 
office_2 440 0.775187207 0.688849523 0.84165657 0.767934929 0.7933811 0.78514223 0.788873123 0.828081526 0.837901111 
office_3 480 0.755293116 0.665331233 0.823846725 0.741802008 0.778066779 0.762516238 0.741231634 0.81395701 0.825506467 
lecture_1 700 0.796156429 0.703947015 0.87223517 0.785173579 0.847755317 0.810640222 0.820810975 0.851753253 0.884157434 
lecture_2 720 0.760838536 0.678352495 0.834609227 0.756357412 0.799490084 0.780404715 0.772522009 0.825430869 0.843184404 
lecture_3 790 0.753352745 0.676415824 0.832360385 0.761005828 0.785614414 0.778561945 0.751868556 0.815380718 0.823918998 
lecture_4 800 0.746094456 0.672108128 0.825465595 0.753218495 0.776741199 0.767812421 0.743606767 0.811881071 0.830271172 
lecture_5 810 0.744233199 0.668469887 0.819316517 0.747385269 0.770872201 0.761259613 0.72697517 0.802331534 0.819591591 
lecture_6 830 0.745963605 0.67236438 0.821462369 0.75199608 0.778850198 0.770491562 0.749262523 0.803134437 0.817040594 
lecture_hfrp 818 0.868909097 0.771415517 0.898279752 0.830671898 0.89670074 0.859164768 0.809662084 0.889695815 0.891477818 
lecture_hhp 236 0.919856623 0.790362232 0.90942545 0.889802281 0.921539746 0.872657178 0.861429327 0.923095958 0.905604067 
meeting_hfrp 337 0.886376221 0.776335033 0.90280787 0.852628398 0.903551056 0.868806124 0.818318413 0.90635094 0.897082624 
meeting_hhp 254 0.919794249 0.789414849 0.909288242 0.888007943 0.921283822 0.869669196 0.861081614 0.925445615 0.906796018 
office_hfrp 390 0.81621019 0.739185694 0.872700151 0.798685599 0.849661736 0.838015905 0.75643327 0.859662359 0.863006374 
office_hhp 520 0.893902193 0.770058033 0.914429649 0.852080455 0.913073193 0.871077139 0.86453645 0.91503912 0.913850942 
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Raw chroma accuracy 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.969673454 0.969019864 0.897903243 0.968728003 0.968819543 0.973680761 0.855699595 0.968179727 0.968179727 
booth_1 80 0.961385043 0.964232304 0.888004706 0.955737218 0.952759476 0.964888665 0.822715012 0.950771192 0.950771192 
booth_2 110 0.955205029 0.956019877 0.900886249 0.963017546 0.949604142 0.960666278 0.843278528 0.955746476 0.955746476 
booth_3 180 0.949896632 0.941639153 0.911834334 0.95096274 0.949565598 0.957531344 0.863708166 0.955489257 0.955489257 
meeting_1 210 0.955041088 0.958891446 0.903432447 0.961870413 0.955117167 0.96099367 0.823516351 0.958979863 0.958979863 
meeting_2 220 0.954834208 0.954936414 0.907457747 0.959583312 0.952992522 0.958915616 0.821843511 0.958233203 0.958233203 
meeting_3 240 0.952504632 0.95345806 0.906191322 0.957692648 0.948860507 0.96067753 0.819562337 0.949426506 0.949426506 
meeting_4 250 0.945820841 0.948174958 0.904021859 0.952802126 0.949717931 0.951551852 0.824083998 0.954307964 0.954307964 
office_1 370 0.939794434 0.938101036 0.897881041 0.946667198 0.946031673 0.955727313 0.79439085 0.95626983 0.95626983 
office_2 440 0.919102866 0.911095673 0.888792958 0.919503092 0.92752383 0.932588771 0.816046249 0.924838935 0.924838935 
office_3 480 0.905347952 0.886622613 0.875629582 0.899189882 0.917571242 0.915662124 0.779150251 0.915713665 0.915713665 
lecture_1 700 0.938794825 0.926452368 0.911740157 0.943049985 0.949352864 0.952508434 0.825604036 0.955279982 0.955279982 
lecture_2 720 0.913757014 0.89452012 0.87704334 0.909574564 0.925911276 0.927424196 0.771968356 0.930924505 0.930924505 
lecture_3 790 0.907539762 0.890658997 0.878309509 0.911674526 0.921162892 0.922247074 0.775989682 0.915903451 0.915903451 
lecture_4 800 0.89929663 0.883648374 0.872770103 0.906708418 0.913765225 0.909053643 0.7438827 0.920077486 0.920077486 
lecture_5 810 0.89656037 0.878559662 0.8703649 0.899717264 0.910361778 0.902976272 0.760464071 0.908736287 0.908736287 
lecture_6 830 0.897662702 0.877513104 0.872728115 0.902273583 0.912635541 0.905744469 0.769409114 0.912392816 0.912392816 
lecture_hfrp 818 0.962985383 0.967533291 0.901092949 0.968125767 0.960994364 0.969426593 0.822937556 0.962865056 0.962865056 
lecture_hhp 236 0.967841977 0.976637792 0.901763455 0.972662549 0.96800179 0.974484644 0.867010203 0.967530493 0.967530493 
meeting_hfrp 337 0.961541585 0.964691379 0.907404382 0.967171838 0.961669445 0.968654231 0.833270186 0.966369622 0.966369622 
meeting_hhp 254 0.968109204 0.977048167 0.900334214 0.973117522 0.967768776 0.973723686 0.862355463 0.967762358 0.967762358 
office_hfrp 390 0.946701153 0.946314761 0.893390734 0.949546164 0.946202585 0.953401206 0.770748751 0.95227689 0.95227689 
office_hhp 520 0.967674768 0.973707142 0.910144062 0.971883008 0.96647935 0.976517741 0.86586556 0.970636697 0.970636697 
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Voiced chroma accuracy 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.935760189 0.968758965 0.868025045 0.966754144 0.930112993 0.972588618 0.789949518 0.966656271 0.871166822 
booth_1 80 0.917548823 0.963996098 0.860579145 0.951533452 0.90765206 0.963017728 0.759341814 0.944803885 0.847058298 
booth_2 110 0.912311338 0.955851779 0.873061629 0.960692076 0.905788429 0.959690577 0.769431451 0.95328458 0.868677125 
booth_3 180 0.90481477 0.941458619 0.883457699 0.947499475 0.908925541 0.956968439 0.798490976 0.95296685 0.889104301 
meeting_1 210 0.913832954 0.958816842 0.879411663 0.960956347 0.90726775 0.960224367 0.733779155 0.956434586 0.878140919 
meeting_2 220 0.911214972 0.95485568 0.887223516 0.958314029 0.898904717 0.957837623 0.744502117 0.956808178 0.88217425 
meeting_3 240 0.908828229 0.953359593 0.883213813 0.956113545 0.898003808 0.959666798 0.741971141 0.944958847 0.875303094 
meeting_4 250 0.900493746 0.948054497 0.880428384 0.95098117 0.90217524 0.95054112 0.740711196 0.952493792 0.877513695 
office_1 370 0.884572934 0.938088447 0.876329102 0.945543339 0.881733356 0.955239462 0.714024062 0.954903051 0.881047293 
office_2 440 0.857268125 0.911068417 0.85920539 0.9173673 0.849574746 0.931949281 0.72043313 0.922827374 0.863107697 
office_3 480 0.832361172 0.886590305 0.841768778 0.896015768 0.828088574 0.914651391 0.656398017 0.913295869 0.845635035 
lecture_1 700 0.881955358 0.92641437 0.890743397 0.941613467 0.894416806 0.95194553 0.754595477 0.95370962 0.898910337 
lecture_2 720 0.844922633 0.894444908 0.859149621 0.907294178 0.857953842 0.926619862 0.702386441 0.92945243 0.87486922 
lecture_3 790 0.836766403 0.890616333 0.853178492 0.910192982 0.833696635 0.920657966 0.668696863 0.912696628 0.843098982 
lecture_4 800 0.82859054 0.883561233 0.850682544 0.904991116 0.836081224 0.907107192 0.661338133 0.916405738 0.857203381 
lecture_5 810 0.826423351 0.878438806 0.844010984 0.898033539 0.823809407 0.901132255 0.646331327 0.905050777 0.849649019 
lecture_6 830 0.83264351 0.87740165 0.845422133 0.899973334 0.830828444 0.903481221 0.670003364 0.908230326 0.842388211 
lecture_hfrp 818 0.923770395 0.96733034 0.869066401 0.967196757 0.921370274 0.968010575 0.736251357 0.960193208 0.856813444 
lecture_hhp 236 0.938364205 0.976506482 0.872514198 0.971136214 0.936388933 0.973508943 0.806590724 0.966087103 0.869913066 
meeting_hfrp 337 0.925514915 0.964517578 0.874504229 0.966138066 0.919375683 0.966666393 0.74673547 0.964169511 0.863222796 
meeting_hhp 254 0.938416099 0.976912198 0.872444742 0.971546393 0.93731744 0.972954383 0.805925591 0.966340305 0.87181729 
office_hfrp 390 0.893245754 0.946161025 0.862283916 0.948501412 0.882932217 0.951728657 0.662006231 0.950086831 0.843720594 
office_hhp 520 0.936036579 0.973617622 0.884324079 0.970719083 0.935964604 0.975542039 0.810402164 0.969042931 0.882661567 
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Chroma f-measure 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.956546121 0.868981923 0.947415278 0.936768639 0.955442065 0.917465991 0.914818306 0.960121656 0.947836648 
booth_1 80 0.945757256 0.85901555 0.943142931 0.924174952 0.940029709 0.905527978 0.895757137 0.945540273 0.936620969 
booth_2 110 0.938554944 0.84871293 0.947478061 0.934300592 0.936509994 0.887231758 0.900812297 0.947211886 0.94513565 
booth_3 180 0.92020293 0.819834142 0.951111438 0.90664925 0.937569796 0.885877379 0.916325031 0.946200656 0.952852887 
meeting_1 210 0.914500778 0.843423907 0.940177987 0.904904173 0.926714343 0.902290592 0.88738074 0.934391908 0.941897549 
meeting_2 220 0.912499831 0.836922079 0.942713926 0.900077317 0.920500348 0.905502206 0.891560989 0.932138329 0.942195988 
meeting_3 240 0.908278746 0.838408389 0.937734782 0.896401562 0.922588735 0.901350786 0.890846588 0.921049697 0.934631845 
meeting_4 250 0.901578192 0.836735607 0.934268457 0.8929612 0.921220814 0.898345214 0.884743122 0.924909037 0.934086751 
office_1 370 0.873142093 0.814240962 0.915369 0.871652782 0.892892988 0.879193143 0.873701716 0.907208879 0.921176346 
office_2 440 0.855294676 0.784040987 0.895286785 0.845980463 0.869424634 0.856332183 0.871247724 0.887548666 0.897279039 
office_3 480 0.839830289 0.759707 0.881542055 0.824173035 0.860063453 0.836058812 0.840573433 0.87719046 0.889162894 
lecture_1 700 0.872975218 0.799479956 0.920499697 0.862578947 0.907562859 0.879960058 0.893076156 0.908994185 0.930529778 
lecture_2 720 0.845132748 0.771721501 0.889830917 0.83574846 0.872763365 0.851208133 0.858929483 0.886356795 0.900078212 
lecture_3 790 0.838688591 0.769366282 0.888214183 0.83827679 0.863696339 0.849488832 0.844320449 0.878441942 0.88698096 
lecture_4 800 0.831770193 0.764234017 0.882602104 0.831707633 0.857670788 0.838825011 0.840659974 0.875222365 0.890971327 
lecture_5 810 0.830444736 0.760206057 0.877966508 0.826696271 0.853598998 0.83288638 0.828725721 0.867861112 0.882504057 
lecture_6 830 0.831887523 0.762645995 0.881021016 0.829493572 0.860035266 0.838367752 0.84606831 0.868406843 0.881564301 
lecture_hfrp 818 0.92226552 0.858117589 0.941777271 0.898246358 0.938690934 0.914133799 0.88667327 0.933473501 0.937246562 
lecture_hhp 236 0.951752533 0.872627603 0.948850084 0.935116396 0.953083959 0.922922104 0.920584573 0.954166751 0.946396307 
meeting_hfrp 337 0.931558977 0.860124734 0.944026279 0.91159015 0.942085278 0.919709647 0.890803835 0.943891639 0.940692062 
meeting_hhp 254 0.95178512 0.872163549 0.948889918 0.934292364 0.953374541 0.921266132 0.920752069 0.954568187 0.946861568 
office_hfrp 390 0.887140648 0.830063333 0.922120687 0.872895746 0.909016228 0.89808333 0.84424195 0.913037683 0.918586757 
office_hhp 520 0.937231153 0.858802128 0.95152257 0.912399288 0.948536492 0.923084377 0.922231797 0.948833847 0.95060434 

 

  



102 
 

Chroma precision 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.959305594 0.789807654 0.991857114 0.903231064 0.961996787 0.86659077 0.990512912 0.945456425 0.991312008 
booth_1 80 0.951925464 0.776259529 0.989528411 0.889970837 0.948711542 0.852229075 0.990737224 0.932189489 0.989696743 
booth_2 110 0.941198118 0.764518842 0.987894797 0.901819577 0.942773947 0.824970131 0.988542325 0.930074025 0.988392742 
booth_3 180 0.913345619 0.728294776 0.987440075 0.863292974 0.942529313 0.823196044 0.988472659 0.92829947 0.987501307 
meeting_1 210 0.896222524 0.753938527 0.96884478 0.85009571 0.923848352 0.847766511 0.988021709 0.904641824 0.975633945 
meeting_2 220 0.894471414 0.746228566 0.968341699 0.843590477 0.918358814 0.853189804 0.989305146 0.90031555 0.971703669 
meeting_3 240 0.888263741 0.749172122 0.961321721 0.838606728 0.922512097 0.845878065 0.991576552 0.887747904 0.96335362 
meeting_4 250 0.881505315 0.7490586 0.956266858 0.835824789 0.917133977 0.846823078 0.979801143 0.890579187 0.961636933 
office_1 370 0.843178956 0.720024777 0.923487681 0.803938649 0.880566881 0.811670001 0.980319134 0.857480703 0.934607124 
office_2 440 0.829097881 0.688968886 0.896954471 0.778223728 0.859791679 0.787926038 0.968255555 0.843431226 0.901722687 
office_3 480 0.817749725 0.665467346 0.88323963 0.755620959 0.857656407 0.76436416 0.965118254 0.832098734 0.898905175 
lecture_1 700 0.844282622 0.704132106 0.92319523 0.791492697 0.898048158 0.814432738 0.982080029 0.861752571 0.938012313 
lecture_2 720 0.819962726 0.67858477 0.887124264 0.767383261 0.861057326 0.78198682 0.960946467 0.837726206 0.897955009 
lecture_3 790 0.813915202 0.676678838 0.888194005 0.769372095 0.860734152 0.783003378 0.956836458 0.834428686 0.896615558 
lecture_4 800 0.806765275 0.672456679 0.879546135 0.761860189 0.848619822 0.772944778 0.95973857 0.826269698 0.892833154 
lecture_5 810 0.806114968 0.668931507 0.875569664 0.757684252 0.849752193 0.766579803 0.946929357 0.820723644 0.882956485 
lecture_6 830 0.804543564 0.672798923 0.880405054 0.760743296 0.855795316 0.773682536 0.958727657 0.819620152 0.886444588 
lecture_hfrp 818 0.904157149 0.772415401 0.980641699 0.835469267 0.93660989 0.864104636 0.986292481 0.900734148 0.982749692 
lecture_hhp 236 0.948386261 0.790875782 0.991012903 0.896860465 0.952936069 0.875332296 0.990093 0.935033288 0.99051331 
meeting_hfrp 337 0.919411336 0.777246634 0.980598222 0.858566405 0.944139205 0.874003824 0.984286396 0.916746526 0.983950967 
meeting_hhp 254 0.948417357 0.789931825 0.991228907 0.895150171 0.952845166 0.872635935 0.990638349 0.935449713 0.989624313 
office_hfrp 390 0.861631339 0.739781868 0.94723186 0.80439343 0.908749904 0.845520786 0.966303776 0.870839979 0.95720007 
office_hhp 520 0.923050245 0.770420087 0.987552094 0.857421488 0.944508922 0.874508771 0.990008005 0.922724567 0.988547912 
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Chroma Recall 

 RT60 YIN TWM MEL SAC YIN NML TWM NML MEL NML SAC NML MIX 
dry 0 0.954254766 0.972609127 0.907535954 0.974653782 0.9492914 0.978360115 0.851382009 0.975676256 0.90873983 
booth_1 80 0.940794071 0.968227235 0.902142914 0.962694461 0.93253005 0.9702018 0.826570622 0.959646078 0.890811803 
booth_2 110 0.936651726 0.960592952 0.911155644 0.970236122 0.930693155 0.965953484 0.83461376 0.96547342 0.906421345 
booth_3 180 0.929790721 0.946256854 0.918156055 0.958179746 0.933047168 0.9640282 0.856404934 0.965301384 0.921020665 
meeting_1 210 0.934652041 0.962908262 0.914197438 0.968722156 0.930475666 0.967364919 0.810316874 0.966743621 0.911638318 
meeting_2 220 0.932441702 0.95904229 0.919484621 0.966352107 0.923634849 0.966107292 0.817162161 0.967348433 0.915370456 
meeting_3 240 0.930421496 0.957835887 0.91630345 0.964429419 0.923619217 0.967424662 0.815374363 0.957610095 0.909083891 
meeting_4 250 0.92395998 0.9533059 0.914329895 0.960250919 0.92606574 0.960128963 0.814230112 0.962769707 0.909967977 
office_1 370 0.908155845 0.942800484 0.908994519 0.954230611 0.908222984 0.962542069 0.794410896 0.964191316 0.910398364 
office_2 440 0.886009776 0.916822857 0.895175922 0.929487962 0.882164494 0.941575981 0.798661866 0.937807493 0.894905736 
office_3 480 0.866247952 0.892787564 0.881455723 0.909996837 0.864416315 0.926439746 0.750068938 0.929279475 0.881604787 
lecture_1 700 0.90630488 0.931518796 0.919337666 0.950313252 0.918840417 0.959657641 0.823855482 0.963074716 0.924248591 
lecture_2 720 0.875514648 0.90133022 0.894279944 0.920383669 0.887163436 0.936704093 0.783024806 0.942112435 0.903732287 
lecture_3 790 0.868760155 0.89797454 0.889800352 0.923340654 0.869602748 0.932109753 0.761646806 0.928957164 0.880018298 
lecture_4 800 0.861709406 0.891574663 0.887357506 0.918504225 0.869340533 0.920451237 0.752786338 0.931573529 0.890875388 
lecture_5 810 0.859955605 0.886691097 0.882053727 0.912432418 0.860799478 0.915052852 0.741543672 0.921899521 0.884078098 
lecture_6 830 0.864516041 0.88626647 0.883364487 0.914515134 0.86662785 0.918113566 0.760464837 0.924738845 0.87865454 
lecture_hfrp 818 0.942472788 0.971008473 0.907361685 0.973174725 0.941531744 0.974661998 0.81053772 0.969490535 0.897253159 
lecture_hhp 236 0.955529109 0.979462745 0.910797189 0.9779213 0.95360804 0.979533186 0.862533514 0.974541554 0.906613398 
meeting_hfrp 337 0.944722522 0.968783641 0.911228141 0.973059175 0.940703877 0.973446012 0.819423627 0.973114013 0.902262033 
meeting_hhp 254 0.955557188 0.97978055 0.910688144 0.9781667 0.95426524 0.979083346 0.862118898 0.974828731 0.908214162 
office_hfrp 390 0.916491904 0.951193352 0.900529599 0.956627892 0.910934232 0.960958997 0.75808143 0.961109875 0.885520201 
office_hhp 520 0.952675357 0.976439269 0.91871148 0.976673301 0.953045678 0.980922194 0.865495228 0.976843945 0.915928292 





105 
 

Bibliography 

[1] E. Gómez, A. Klapuri, and B. Meudic, “Melody description and extraction in the 
context of music content processing,” Journal of New Music Research, 2003. 

[2] W. Hess, Pitch determination of speech signals. Algorithms and devices. Berlin, 
New York, Tokyo: Springer-Verlag, 1983. 

[3] Y. Medan, E. Yair, and D. Chazan, “Super resolution pitch determination of speech 
signals,” IEEE Transactions on Signal Processing, vol. 39, no. 1, pp. 40–48, 1991. 

[4] D. Talkin, “Robust algorithm for pitch tracking,” in in Speech Coding and Synthe-
sis, W. Kleijn and K. Paliwal, Eds. Elsevier Science B. V., 1995. 

[5] A. Klapuri, “Qualitative and quantitative aspects in the design of periodicity esti-
mation algorithms,” Proceedings of the European Signal Processing Conference, 
2000. 

[6] A. de Cheveigné and H. Kawahara, “YIN, a fundamental frequency estimator for 
speech and music,” The Journal of the Acoustical Society of America, vol. 111, no. 
4, p. 1917, 2002. 

[7] E. Terhardt, “Calculating virtual pitch,” Hearing research, vol. 1, pp. 155–182, 
1979. 

[8] E. Terhardt, G. Stoll, and M. Seewann, “Algorithm for extraction of pitch and 
pitch salience from complex tonal signals,” The Journal of the Acoustical Society of 
America, vol. 71, pp. 679–688, 1982. 

[9] B. Gold and L. Rabiner, “Parallel processing techniques for estimating pitch periods 
of speech in the time domain,” The Journal of the Acoustical Society of America, 
vol. 46, pp. 442–448, 1969. 

[10] L. Rabiner and R. Schafer, Digital processing of speech signals. Prentice-Hall, 1979. 

[11] A. Bregman, “Psychological data and computational auditory scene analysis,” in in 
Computational auditory scene analysis, D. Rosenthal and O. HG, Eds. Mahwah, 
New Jersey: Lawrence Erlbaum Associates, Inc., 1998. 



106 
 

[12] A. Noll, “Cepstrum pitch determination,” The journal of the acoustical society of 
America, vol. 41, pp. 293–309, 1967. 

[13] M. Lahat, R. Niederjohn, and D. Krubsack, “A spectral autocorrelation method for 
measurement of the fundamental frequency of noise-corrupted speech,” IEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 6, pp. 741–
750, 1987. 

[14] M. Piszczalski and B. Galler, “Predicting musical pitch from component frequency 
ratios,” The Journal of the Acoustical Society of America, vol. 66, pp. 710–720, 
1979. 

[15] X. Rodet and B. Doval, “Fundamental frequency estimation using a new harmonic 
matching method,” Proceedings of the International Computer Music Conference, 
pp. 555–558, 1991. 

[16] R. Maher and J. Beauchamp, “Fundamental frequency estimation of musical signals 
using a two-way mismatch procedure,” The Journal of the Acoustical Society of …, 
vol. 95, no. April, pp. 2254–2263, 1994. 

[17] T. Jehan, “Musical signal parameter estimation,” CNMAT report, 1997. 

[18] A. Klapuri, T. Virtanen, and J. Holm, “Robust multipitch estimation for the analy-
sis and manipulation of polyphonic musical signals,” Proc. of the International Con-
ference on Digital Audio Effects, 2000. 

[19] E. Pollastri, “A pitch tracking system dedicated to process singing voice for music 
retrieval,” Multimedia and Expo, 2002. ICME’02. Proceedings. …, pp. 9–12, 2002. 

[20] C. Hsu and D. Wang, “A Tandem Algorithm for Singing Pitch Extraction and 
Voice Separation From Music Accompaniment,” Audio, Speech, and …, vol. 20, no. 
5, pp. 1482–1491, 2012. 

[21] J. Salamon and E. Gómez, “Melody extraction from polyphonic music signals using 
pitch contour characteristics,” Audio, Speech, and Language …, vol. 20, no. 6, pp. 
1759–1770, 2012. 



107 
 

[22] T. Nakatani and T. Irino, “Robust and accurate fundamental frequency estimation 
based on dominant harmonic components,” The Journal of the Acoustical Society of 
America, vol. 116, no. 6, p. 3690, 2004. 

[23] T. Abe, T. Kobayashi, and S. Imai, “Harmonics tracking and pitch extraction based 
on instantaneous frequency,” Proceedings of ICASSP, pp. 756–759, 1995. 

[24] P. Naylor and N. Gaubitch, Speech dereverberation. Springer, 2010. 

[25] Y. Haneda, S. Makino, and Y. Kaneda, “Common acoustical pole and zero modeling 
of room transfer functions,” IEEE Transactions on Speech and Audio Processing, 
vol. 2, no. 2, pp. 320–328, 1994. 

[26] J. Hopgood and P. Rayner, “A probabilistic framework for subband autoregressive 
models applied to room acoustics,” Proc. IEEE Workshop Statistical Signal Pro-
cessing, pp. 492–495, 2001. 

[27] J. Hopgood and P. Rayner, “Blind single channel deconvolution using nonstationary 
signal processing,” IEEE Transactions on Speech and Audio Processing, vol. 11, no. 
5, pp. 476–488, 2003. 

[28] J. Mourjopoulos and M. Paraskevas, “Pole and zero modeling of room transfer func-
tions,” Journal of Sound and Vibration, vol. 146, no. 2, pp. 281–302, 1991. 

[29] J. Mourjopoulos, “Digital equalization of room acoustics,” Journal of the Audio En-
gineering Society, vol. 42, no. 11, pp. 884–900, 1994. 

[30] T. Paatero, “Modeling of long and complex responses using Kautz filters and time-
domain partitions,” Proc. European Signal Processing Conf.(EUSIPCO), pp. 313–
316, 2004. 

[31] H. Kuttruff, Room acoustics, 4th ed. Taylor & Francis, 2000. 

[32] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of 
acoustics, 4th ed. John Wiley and Sons, Inc., 2000. 

[33] W. T. Chu, “Comparison of reverberation measurements using schroeders impulse,” 
Journal of Acoustical Society of America, vol. 63, pp. 1444–1450, 1978. 



108 
 

[34] J. Jot, L. Cerveau, and O. Warusfel, “Analysis and synthesis of room reverberation 
based on a statistical time-frequency model,” Proc. Audio Eng. Soc. Convention, 
1997. 

[35] M. Miyoshi and Y. Kaneda, “Inverse filtering of room acoustics,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 36, no. 2, pp. 145–152, 1988. 

[36] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B. Juang, “Speech dere-
verberation based on variance-normalized delayed linear predictor,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 18, no. 7, pp. 1717–1731, 
2010. 

[37] A. Krueger and R. Haeb-Umbach, “A model-based approach to joint compensation 
of noise and reverberation for speech recognition,” in in Robust Speech Recognition 
of Uncertain or Missing Data: Theory and Applications, D. Kolossa and R. Haeb-
Umbach, Eds. Springer-Verlag, 2011, pp. 257–290. 

[38] S. Haykin, Adaptative Filter Theory, 4th ed. Prentice-Hall, 2011. 

[39] B. Gillespie and A. Atlas, “Strategies for improving audible quality and speech 
recognition accuracy of reverberant speech,” Proc. Int. Conf. Acoust., Speech, Sig-
nal Process., pp. 676–679, 2003. 

[40] M. Triki and D. Slock, “Delay and predict equalization for blind speech dereverber-
ation,” Proc. Int. Conf. Acoust., Speech, Signal Process., vol. 11, no. 5, pp. 97–100, 
2006. 

[41] H. Buchner and W. Kellermann, “TRINICON for dereverberation of speech and 
audio signals,” in in Speech Dereverberation, P. Naylor and N. Gaubitch, Eds. Ber-
lin: Springer-Verlag, 2010, pp. 311–385. 

[42] K. Kinoshita, M. Delcroix, T. Nakatani, and M. Miyoshi, “Suppression of late re-
verberation effect on speech signal using long-term multiple-step linear prediction,” 
Audio, Speech, and …, vol. 17, no. 4, pp. 534–545, 2009. 

[43] T. Yoshioka, T. Nakatani, M. Miyoshi, and H. Okuno, “Blind separation and dere-
verberation of speech mixtures by joint optimization,” IEEE Transactions on Au-
dio, Speech and Language Processing, vol. 19, no. 1, pp. 69–84, 2011. 



109 
 

[44] E. Habets, “Single- and multi-microphone speech dereverberation using spectral en-
hancement,” Eindhoven Univ. Technology, 2006. 

[45] J. Erkelens and R. Heusdens, “Correlation-based and model-based blind single-
channel late-reverberation suppression in noisy time-varying acoustical environ-
ments,” IEEE Transactions on Audio, Speech and Language Processing, vol. 18, 
no. 7, pp. 1746–1765, 2010. 

[46] T. Y. Hirokazu Kameoka, Tomohiro Nakatani, “Robust speech dereverberation 
based on non-negativity and sparse natures of speech spectrograms,” Acoustics, 
Speech and …, 2009. 

[47] K. Kumar, R. Singh, B. Raj, and R. Stern, “Gammatone sub-band magnitude-
domain dereverberation for ASR,” 2011 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), no. 1, pp. 4604–4607, May 2011. 

[48] K. Kumar, B. Raj, R. Singh, and R. M. Stern, “An iterative least-squares technique 
for dereverberation,” 2011 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP), vol. 2, no. 2, pp. 5488–5491, May 2011. 

[49] K. Lebart, J. Boucher, and P. Denbigh, “A new method based on spectral subtrac-
tion for speech dereverberation,” Acta Acustica united with Acustica, vol. 87, pp. 
359–366, 2001. 

[50] D. Wang and G. Brown, “Computational auditory scene analysis: Principles, algo-
rithms, and applications,” in in Chapter 7.3, 2006. 

[51] “MIR-1K webpage.” [Online]. Available: 
https://sites.google.com/site/unvoicedsoundseparation/mir-1k. [Accessed: 28-Aug-
2013]. 

[52] C. Hsu and D. Wang, “A tandem algorithm for singing pitch extraction and voice 
separation from music accompaniment,” Audio, Speech, and …, 2012. 

[53] “MIR-1K for MIREX: pitch interpolation.” . 

[54] “MIREX 2012 audio melody extraction.” . 



110 
 

[55] “MIREX 2005 audio melody extraction results.” [Online]. Available: 
http://www.music-ir.org/mirex/wiki/2005:Audio_Melody_Extraction_Results. 
[Accessed: 28-Aug-2013]. 

[56] D. Powers, “Evaluation: From precision, recall and f-measure to roc., informedness, 
markedness & correlation,” Journal of Machine Learning Technologies, 2011. 

[57] M. Jeub, M. Schafer, and P. Vary, “A binaural room impulse response database for 
the evaluation of dereverberation algorithms,” Digital Signal Processing, 2009 …, 
2009. 

[58] M. Jeub, M. Schäfer, and H. Krüger, “Do we need dereverberation for hand-held 
telephony?,” Proc. 20th Int. …, no. August, pp. 1–7, 2010. 

[59] “Aachen Impulse Response dataset website.” [Online]. Available: 
http://www.ind.rwth-aachen.de/en/research/tools-downloads/aachen-impulse-
response-database/. [Accessed: 29-Aug-2013]. 

[60] M. Schroeder, “New Method of Measuring Reveberation time,” The Journal of the 
Acoustical Society of America, 1965. 

[61] R. Lyon, “History and future of auditory filter models,” Circuits and Systems ( …, 
2010. 

[62] K. Kinoshita, T. Nakatani, M. Miyoshi, and T. Kubota, “A new audio postproduc-
tion tool for speech dereverberation,” Watermark, 2008. 

[63] D. Gesbert and P. Duhamel, “Robust blind channel identification and equalization 
based on multi-step predictors,” Acoustics, Speech, and Signal …, pp. 0–3, 1997. 

[64] S. Boll, “Suppression of Acoustic Noise in Speech Using Spectral Subtraction,” 
Acoustics, Speech and Signal Processing, IEEE …, no. 2, pp. 113–120, 1979. 

[65] K. Kinoshita, “Spectral subtraction steered by multi-step linear prediction for single 
channel speech dereverberation,” Acoustics, Speech and …, pp. 817–820, 2006. 

[66] K. Kinoshita and M. Delcroix, “A linear prediction-based microphone array for 
speech dereverberation in a realistic sound !eld,” Proc. of Audio …, 2007.  

 


