
Mapping a Community Network

Bart Braem, Johan Bergs, Jeroen Avonts, Chris Blondia
Department of Mathematics and Computer Science

University of Antwerp - iMinds - MOSAIC Research Group
Middelheimlaan 1, B-2020, Antwerp, Belgium

Email: {bart.braem,johan.bergs,jeroen.avonts,chris.blondia}@uantwerpen.be

Abstract—Community networks are self-organized net-
works which exist all around the world. For a large
number of users, they are the only form of communi-
cation in the community itself and with the Internet. All
community networks maintain some database where all
information about the nodes in the community network
is stored. The database information is manually inserted
in the database, which commonly leads to a mismatch
between the documentation and reality. In this paper we
present a dynamic community network mapper, comple-
mentary to the node database. We explain the goals of
this approach, show the challenges and steps we took to
realize such a mapper, and give initial results.

I. INTRODUCTION

Often founded by networking enthusiasts, com-
munity networks all around the world form a
means to experiment with networks. They offer
internet access where commercial carriers will not
offer it, or they provide a forum for free expression
and communication. The possibilities of a commu-
nity network extend well beyond this small list, and
is only limited by the imagination and effort of the
members of the community network.

Community networks exist all over the
world, from Afghanistan[1] to Vienna[2], from
Montreal[3] to Buenos Aires[4]. Community
networks are very diverse in nature, each with its
own characteristics. Some consist of only wireless
links, while most networks combine wireless
links with VPN connections between sites. Some
networks like Guifi.net[5] even deploy their own
fiber cables. [6] gives an extensive overview of
the characteristics of community networks around
the world.

The community network consists of intercon-
nected nodes, where each node consists of multiple
routers and/or antennas located on a single site.

Depending on their age and popularity, the com-
munity networks vary largely in scale: a typical
community network will consist of about fifty
nodes, but networks of thousands of nodes also
exist[7].

The community networks often rely on open
source software, running on cheap off the shelf
hardware. However, given the low price and the
higher usability, most networks also blend in com-
mercial hardware like routers from MikroTik[8] or
antennas and/or wireless routers from Ubiquiti[9].
Routing between the devices is usually handled by
either standard protocols like BGP or OSPF. Some
networks also run custom protocols like BATMAN
advanced or BMX6[10].

With an expanding network comes an increasing
overhead from maintenance and documentation.
The settings and characteristics of each new de-
vice have to be documented and monitored. This
allows maintenance and system administration to
be performed efficiently. Also, the expansion of the
network will also introduce hardware updates and
topology changes, which have to be documented
too. At the moment, to the best of our knowledge,
all community networks take an offline, static
approach to documenting their network, in the form
of a node database. While the exact properties
and functionality of a node database is debatable
and under active development[11], it suffices to
know that the database is manually maintained.
In this work we focus on the opposite approach:
an automatic community network mapper, which
automatically discovers and documents the com-
munity network.

In what follows, we will first describe our goals
in more detail. This is followed by the encountered

challenges and the implementation itself. After-
wards, we will present results and lessons learned,
with a number of conclusions and future work.

II. GOALS

The development of a community network map-
per is motivated by a number of goals. The first and
foremost is to lower the burden of documenting
a network in a node database. Especially when
the community network is altered, e.g. moving a
node or upgrading its hardware, manually updating
the node database is often neglected. Note that
the community network mapper is envisioned to
be complimentary to existing community network
node databases, as outlined in section V.

A second goal stems from our work in the EU
FP7 research project CONFINE[12]: community
networks form a very interesting research subject.
Both to improve the community networks itself
and to use the community network to test existing
research ideas in a more realistic context and at
a larger scale. These are the primary goals of the
CONFINE project.

The CONFINE project is part of the Future
Internet research initiative as outlined by the EU.
Community networks perfectly match this research
on the Future Internet, as a they can be considered
to be a viable ISP alternative in the Future Internet.
Even today, a community network is the only
possibility for a number of end users to access the
public internet. Given this context, the CONFINE
researchers also want to provide open data sets on
the community networks they cooperate with. This
provides feedback to the community networks and
generates data for external researchers to study.

A mapping system that runs at fixed intervals,
e.g. daily, can also provide feedback on and doc-
ument the dynamics of a community network.
As a simple example, the growth figures from
Guifi.net[13] show how the community network
increased during its lifetime. With more data avail-
able, e.g. the geographical data of new nodes
or the resulting changes in the routing protocols,
this allows researchers to study the dynamics of
a network. And this could also help community
networks to understand how other networks grow

and possibly learn from it. Again, this forms inter-
esting feedback to the deployment of community
networks as a future internet.

Finally, the data generated by a mapper can
also be fed into systems that can monitor the
community network and provide feedback to the
community network. Section V provides results
obtained by analyzing the results of our community
network mapper.

In what follows, we describe the challenges, im-
plementation and results for a community network
mapper that was tested on the Wireless Antwerpen
community network[14]. We have tried to keep
our implementation generalized and applicable to
a wide range of community networks. Community
network specific details are mentioned explicitly.

III. CHALLENGES

Three major challenges were met when devel-
oping a community network mapper that meets the
goals outlined above: tool availability, API access
and storage.

A. Tool Availability
A number of tools to perform network discovery

and mapping exist, both proprietary[15], [16], [17],
[18], [19], [20], [21] and open source[22], [23].
However, none of these tools meets the goals for
the community network mapper.

More specifically, the tools are often not tailored
towards mapping of wireless networks with a di-
verse mix of proprietary and open source software.
A second important mismatch lies in the definition
of a node, and the grouping required to identify
a node from network data, as outlined in section
IV-C. To the best of our knowledge, no existing
tools allow for such a grouping.

B. API
Because off the shelf tools are not applicable, a

number of data sources have been considered.
A perfect candidate for data gathering from

network devices is the Simple Network Manage-
ment Protocol (SNMP), providing a standardized
interface and with broad adoption[24]. Numerous
tools are available with SNMP support, both to
offer data access on a system and to query the

offered data. Unfortunately, the broad adoption of
SNMP comes with a fragmented implementation of
data offered by the devices. The standard defines
how to exchange data, it does not define which data
to offer. In essence, each vendor can choose which
functionality to implement. The implemented fea-
tures vary strongly, even from one firmware release
to the next. As such, relying on SNMP is a good
idea only when taking care that the required fea-
tures are implemented. As an illustration, a number
of Ubiquiti devices do not expose any information
on their ARP table or IP addresses via SNMP. This
makes grouping devices cumbersome.

In the case of Wireless Antwerpen and some
other community networks, another API is avail-
able: the RouterOS API offered by the MikroTik
devices. While binary and proprietary to devices
running RouterOS, the API allows querying for a
large number of device characteristics. Similar to
SNMP, using this API requires it to be enabled it
on each individual device (which is not the default
case). We have chosen to use this API where no
SNMP was available.

Some devices like the ones from Ubiquiti offer
a web interface for configuration. Besides offering
easy configuration for end-users, this opens up
possibilities to web scraping. In this case, the
HTML is parsed and data is generated. This option
should be considered to be a final resort, as the web
pages to configure embedded devices often change
from release to release. In our work, we have not
resorted to the web scraping approach.

C. Storage
A final challenge is often overlooked: storing

the intermediate and final results of a mapper. We
envision the system to have regular runs, at the
moment our implementation runs at intervals of
six hours. The amount of data generated by the
system can be quite large. As such, storage must be
efficient and flexible. E.g., data archival and access
should be efficient, and changes to the fetched
characteristics of a node should also be possible
quickly.

Relational databases form a seemingly obvious
solution. However, we do not believe that this
presents a good solution for storing mapper results

because the goal is flexibility. A database structure
that can handle flexibly selected types extracted
data and allows for flexibility when fetching dif-
ferent node attributes quickly becomes complex.
Also, the data generated by a mapper grows very
quickly, and might require database segmentation
or archival. While certainly feasible, we believe
these complications make the choice for relational
databases less obvious1.

As an alternative, our mapper is implemented
using plain text storage. Each mapper run gets its
own directory, and the directory name contains the
time the mapper ran. Results of specific queries,
e.g. for the node name or its ARP table, are stored
in small, separate files. Processing the data is han-
dled by a number of UNIX shell scripts. Progress
of the run is logged in a simple plaintext log file.
The resulting storage architecture is surprisingly
scalable and flexible. Archival can be achieved by
compressing the folder contents. Querying can be
performed with simple grep commands, combined
with awk in a shell script. Most importantly: the
resulting data can be easily exported for other
systems, or for external researchers as open data.

IV. IMPLEMENTATION

In what follows the implementation of the com-
munity network mapper is outlined. It is based on
SNMP and the RouterOS API for data retrieval
and plain text storage. The mapper consists of four
phases: discovery, data extraction, grouping and
result generation.

A. Discovery

During the first phase, discovery, the mapper
tries to discover all devices by their IP address.
To realize this, a starting IP address has to be
configured. Starting from this device, a breadth
first search algorithm is run. It is based on the
neighbors of a device, as exposed by its neigh-
bor discovery protocol. This can be the set of
OLSR neighbors[25], IP addresses discovered by
the Cisco Discovery Protocol (CDP)[26] or IP
addresses discovered by the MikroTik Neighbor

1One could consider using NoSQL databases, although archival
could also be cumbersome.

Discovery Protocol (MNDP)[27]. After a number
of iterations this results in a stable set of discovered
IP addresses.

It is important to take care of devices with
multiple IP addresses during this phase, because a
device can be discovered over multiple addresses.
In our implementation, upon discovery we add all
IP addresses of a node to the list of discovered IP
addresses.

B. Extraction
In the second phase, extraction, data is extracted

from the discovered devices. The data to extract
depends on the interests of the community net-
work and/or the researchers operating the mapper.
However, in the next phase of our implementation,
the interface table and the ARP table are required.
More data can be fetched with additional scripts,
using SNMP and/or the RouterOS API to query
the devices.

The interface table is of interest to avoid data du-
plication and to allow simple mapping of multiple
IP addresses to one device. The data de-duplication
is realized as follows. For each IP address of a
device, all data files relating to the device are
symbolically linked to the corresponding data files
of the first discovered IP address of the device. As
such, the storage overhead is limited.

C. Grouping
One could argue that the interface table already

performs some form of grouping. However, the
goal of the extraction phase is the grouping of
multiple devices into one node rather than grouping
multiple IP addresses into one device. This phase
also handles identification of wireless connections,
which are grouped together in connections.

To group nodes, we want to identify devices in a
single location. We assume that devices connected
via a wire belong to a single node, and that devices
connected over a wireless connection belong to
a different node. This assumption holds in the
studied community network Wireless Antwerpen.
However, this assumption has to be improved for
community networks like Guifi.net who roll their
own fiber. One could argue that the interface type
(Ethernet, IEEE 802.11, virtual interfaces, . . .) will

802.11

802.3
802.3

MikroTik router MikroTik router

Ubiquiti 802.11 router Ubiquiti 802.11 router

Node 1 Node 2

Fig. 1. Grouping scenario, dotted lines show neighbor discovery.

simply identify wired connections. However, this
information is not available directly nor consis-
tently over SNMP. The authors did not want to use
proprietary APIs, to maintain general applicability.

The main complexity for grouping can be ob-
served in figure 1, depicting two nodes. From
a device point of view, two MikroTik routers
are connected over two Ubiquiti wireless routers.
As mentioned before, the Ubiquiti devices do
not expose any IP information over SNMP, and
have to be discovered via the MikroTik routers.
The MikroTik routers discover each other and the
Ubiquiti devices via MNDP, as depicted by the
dotted line. However, they do not discover any
hop count information because the Ubiquiti routers
form a layer 2 link. In this case grouping can
be considered determining a reduction from six
(discovered) neighbor edges to two wired and one
wireless connection.

A first attempt to identify devices connected via
a wire involved taking the intersection between
the IP addresses in the ARP table of a node,
and its discovered neighbors. Only considering the
IP addresses in the ARP table of a node would
result in grouping of too many devices, e.g. clients
connected to the access point of a device would
also be included. The result of the intersection is
not sufficient because the ARP table entries are
by design short lived. Especially in parts of the

community network with low traffic, the ARP table
information will not always be complete.

A second attempt to identify devices connected
via a wired interface involved taking the discovered
neighbors, and looking up host specific routes for
those neighbors with SNMP. The idea behind this
is that connected wireless routers acting as layer
two devices need specific routes for management.
(Note that this assumption is community network
specific, some networks handle this differently.)
Considering only host specific routes is not suf-
ficient. These routes might have propagated from
other nodes. However, the intersection of discov-
ered neighbors and host specific routes does not
meet the mapper goals either, because routers con-
nected to routers usually do not have host specific
routes. Instead, they have IP addresses in an IP
address range which the router routes for.

At the moment, the solution that is used in our
implementation is the union of both solutions. This
is outlined in the first part of listing 1. Essentially,
this involves the intersection of the discovered
neighbors on the one hand, and the union of the IP
addresses in the ARP table of a node and its host
specific routes on the other hand. Improving this
result is certainly considered future work.

Finally, we identified wireless connections be-
tween grouped nodes. The main challenge in this
case comes from the fact that wireless connections
are usually handled by devices that act like ISO
layer two bridges rather than ISO layer three
routers. As such, the devices are not visible at
IP level in the data of the access point they are
connected to. Identifying these connections can
be solved by SNMP, because both the BSSID a
node is connected to and the BSSID of the access
point are exposed. Combined, we can easily match
access points clients with their access point, as
outlined in the second part of listing 1.

Listing 1. Grouping Discovered Results
Funct ion Group (d i s c o v e r e d d e v i c e s)

For each d i s c o v e r e d d e v i c e i (∗ Group wired
l i n k s ∗)

w i r e d l i n k s (i) := n e i g h b o r s (i) i n t e r s e c t
(s p e c i f i c r o u t e s (i) un ion a r p t a b l e (i))

End
SSIDs = t h e SSIDs of a l l d i s c o v e r e d d e v i c e s
For each d i s c o v e r e d d e v i c e i (∗ Group

w i r e l e s s l i n k s ∗)
I f (SSID of i i s known and SSID of i i s

in SSIDs)
w i r e l e s s l i n k s (i) := SSID of i

End
End

End

D. Result Generation

After discovery, data extraction and grouping,
the final phase of the community network mapper
is result generation. To match the grouping infor-
mation and the topology data, as generated by the
community network mapper, we have decided to
output our result in the form of a Graph Exchange
XML Format (GEXF) graph[28], annotated with
the extracted node and link properties. This XML
format allows for easy manipulation in different
systems, while being very extensible. A simple
graph could look like this:
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<gex f xmlns=” h t t p : / /www. gex f . n e t / 1 . 2 d r a f t ”

. . . v e r s i o n =” 1 . 2 ”>
<graph mode=” s t a t i c ” d e f a u l t e d g e t y p e =”

d i r e c t e d ”>
< a t t r i b u t e s c l a s s =” node ”>
< a t t r i b u t e i d =” ha rdware ” t i t l e =” ha rdware ”

t y p e =” s t r i n g ” />
< a t t r i b u t e i d =” I P s ” t i t l e =” I P s ” t y p e =”

l i s t s t r i n g ” />
< / a t t r i b u t e s>
< a t t r i b u t e s c l a s s =” edge ”>
< a t t r i b u t e i d =” t y p e ” t i t l e =” t y p e ” t y p e =”

s t r i n g ” />
< a t t r i b u t e i d =” t x r a t e ” t i t l e =” t x r a t e ” t y p e =”

i n t e g e r ” />
< a t t r i b u t e i d =” r x r a t e ” t i t l e =” r x r a t e ” t y p e =”

i n t e g e r ” />
< a t t r i b u t e i d =” f r e q u e n c y ” t i t l e =” f r e q u e n c y ”

t y p e =” i n t e g e r ” />
< a t t r i b u t e i d =” s i g n a l s t r e n g t h ” t i t l e =”

s i g n a l s t r e n g t h ” t y p e =” i n t e g e r ” />
< / a t t r i b u t e s>
<nodes>
<node i d =” n1 ” l a b e l =” Device 1 ” >
<a t t v a l u e s>
<a t t v a l u e f o r =” ha rdware ” v a l u e =”MT” />
<a t t v a l u e f o r =” I P s ” v a l u e =”

1 0 . 2 . 3 . 4 , 1 0 . 6 . 8 . 9 ” />
< / a t t v a l u e s>

< / node>
<node i d =” n2 ” l a b e l =” Device 2 ” >
<a t t v a l u e s>
<a t t v a l u e f o r =” ha rdware ” v a l u e =”UBNT” />
<a t t v a l u e f o r =” I P s ” v a l u e =” 1 0 . 2 . 3 . 4 ” />

< / a t t v a l u e s>

< / node>
< / nodes>
<edges>
<edge i d =” n1−n2 ” s o u r c e =” n1 ” t a r g e t =” n2 ” >
<a t t v a l u e s>
<a t t v a l u e f o r =” t y p e ” v a l u e =” w i r e l e s s ” />
<a t t v a l u e f o r =” t x r a t e ” v a l u e =” 104000000 ” />
<a t t v a l u e f o r =” r x r a t e ” v a l u e =” 130000000 ” />
<a t t v a l u e f o r =” s i g n a l s t r e n g t h ” v a l u e =”−56” /

>
<a t t v a l u e f o r =” f r e q u e n c y ” v a l u e =” 5520 ” />

< / a t t v a l u e s>
< / edge>
<edge i d =” n2−n1 ” s o u r c e =” n1 ” t a r g e t =” n2 ” >
<a t t v a l u e s>
<a t t v a l u e f o r =” t y p e ” v a l u e =” wi red ” />

< / a t t v a l u e s>
< / edge>
< / edges>
< / g raph>
< / gex f>

The pseudo code in listing 2 describes the dis-
covery and extraction phases of our community
network mapper, and refers to the grouping phase
shown before.

Listing 2. Community Network Mapper: discovery, extraction and
grouping phases

Funct ion E x t r a c t (d d a t a)
(∗ E x t r a c t da ta o f d e v i c e d over SNMP or some

o t h e r API ∗)
Funct ion Symlink (d da ta , e d a t a)
(∗ Cr ea t e s y m b o l i c l i n k from da ta f i l e (s) o f

d e v i c e d t o da ta f i l e (s) o f d e v i c e e ∗)
d i s c o v e r e d := { s t a r t i n g d e v i c e } (∗ d i s c o v e r e d

d e v i c e s (IP a d d r e s s e s grouped by d e v i c e)
∗)

p r e v i o u s := {} (∗ p r e v i o u s l y d i s c o v e r e d
d e v i c e s ∗)

While (d i s c o v e r e d != p r e v i o u s)
For each i in d i s c o v e r e d and not in

p r e v i o u s
E x t r a c t (i d a t a)
E x t r a c t (i i n t e r f a c e s)
E x t r a c t (i n e i g h b o r s)
For each j in i i n t e r f a c e s

Symlink (i d a t a , j d a t a)
Symlink (i i n t e r f a c e s , j i n t e r f a c e s)
Symlink (i n e i g h b o r s , j n e i g h b o r s)

End
End
p r e v i o u s += d i s c o v e r e d
For each i in d i s c o v e r e d

d i s c o v e r e d += i i n t e r f a c e s + i n e i g h b o u r s
End

End
Group (d i s c o v e r e d)

V. RESULTS AND LESSONS LEARNED

Currently, we have a working Community Net-
work Mapper which runs three times per day
on the Wireless Antwerpen community network.
Figure 2 gives the current resulting network graph,
after node grouping. A number of unconnected
nodes can be observed, because the grouping is
not optimal at this moment. On average, one entire
run takes about three hours to discover about 3000
IP addresses. This can vary depending on the
performance of SNMP on the devices and the load
on the host system while grouping.

A first lesson learned comes with this result:
developing a community network mapper proved
to be a difficult task. Tweaking the system to be
faster or to include new grouping approaches takes
time. Generating and processing all data multiple
times can be very demanding for the hardware.
To this end, we are happy to announce that we
will make our code available under an open source
license, allowing other researchers and community
networks to use our work.

We also notice a strong need for documentation
in community networks, and hope this can help
leverage the cost of documenting. In our tests with
Wireless Antwerpen, the differences between our
mapped network data and the contents of the node
database became clear very quickly. The difference
usually originates from the strong growth of this
community network. Documenting networks of
this scale is hard and as such we believe this work
helps community networks.

This is exactly where a community network
mapper should become the complementary live
documentation of the community network. We
would like to take this concept even further in the
future, and want to advocate for node databases
to contain both static and dynamic information. In
these hybrid node databases, at fixed intervals the
dynamic information is fed back into and compared
to the static documentation.

Another interesting result from our Community
Network Mapper is the feedback we can provide
to the community network. By documenting the
live network situation, we can more quickly give
feedback on a number of aspects and also use this

Fig. 2. Our current graph visualized.

data. As a nice example, we have been able to
generate a list of duplicate IP addresses present in
the community network. The community network
has been able to verify and correct these problems,
which also strengthens our faith in this stage of our
development.

A final lesson learned considers the data access,
or to be more exact the API. From our work, we
believe it will become more important to ask device
vendors to enable data access, e.g. via SNMP.
As community networks become larger, using a
standardized API like SNMP should become the
standard way of handling device data. Proprietary
interfaces and incomplete SNMP data complicate
network maintenance. However, vendors keep re-
sorting to proprietary APIs which have less tool
support and are even more subject to change.

VI. CONCLUSION

This work presented our efforts on the devel-
opment of a community network mapper. The
goals of this tool include: to complement the static
node databases, to enable open data on community
networks and to offer a historic view of the com-
munity network. We have presented challenges we
encountered while implementing our system, and
followed by a number of suggestions to solve those
challenges and lessons learned.

While our system is still in development, we can
already present some conclusions. The most impor-
tant one is that mapping a community network is
worth it. The data which can be derived from a live
network is very valuable to both the community
networks and the researchers. The resulting data is

a snapshot of the community network state, and
will help to analyze and prevent certain issues. As
an example, we identified duplicate IP addresses in
the community network.

Going further, we believe community networks
should develop a new type of node database, a
hybrid node database where both static and live
data is incorporated. This involves integrating a
community network mapper, and results in a more
rich database which can help with both documen-
tation and network operation.

As we have indicated, our community network
mapper is still being developed. At this moment,
the development focus lies on the grouping of IP
addresses into nodes. The grouping as outlined
in this work is not perfect, and we will continue
working to improve this. When this grouping is
more stable, we will open source our results to
allow the community networks to build hybrid
node databases.

Finally, we are also testing our community net-
work mapper on other like AWMN and Guifi.net.
Only then this is finished, can we validate our
general applicability claims, and further test our
solutions.

ACKNOWLEDGMENT

This work is supported by the CONFINE Inte-
grated Project 288535. The authors would like to
thank everyone involved in community networks
and especially Wireless Antwerpen, for their access
to the community network.

REFERENCES

[1] “Fabfi, Jalalabad, Afghanistan,” http://fabfi.fablab.af/.
[2] “Funkfeuer, Vienna, Austria,” http://www.funkfeuer.at/.
[3] “Ile Sans File, Montreal, Canada,” http://www.ilesansfil.org/.
[4] “Buenos Aires Libre, Buenos Aires, Argentina,”

http://buenosaireslibre.org/.

[5] D. Vega, L. Cerdà-Alabern, L. Navarro, and R. Meseguer,
“Topology patterns of a community network: Guifi. net,” in
Wireless and Mobile Computing, Networking and Communi-
cations (WiMob), 2012 IEEE 8th International Conference on.
IEEE, 2012, pp. 612–619.

[6] J. Avonts, B. Braem, and C. Blondia, “A questionnaire based
examination of community networks,” in Wireless and Mobile
Computing, Networking and Communications (WiMob), 2013
IEEE 9th International Conference on. IEEE, 2013, pp. 8–15.

[7] “Athens Wireless Metropolitan Network,” http://awmn.net/.
[8] “MikroTik,” http://mikrotik.com/.
[9] “Ubiquiti networks,” http://www.ubnt.com/.

[10] A. Neumann, E. López, and L. Navarro, “An evaluation
of BMX6 for community wireless networks,” in Wireless
and Mobile Computing, Networking and Communications
(WiMob), 2012 IEEE 8th International Conference on. IEEE,
2012, pp. 651–658.

[11] “Node Databases,”
http://interop.wlan-si.net/wiki/NodesDatabase.

[12] B. Braem, C. Blondia, C. Barz, H. Rogge, F. Freitag,
L. Navarro, J. Bonicioli, S. Papathanasiou, P. Escrich, R. Baig
Viñas, A. L. Kaplan, A. Neumann, I. Vilata i Balaguer,
B. Tatum, and M. Matson, “A case for research with and on
community networks,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 3, pp. 68–73, Jul. 2013.

[13] “Guifi.net Growth Map,”
http://guifi.net/en/guifi/menu/stats/growthmap.

[14] “Wireless Antwerpen,” http://wirelessantwerpen.be/.
[15] “LOGINventory,” http://www.loginventory.com/.
[16] “Whatsup Gold,” http://www.ipswitch.com/.
[17] “Alloy discovery,” http://www.alloy-software.com/.
[18] “Networkview,” http://www.networkview.com/.
[19] “The Dude,” http://www.mikrotik.com/thedude.
[20] “NetCure Discovery,” http://www.rocketsoftware.com/.
[21] “Tikmap,” http://tikmap.com/.
[22] “NeDi,” http://www.nedi.ch/.
[23] “Nmap,” http://nmap.org/.
[24] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple

network management protocol (SNMP),” United States, 1990.
[25] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muh-

lethaler, A. Qayyum, L. Viennot et al., “Optimized link state
routing protocol (olsr),” 2003.

[26] “Cisco Discovery Protocol,”
http://www.cisco.com/en/US/docs/ios-
xml/ios/cdp/configuration/
15-mt/nm-cdp-discover.html.

[27] “MikroTik Neighbor Discovery Protocol,”
http://wiki.mikrotik.com/wiki/Manual:IP/
Neighbor discovery.

[28] “Graph Exchange XML Format,” http://www.gexf.net/format/.

