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ABSTRACT
Platforms for mobile computing and gesture recognition
provide enticing interfaces for creative expression on virtual
musical instruments. However, sound synthesis on these
systems is often limited to sample-based synthesizers, which
limits their expressive capabilities. Source-filter models are
adept for such interfaces since they provide flexible, algo-
rithmic sound synthesis, especially in the case of the guitar.
In this paper, we present a data-driven approach for mod-
eling guitar excitation signals using principal components
derived from a corpus of excitation signals. Using these
components as features, we apply nonlinear principal com-
ponents analysis to derive a feature space that describes
the expressive attributes characteristic to our corpus. Fi-
nally, we propose using the reduced dimensionality space as
a control interface for an expressive guitar synthesizer.

Keywords
Source-filter models, musical instrument synthesis, PCA,
touch musical interfaces

1. INTRODUCTION
In recent years, advances in computing have rendered mo-
bile devices and gesture recognition systems cogent plat-
forms for music performance and creation. Devices such
as the iPad and Kinect enable touch- and/or gesture-based
interaction to enable entirely new ways of interacting with
music. Despite these advances, the software on these sys-
tems still relies heavily on sample-based synthesizers, which
limits the expressive control available to the user. Source-
filter models are capable of simulating the physical char-
acteristics of plucked-string instruments, including the res-
onant string behavior. Unlike sample-based synthesizers,
these models can generate a wide range of musical timbres
in response to different excitation signals. However, it is
unclear how exactly the source signals should be modeled
to capture the nuances of particular playing styles.

In this paper, we explore the analysis and synthesis of
plucked-guitar tones via component analysis of residual sig-
nals extracted from recorded performance for the applica-
tion of expressive guitar synthesis. The rest of this paper
is as follows: In Section 2 we briefly overview physically
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Figure 1: Source-filter model for plucked-guitar
synthesis. C(z) simulates the effect of the player’s
plucking position. S(z) models the string’s pitch and
decay characteristics.

inspired modeling of plucked-guitar tones along with ex-
isting methods for modeling excitation signals. Section 3
describes our data set and how the excitation signals are
extracted from recorded performance. In Section 4 we ob-
tain a feature representation of our signals using principal
components analysis and apply non-linear components anal-
ysis to these features for dimensionality reduction in Section
5. Finally, in Section 6 we demonstrate an interface for ex-
pressive guitar synthesis using the reduced dimensionality
space.

2. BACKGROUND
Modeling and synthesis of plucked-guitar tones is often
based on digital waveguide (DWG) modeling principles,
which aim to digitally implement the d’Alembert solution
for traveling waves on a lossy string [18]. The DWG simu-
lates the left- and right-traveling waves occuring after the
string is displaced by spatially sampling their time-varying
amplitudes along the string’s length. It was later shown
that the DWG model could be reduced to a source-filter
interaction as shown in Figure 1 [7]. The lower block, S(z),
of Figure 1 is referred to as the single delay-loop (SDL) and
consolidates the DWG model into a single delay line zDI

in cascade with a string decay filter Hl(z) and a fractional
delay filter HF (z). These filters are calibrated such that the
total delay, D, in the SDL satisfies D = fs

f0
where fs and

f0 are the sampling frequency and fundamental frequency
of the tone, respectively. The upper block, C(z), is a feed-
forward comb-filter that incorporates the effect of the per-
former’s plucking point position along the string. Since the
SDL lacks the bi-directional characteristics of the DWG,
C(z) simulates the boundary conditions when a traveling
wave encounters a rigid termination. The delay in C(z)
is determined by the product βD where β is a fraction in



the range (0, 1) corresponding to the relative plucking point
location on the string.

There are several approaches used in the literature for de-
termining the excitation signal for the model shown in Fig-
ure 1. One method includes applying non-linear processing
to spectrally flatten the recorded tone and using the result-
ing signal as the source while preserving the signal’s phase
information [10, 12]. Another technique involves inverse
filtering a recorded guitar tone with a properly calibrated
string-model [6, 9]. When inverse filtering is used, the string
model cancels out the tone’s harmonic components related
to the fundamental frequency leaving behind a residual that
contains the excitation in the first few milliseconds. In [11],
these residuals are processed with “pluck-shaping” filters to
simulate the performer’s articulation dynamics and comb
filters to model the reflection.

By employing the waveguide principles for plucked-string
synthesis, Karjalainen et al. developed a Virtual Air Gui-
tar interface for expressive performance [5]. The system
utilized sensors worn on the performer’s hands in order to
determine specific playing gestures such as plucking, strum-
ming, vibrato and pitch. However, the signals used to ex-
cite the filter model are limited to stored residual signals
obtained by inverse filtering recorded guitar performance.
More recently, the open source community has employed
gesture tracking technology used in the Microsoft Kinect to
develop a controller-free air guitar interface [14]. While this
system relies on sample-based and not algorithmic sound
synthesis, it provides a compelling interface for capturing
the performer’s expression.

Recently, a variety of virtual guitar applications have
been developed for the iPad and integrate some degree of
expressive control over the resulting sound. Among these
are iPad’s implementation of Garageband, which uses ac-
celerometer data in response to the user’s tapping strength
to trigger an appropriate sample for the synthesizer [2].
Similarly, the OMGuitar enables single note or chorded
performance and triggers chord samples based on the how
quickly the user “strums” the interface [1]. In both cases,
sound synthesis is based on samples of recorded guitars.

3. DATA COLLECTION
Our data corpus consists of recordings produced using an
Epiphone Les Paul guitar equipped with a Fishman Power-
bridge pickup. This pickup is a modified bridge with piezo-
electric sensors installed in the saddles for each string. In
contrast to magnetic pickups, the piezo pickup responds to
pressure changes caused by string vibration at the bridge.
These pickups provide a wide frequency response, which
is desirable for modeling the noise-like characteristics of the
performer’s articulation. Furthermore, these pickups do not
include the low-pass characteristics incurred from magnetic
pickups and are relatively free of the resonant effects from
the guitar body. Finally, recordings obtained through the
bridge-mounted piezo pickup can be analyzed to determine
the guitarist’s plucking position along the string since the
output is always measured at the bridge.

The data set of plucked-guitar recordings was produced
by varying the articulation to produce different notes using
various positions on the fretboard including “open” strings.
At each fret position, the guitarist performed a specific ar-
ticulation several times for consistency using either the pick
or his finger to excite the string. The neighboring strings
are muted so that only the excited string is recorded by the
pickup. Articulations are identified by their dynamic level,
which consisted of piano (soft), mezzo-forte (medium-loud)
and forte (loud). All six strings were used including the first
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Figure 2: Plucking point compensation for a resid-
ual signal obtained from plucking a guitar string
8.4 cm from the bridge (open E, f0 = 331 Hz). (a)
Without and (b) with equalization
.

five fretting positions to yield approximately 1000 record-
ings. The output of the pick-up was fed to a M-Audio Fast
Track Pro USB interface, which recorded the audio directly
to a Macintosh computer running Audacity. Samples were
recorded at 44.1 kHz at a 16-bit depth.

3.1 Residual Extraction
We obtain residual excitation signals from our data by in-
verse filtering the recorded tone with a properly calibrated
SDL model. The techniques proposed in [6, 9, 20] were used
to calibrate the SDL parameters. However, the residual ob-
tained by inverse filtering contains a bias from the comb-
filter effect resulting from the guitarist’s plucking position
along the string. In the frequency domain, this residual
will contain deep notches at the harmonics related to the
plucking position. Since the plucking point position typi-
cally varies in real performance and in our data set, it must
be compensated for to standardize the analysis. We em-
ploy a technique proposed by Penttinen et al. developed to
estimate the relative plucking position on guitars equipped
with bridge-mounted pickups [15]. The relative plucking
position is used to calibrate the comb filter C(z) in Figure
1 to remove the deep spectral notches.

The total inverse filtering operation of the recorded signal
is then expressed as

P (z) =
Y (z)

C(z)S(z)
. (1)

Figure 2 shows a residual excitation signals before and after
the comb filter effect is removed. Besides standardizing the
analysis, removing the comb-filter effect allows the relative
plucking point position to remain a free parameter for re-
synthesis. It should be noted that, in the compensated case,
the excitation pulse approaches an ideal impulse. This is
related to the piezoelectric sensor responding to acceleration
rather than displacement, which is the wave variable most
often used in DWG models [18].



4. PCA FEATURES
In previous work, we demonstrated the application of prin-
cipal components analysis (PCA) to a corpus of excitation
signals in order to derive a codebook of basis vectors that
can synthesize a multitude of excitation signals [13]. Here
we briefly overview the application of PCA to the data and
discuss how it is used to derive a feature-based representa-
tion of the signals in the corpus.

4.1 Principal Components Analysis
Since the pulse widths are dependent to some degree on the
fundamental frequency of the string, we first normalize all
the pulses to a common period. The signals are then aligned
in the time domain so that the primary peak of the pulses
overlap as shown in Figure 3. Using the aligned signals, a
data matrix is constructed

P =

 | | |
p1 p2 . . . pN

| | |

T

(2)

where each p is a M -length column vector representing an
excitation pulse. The principal components of P are a set
of basis vectors and scores (weights) that can reconstruct
the data:

P− u = WVT . (3)

In Equation 3, u is the mean of P, V contains the basis vec-
tors of P along its columns and W contains the scores (or
weightings) to reconstruct each excitation pulse. Several
techniques can be used to compute the principal compo-
nents of P, including the well-known covariance method [3,
4].

Figure 3(c) plots the first few principal components along
with the mean of our data set. The mean vector captures
the general impulsive shape of the data, while the compo-
nents shown serve to widen or narrow the pulse depending
on the sign of the associated score value. This relates to the
physicality of the string’s shape during its initial displace-
ment and finger articulations tend to produce an excitation
pulse with greater width than articulations made with a
pick. Additional principal components not shown in Figure
3(c) contribute the noise-like characteristics inherent to the
string articulation. The number of basis vectors obtained
via PCA is equivalent to the number of variables used to
model the data. In this case, 570 vectors comprise V, how-
ever, in [13] we show that using a subset of the basis vectors
is sufficient for re-generating the pulse with good accuracy.

4.2 Feature Representation
We obtain a feature representation of the excitation signals
using the principal components extracted from the data set.
By projecting the mean-centered data onto the basis vec-
tors, the principal component scores may be computed as

W = (P− u)V. (4)

Equation 4 defines an orthogonal linear transformation of
the data into a new coordinate system defined by the basis
vectors. The scores indicate how much each basis function
is weighted when reconstructing the signal. Figure 4 dis-
plays the projection of the data onto the first two principal
components since this pair of components explains the most
variance in the data. We observe that the first principal
axis relates to the articulation type (i.e. finger and pick)
and strength (e.g. forte, piano). However, due to the non-
linear distribution of the data along these axes, it is unclear
how these and additional components exactly relate to the
properties of the excitation pulses.
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Figure 3: Example pulses related to articulations
produced using (a) pick and (b) finger to excite the
string. Principal components extracted from the
data are shown in (c) and are offset to highlight
their relationship to the pulses in (a) and (b).

5. NONLINEAR PRINCIPAL COMPO-
NENTS ANALYSIS

While the linear PCA technique presented in the previous
section provides insight on the underlying basis functions
comprising our data set, it is unclear how the high dimen-
sional component space relates to the expressive attributes
of our data. As shown in Figure 4, there is an underlying
nonlinear distribution of the data along the principal axes.
In this section, we apply nonlinear principal components
analysis (NLPCA) to the scores extracted from linear PCA
to derive a lower dimensional representation of the data.



5.1 Background
There are many techniques available in the literature for
nonlinear dimensionality reduction, or manifold-learning,
for the purposes of discovering the structure of high di-
mensional, nonlinear data. Such techniques include locally
linear embedding (LLE) [16] and Isomap [19]. While LLE
and Isomap are useful for data reduction and visualization
tasks, their application does not provide an explicit map-
ping function to project the reduced dimensionality data
back into the high dimensional space.

For the purpose of developing an expressive control in-
terface, re-mapping the data back into the original space
is essential since we wish to use our linear basis vectors to
reconstruct the excitation pulses. To satisfy this require-
ment, we employ NLPCA via autoassociative neural net-
works (ANN) to achieve dimensionality reduction with ex-
plicit re-mapping functions.

The standard architecture for an ANN is shown in Figure
5 and consists of 5 layers [8]. The input and mapping layers
can be viewed as the “extraction” function since it projects
the input layers into a lower dimensional space as speci-
fied in the bottleneck layer. The de-mapping and output
layers comprise the “generation” function, which projects
the data back into its original dimensionality. Using Figure
5 as an example, the ANN can be specified as a 3-4-1-4-
3 network to indicate the number of nodes at each layer.
The nodes in the mapping and de-mapping functions con-
tain sigmoidal functions and are essential for compressing
and decompressing the range of the data to and from the
bottle neck layer. Since the desired values at the bottle-
neck layer are unknown, direct supervised training cannot
be used to learn the mapping and de-mapping functions.
Rather, the combined network is learned using back propa-
gation algorithms to minimize a squared error criterion such
that E = 1

2
‖w − ŵ‖ [8]. From a practical standpoint, this

yields a set of transformation matrices to compress (T1, T2)
and decompress (T3, T4) the dimensionality of the data.

5.2 Application to Guitar Data
To uncover the nonlinear structure of the guitar features
extracted in Section 4.2, we employed the NLPCA MAT-
LAB Toolbox to extract our ANN [17]. Empirically, we
found that using 25 scores at the input layer was sufficient in
terms of adequately describing the data set and expediting
the ANN training. As discussed in [13], 25 basis functions
explain > 95% of the variance in the data set and leads
to good re-synthesis. At the bottleneck layer of the ANN,
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Figure 4: Projection of guitar excitation signals
along the first two principal axes.
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Figure 5: Example autoassociative neural network
with 3-4-1-4-3 architecture.

we chose two nodes in order to have multiple degrees of
freedom which could be used to synthesize excitation pulses
in an expressive interface. These design criteria yielded a
25-6-2-6-25 ANN architecture.

Figure 6 shows the projection of the data into the reduced
dimensionality coordinate space defined by the bottleneck
layer of the ANN. Unlike the linear projection shown in
Figure 4, the data in the reduced space is clearly clustered
around the z1 and z2 axes. Selected excitation pulses are
also shown, which were synthesized by sampling this coor-
dinate space, projecting back into the linear principal com-
ponent domain using the transformation matrices (T3, T4)
from the ANN and using the resulting scores to reconstruct
the pulse with linear component vectors.

The nonlinear component defined by the z1 axis describes
the articulation type where points sampled in the space
z1 < 0 pertain to finger articulations and points sampled
for z1 > 0 pertain to pick articulations. The finger artic-
ulations feature a wider excitation pulse in contrast to the
pick, where the pulse is generally more narrow and impul-
sive. In both articulation spaces, moving from left to right
increases the relative dynamics. The second nonlinear com-
ponent defined by the z2 axis relates to the contact time
of the articulation. As z2 is increased, the excitation pulse
grows wider for both articulation types.

6. INTERFACE
We demonstrate the practical application of this research
in a touch-based iPad interface shown in Figure 7. This
interface acts as a “tabletop” guitar, where the performer
uses one hand to provide the articulation and the other to
key in the desired pitch(es). The articulation is applied
to the large, gradient square in Figure 7, which is a map-
ping of the reduced dimensionality space shown in Figure 6.
Moving up along the vertical axis of the articulation space
increases the dynamics of the articulation (piano to forte)
and moving right to left on the horizontal axis increases
the contact time. The articulation area is capable of multi-
touch input so the performer can use multiple fingers within
the articulation area to give each tone a different timbre.

The colored keys on on the left-side of Figure 7 allow
the user to produce certain pitches. Adjacent keys on the
horizontal axis are tuned a half step apart and their color
indicates that they are part of the same “string” so that
only the leading key on the string can be played at once.
Diagonal keys on adjacent strings are tuned to a Major 3rd
interval while the off-diagonal keys represent a Minor 3rd
interval. This arrangement allows the performer to easily
finger different chord shapes.

The synthesis engine for the tabletop interface must is ca-
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Figure 6: Projection of the guitar data into the reduced dimensionality space defined by the ANN (center).
Example excitation pulses resulting from sampling this space are also shown.

pable of computing the excitation signal corresponding to
the performer’s touch point within the articulation space
and filtering the resulting excitation signal for multiple
tones in real-time. The filter module used for the string
is implemented with the single delay-loop model shown in
Figure 1. Though this filter has a large number of de-
lay taps, which is dependent on the pitch, only a few of
these taps have non-zero coefficients, which permits an effi-
cient implementation of infinite impulse response filtering.
Currently, the relative plucking position along the string is
fixed, though this may be a free parameter in future versions
of the application. The excitation signal can be updated in
real-time during performance, which is made possible by
the iPad’s support of hardware-accelerated vector libraries.
These include the matrix multiplication routines to project
the low dimensional user input into the high dimensional
component space. Through our own testing, we found that
the excitation signal is typically computed in < 1 millisec-
ond, which is more than adequate for real-time performance.

7. CONCLUSIONS
We have presented a novel approach for modeling the exci-
tation signals for plucked-guitar tones using principal com-
ponents analysis. Our method draws on physically inspired
modeling techniques to extract the excitation pulses from
recorded performances pertaining to various articulation
styles. Using linear principal components analysis, these
excitation signals are modeled by a set of linear basis vec-
tors. The associated weights for these basis vectors are then
used as features to train an autoassociative neural network,
which provides a nonlinear mapping to a reduced dimen-
sionality space. By sampling points in the reduced dimen-
sionality space, we show that a wide range of excitation
pulses can be synthesized, which correlate to the expres-
sive attributes of our data corpus, namely articulation type,
strength and contact time. We have also demonstrated the
practical application of this research by implementing the
excitation and plucked-string synthesis into an iPad appli-
cation, which is capable of real-time guitar synthesis with
control over the expressive attributes in our data set.

As demonstrated with the iPad application, this research
is extremely applicable to virtual instrument technology.
Beyond touch interfaces, it may be possible to leverage ges-



Figure 7: Tabletop guitar interface for the compo-
nents based excitation synthesis. The articulation
is applied in the gradient rectangle, while the col-
ored squares allow the performer to key in specific
pitches.

ture recognition, such as the Microsoft Kinect, to trigger
particular articulations. By freeing the user from the con-
straints of a physical device, a unique-gesture based synthe-
sizer could be built for “air-guitar” applications.

Avenues for further research include the acquisition of
additional performance data from a variety of guitarists.
This data collection and subsequent analysis could lead to
computational models describing the stylings of particular
performers. These models could be used to “profile” partic-
ular players and integrate their stylings into virtual music
interfaces. From a physical modeling standpoint, the guitar
synthesis model used in our application can be expanded to
include magnetic pickups and resonant body effects, which
factor into perceived timbres of real acoustic and electric
guitars.
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