
uOSC: The Open Sound Control Reference Platform
for Embedded Devices

Andy Schmeder
Center for New Music and Audio Technologies,

University of California, Berkeley
1750 Arch Street

Berkeley, CA 94720
+1 (510) 643-9990

andy@cnmat.berkeley.edu

Adrian Freed
Center for New Music and Audio Technologies,

University of California, Berkeley
1750 Arch Street

Berkeley, CA 94720
+1 (510) 643-9990

adrian@cnmat.berkeley.edu

ABSTRACT
A general-purpose firmware for a low cost microcontroller is
described that employs the Open Sound Control protocol over
USB. The firmware is designed with considerations for
integration in new musical interfaces and embedded devices.
Features of note include stateless design, efficient floating-point
support, temporally correct data handling, and protocol
completeness. A timing performance analysis is conducted.

Keywords
Open Sound Control, PIC microcontroller, USB, latency, jitter

1. INTRODUCTION

1.1 Motivation
The Open Sound Control (OSC) protocol [10] is widely adopted
by the NIME community as a common means for the
transmission of streaming musical gesture data. In the
observation of the authors, the success of OSC arises not from
its technical features but rather from its simplicity (i.e., low
conceptual overhead and human-readability) and the promise of
interoperability with a diverse array of applications. For
example, the need for conceptual simplicity and generalized
interoperability has led developers to create OSC “wrappers”
that translate other hardware protocols into OSC message
sources and sinks—such as HID (CUI-OSC, oscjoy), P5 Glove
(GlovePie), Nintendo Wii, SpaceNavigator, and MIDI
(OSCulator). While these efforts achieve usable results,
indirection due to protocol translation introduces unnecessary
latency, and such translations have no hope of achieving
timestamp and atomicity semantics present in OSC. It is natural
then to ask why OSC is not implemented directly in the
hardware, thereby obviating the problem.

A common assumption is that the features of OSC (floating
point support, high resolution timestamps, and a moderately
verbose binary representation) are excessive for embedded
targets. The work described in this paper demonstrates that this
is no longer the case for contemporary microprocessors.

The freely available OSC-enabled firmware described here,

uOSC (pronounced “micro-OSC”), improves on the
performance, standards-conformance, and cost of OSC
implementations for new controllers and retrofits. uOSC uses
the OSC protocol at the level of the embedded device itself,
obviating the need for intervening applications to provide
protocol translation and making possible more direct (and
thereby, higher performance) access to the data. In addition,
because high-speed manipulation of microcontroller pin
functions is provided, users can develop applications in any
programming environment with OSC support without learning
microcontroller programming or a new specialized language
such as Wiring [http://wiring.org.co].

A key aim of the uOSC effort is to provide the developer
community with a solid reference implementation of OSC to
extend and port to other embedded devices. Developers of other
OSC clients and servers are facilitated by an affordable source
and sink of OSC data that can be integrated into tangible
human-computer interfaces.

1.2 Implementation Challenges
Since its introduction in 1997, the OSC protocol has been
successfully integrated in dozens of hardware and software
products and used in thousands of performances and
installations. Unfortunately, nearly all implementations fail to
implement the complete OSC 1.0 Specification1. In spite of
general consensus that temporal semantics are crucial for
musical interfaces [9], meaningful support for OSC timestamps
is extremely rare. Support for the full address pattern-matching
syntax is often omitted perhaps because of unfounded concern
over the performance of the pattern-matching algorithm.

The implementation challenges have been noted by the core
OSC creators [2], and this new implementation is carefully
written to demonstrate efficient solutions and best practices.

1.3 Overview
The focus in this paper is on novel features, design concepts
and especially on how the implementation was optimized to
achieve the performance and completeness that OSC
applications require within the programming and performance
constraints of small microcontrollers.

To promote wider use of OSC, we initially targeted a physically
small, readily available, extremely low cost (USD $25)
hardware platform, the PIC18F2455-based “bitwacker”.

1 A database of OSC implementations and their features is
online: http://opensoundcontrol.org/implementations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 5-7, 2008, Genova, Italy
Copyright remains with the author(s).

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

175

The uOSC project source code, new developments, benchmarks
and details beyond the scope of this paper are documented
online at http://cnmat.berkeley.edu/research/uosc.

2. HARDWARE PLATFORM

2.1 Microchip PIC USB Full-Speed
uOSC runs on the popular and compact Microchip PIC18F
USB-Full-Speed family of microcontrollers. The product line
spans chips from 20-80 pins, 10+ analog inputs, hardware
modules for TTL, PWM, etc, 2-4Kb RAM, 8-128Kb ROM, and
CPU speeds of 12 MIPS. Many prototyping boards for these
devices are available for less than USD $100. The initial release
of uOSC specifically supports the Sparkfun Bitwacker, the
CREATE USB Interface (CUI) [4]; and Olimex PIC-USB-
455x. (Pictured in Figure 1, ordered bottom-to-top). Microchip
provides a free C compiler (C18), an implementation of C
standard library and a comprehensive IDE.

Figure 1: A collection of devices supported by uOSC

2.2 USB vs. Ethernet
Many OSC users are only familiar with OSC data transported in
TCP/IP packets. Even though OSC is transport independent,
overall application performance does depend on the particular
transport used, so it is worth examining the advantages of
various transports. The key advantage to the NIME community
of USB is that power is provided over the cable. Although there
are now standards for sending power over Ethernet cables these
are not employed in current desktop or laptop computers.
Another advantage of USB concerns timing aspects of OSC.
USB provides a timing beacon (the Start-of-frame packet), and
supports the timing guarantees and bandwidth reservation of
isochronous data streams for appropriate device classes [12].

USB provides point-to-point connections in a shared bus
arrangement whereas Ethernet has network-wide addressing,
electrical capacity for long cable runs and can leverage the
performance benefits of a switched communication fabric.
Currently 10-gigabit Ethernet is winning a throughput-
performance race over Firewire, USB and SATA, but at a cost

point that is irrelevant to the affordable applications we have in
mind.

3. FIRMWARE OVERVIEW
uOSC builds on the MCHPFSUSB firmware [13], an open-
source implementation of the USB control endpoint and a USB
class-compliant serial port. The uOSC core program is triggered
by activity on the USB interface: receipt of the USB start-of-
frame (SOF) packet from the host controller serves as an
isochronous 1000Hz timing beacon to which the firmware
operations are synchronized.

3.1 Device Clock
The current time, relative to device initialization, is tracked with
a precision of 1 msec. The clock is incremented by the SOF
interrupt. Because this signal comes from the host controller,
the clock is not subject to any thermal drift or resonator
imprecision caused by the hardware. The clock is used for
bundle timestamping and scheduling.

3.2 Pin Initialization
By default all pins are configured as inputs on power up. The
user may change the direction of any pin by sending the
appropriate OSC message, and if this direction state is
committed to the flash memory, it will be restored on power-up.

3.3 Extensible Hardware Modules
Special features provided by hardware modules such as PWM
control and TTL serial can be enabled on user request and, if
desired, re-enabled on initialization.

3.4 Unique Identification
A non-volatile writable memory section is provided for the
storage of a unique 64-bit identifier. On first startup when this
identifier is undefined it is populated with a pseudo-random
number derived from the non-deterministic USB host
enumeration time.

3.5 Pin I/O
Double-buffering is used on digital and analog pin I/O to
minimize possible skew in timing of pin read and write
operations. Skew for digital I/O is less than one microsecond,
and approximately 30 microseconds between analog inputs.
Double-buffering also ensures that I/O operations always occur
at regular and known time slices.

3.6 USB-Serial Interface
uOSC implements the descriptor and endpoint logic to appear to
the host controller as a CDC-ACM device. Of the many
possible USB device classes this one has the advantage of being
the most “plug and play” as modern operating systems are
shipped with drivers that support it. It also offers higher
performance and more flexibility than HID classes.

CDC-ACM uses the USB bulk transfer type that has a
theoretical maximum bandwidth of 12Mbit/sec on a USB Full-
Speed bus. We have measured rates of up to 3Mbit/sec of fully-
formatted OSC data.

3.6.1 SLIP for Serial Transport Framing
SLIP [11] is a simple and lightweight protocol popular for
microcontroller applications that provides the framing
necessary to mark the boundaries between OSC bundles on a
serial transport. The double-ENDed variant of SLIP is
recommended because it provides a robust state-free detection
of the start of a packet.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

176

SLIP is the recommended framing method for OSC encoding
over stream-oriented transport such as TCP and has already
been used for this purpose in the popular Make Controller Kit
by Making Things [http://makingthings.com].

4. ULTRA-LIGHT OSC PROGRAMMING
The small memory model, limited type support, and low clock
rate of the microcontroller imposes challenging limitations on
the implementation of an OSC library that is both full-featured
and easy to create and understand.

4.1.1 OSC as Binary Data Structure
OSC implementations typically translate from the OSC binary
message structure to/from an appropriately typed data structure
in the native format of the language along with encoding
metadata. With only a few thousand bytes of memory to work
with, uOSC cannot accommodate this style, and so the
programmer works directly with C pointers to a statically
allocated buffer. Only one incoming message and one outgoing
message are simultaneously processed. This style was
anticipated in the OSC specification with the mod-4 byte-
alignment rule and conservative native type support.

4.1.2 Open-Ended Bundles
An important feature of an OSC bundle is that the total length
of the frame is not encoded in the bundle header. This allows
uOSC to format bundles with multiple messages while only
retaining a single outgoing message in memory. In addition, the
number of responses generated by an OSC pattern dispatch does
not need to be known in advance.

4.1.3 Type Considerations
The PIC18 is an 8-bit processor, so, for efficiency the use of 8-
bit and 16-bit numbers is preferred. OSC uses minimum 32-bit
numbers, so uOSC provides efficient routines to pack 8-bit and
16-bit numbers. uOSC also provides routines to pack low-bit
depth integers as normalized floating point fractions, and to
pack automatically padded strings from ROM or RAM data.
uOSC packs boolean data types using the ‘T’ and ‘F’ typetags,
which do not consume any space in the data section of an OSC
message.

4.1.4 Push-down of the SLIP encoder
The SLIP reserved characters have the two highest bits set
(ASCII characters >= 192). The bulk of the output data stream
does not require SLIP encoding. For example, the SLIP encoder
can remain inactive in cases such as OSC address patterns that
are printable ASCII, bundle sub-message lengths, NULL-
padding bytes, and other bytes known to be strictly less than
192.

4.1.5 Input decoding state machine
The SLIP decoder must be active at all times. To avoid the
necessity to reexamine input bytes, the OSC parser is embedded
inside the SLIP decoder. The SLIP decoder, in turn, is
embedded in the USB serial input handler, resulting in a third-
order nested state machine. The OSC parser consists of bundle
start detection, basic sanity checks on the packet format, and
pointer retention to the location of address, typetags, start and
end of the data section. Any SLIP decoding error causes the
entire bundle to be discarded.

4.2 Code Example
The following example illustrates the programming style on the
microcontroller using the ultra-light OSC implementation to
create a port report with 8 data values of variable type:

oscBundleOpenTimestamped(); // sends SLIP_END and packs time
oscMessageOpen(); // reserves 4-bytes at start for length
oscPackROMString("/rb“);
p_osc_tt = p_osc_message + 1; // pointer to typetags
oscPackROMString(",NNNNNNNN“); // final types unknown
for(i = 0; i < 8; i++) {

// invokes oscPackInt16ToFractionalFloat
// returns 'T' or 'F' for digital pins
*p_osc_tt++ = oscReportPin(i);

}
oscMessageClose(); // prepends length, invokes CDCTxRAM
// other messages are packed in here…
oscBundleClose(); // sends SLIP_END and finalizes CDCTxRAM

5. LOW-COST FLOATING POINT
A widely adopted OSC convention also used by audio plug-ins
is to scale control parameters to floating point values using a
conventional representation such as the unit interval. The
benefit of this abstraction became obvious for PIC18 family of
microcontrollers as Microchip recently upgraded the ADC on
some new variants from 10-bit to 12-bit—an integer encoding
would require target-specific logic on the client side to
accommodate both ranges.

Even though the PIC18 processor has no hardware FPU,
Microchip provides an implementation of <math.h>, the C float
type, and IEEE-754 compliant operations by software
emulation. Profiling of this code revealed that the cost of int-to-
float conversion (90 microseconds per conversion) was too
great for use at the desired reporting rates.

We therefore created novel special-purpose code for floating
point conversion that is exact for integers up to 23-bits and is
approximately 3 times faster than the general-purpose library.

5.1 Theory
We take the normalized target range to be the closed interval
[0.0, 1.0]. This results in the conversion formula:

y = x / (2n – 1)

For simplicity, suppose that n = 8. x is given in binary digits as:

x = x8x7x6x5x4x3x2x1

where x8 is the most significant bit. Then, as a binary repeating
decimal:

y = 0.x8x7x6x5x4x3x2x1(x8x7x6x5x4x3x2x1)…

The conversion to y attains the sufficient precision as x when
the decimal expanded to the first repetition of the most-
significant-bit of x (the 9th fractional digit above). This bit
equals 1 when y >= 0.5, and 0 otherwise. Furthermore, a special
case applies when x = 2n - 1, y = 1.0 since by definition of a real
number, the repeating binary decimal
0.11111111(111111111)… = 1.0.

5.2 Conversion Algorithm
The calculation of y as IEEE-754 single-precision floating point
proceeds as follows:

1. If x = 0, return 0.0. If x = 2n – 1, return 1.0.

2. Scan digits of x to find the index, i, of the most
significant non-zero bit. Requires O(log n)
comparisons. If x > = 2 (n - 1) – 1 then least significant
bit of y (first repetition of most significant bit of x) is
1, else it is 0.

3. Compute the exponent as e = 127 – (n – i).

4. Left-shift x by (n – i) + 1 places to obtain mantissa.

5. Composite the exponent, mantissa and least
significant bit together to realize IEEE-754 format.
Requires O(n/8) shift and or operations.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

177

The first byte is never SLIP encoded (sign bit is always zero).
The last byte is SLIP encoded for y >= 0.5, otherwise the last
byte is zero.

The inverse conversion similar algorithm is similar but also
requires detection of denormal numbers and a rounding
operation.

6. OSC REPORTING
uOSC sends OSC packets reporting the current state of all pins
isochronously at intervals of two milliseconds. The reporting
itself consumes only approximately one millisecond of
processor time. The remaining time is used to handle other
device functions such as processing of incoming OSC
messages. Note that this doesn’t mean that there is 2msec of
jitter in the measurements themselves -- their timing
relationship to the 1000Hz USB-SOF beacon is precisely
known. An appropriately implemented host driver could
achieve sub-millisecond timing precision.

6.1 Bundle Timestamps
The bundle timestamp conforms to the NTP fixed-point format
described in the OSC specification. The fractional part is
computed to a precision of 1 msec This is approximately 2-10, so
a 16-bit integer is sufficient for the calculation. The fractional
part is exactly zero at intervals of 1000 SOF interrupts, i.e.,
there is no roundoff error accumulation. The integer part is a
long integer, which is unbounded for all practical purposes.
Since the host and microcontroller have a point-to-point
connection the timestamp can theoretically be conformed to the
host computer’s best UTC approximation [2].

6.1.1 Use of IMMEDIATE
Informational messages such as device firmware version, pin
capability reports, profiling and debugging information are not
time-sensitive and are encapsulated in bundles that use the
IMMEDIATE timestamp (value: 0x0.0x1).

6.2 Efficient encoding of Port Reports
To save space in the data stream, sequentially numbered pins
are grouped together in a single message called a port report.
Each analog input pin is reported as a normalized floating-point
number, OSC typetag ‘f’, requiring approximately 5 bytes. A
pin configured as a digital input or output is reported as boolean
using OSC typetag ‘T’ or ‘F’, requiring 1 byte of data space. A
pin that is not connected or in a reserved state (e.g., in use by a
hardware module) is reported as NULL using OSC typetag ‘N’,
consuming 1 byte data space. The CNMAT OpenSoundControl
object for MaxMSP2 supports these types sensibly.

For a port of 8 pins, the total size of the OSC message is 12-60
bytes, depending on current pin configuration. The same
number of pins encoded as separately addressed messages
would require 96-160 bytes.

7. OSC DISPATCH
An incoming OSC message is dispatched by matching its
address pattern against a nested structure of path components
and invoking the appropriate callback for each match. Full
support for OSC address pattern matching is implemented in
uOSC.

2 This and other OSC-related software is available online at:
http://cnmat.berkeley.edu/downloads.

7.1 Dispatch Table Structure
The dispatch structure is a statically allocated tree structure
using the following data structure:

typedef struct _oscSchemaNode {
oscCallback target;
byte num_children;
rom char* child_name[OSC_MAX_CHILDREN];
rom struct _oscSchemaNode* child[OSC_MAX_CHILDREN];

} oscSchemaNode;

Adding new method calls is simply a matter of inserting new
nodes into the root node.

7.2 Efficiency of Pattern Matching
The purpose of the OSC pattern syntax is primarily to enable
the client to compactly describe certain bulk and atomic
operations, not to provide a sophisticated search mechanism.
The OSC address pattern syntax is significantly less complex
than typical general-purpose regular expression languages.
Specifically: 1. Patterns may not cross ‘/’ boundaries in the
address, 2. List matches do not support nesting or containment
of other pattern operators, and 3. Character-class matches and
wildcard operators ‘?’ and ‘*’ are always greedy, obviating the
need for backtracking. Therefore a pattern match is O(1) in
memory.

The set of possible matching addresses is finite, and for patterns
up to a set length, the total execution time to match is bounded.
Furthermore, the dispatch process can leverage the nested
structure since child addresses cannot match if the parent fails
to match.

Our profiling shows that the cost of matching in uOSC is not a
cause for concern and in particular is not more expensive than a
standard string comparison for the most common case of
addresses that contain no wildcards.

7.3 Scheduled Dispatch
When a received bundle has a timestamp in the future relative
to the device internal clock, the action of the packet can be
delayed until the requested time. A bundle with a timestamp in
the past is discarded. This mechanism makes possible the
forward synchronization method for jitter compensation [5].

The embedded processor has insufficient RAM to retain entire
packets for future processing so scheduling is limited to digital
pin writes, which are stored in a fixed length, insertion-sorted
list.

7.4 Port Writes and Pin Aliasing
The client can write to groups of pins organized in ports using
the same format described in section 6.2. Individual pins can
also be addressed using their specific addresses.

8. DEBUGGING AND PROFILING
Profiling is essential for code optimization. However, use of in-
circuit serial debuggers is known to be problematic for USB
devices because associated interrupts are time-sensitive. Timing
issues can also arise when using printf-style debugging over the
TTL serial port.

uOSC includes a microsecond-accuracy profiling system, and
when enabled by compile-time switch, timing of various
operations are measured and reported periodically in
supplemental OSC messages. This solution has negligible
impact on the timing performance of the system.

9. DEVICE ADDRESS SPACE
The following lists the messages that uOSC generates and
accepts for the case of the Sparkfun Bitwacker board. Minor

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

178

variations apply for other boards because of the “user friendly”
design choice that parameters are named according to the silk
screens on each development board.

9.1 Port and Pin Messages
/ra ffffFf : generates/accepts port-report format
 /0 : individual pin control for /ra/0
 /info : returns “dio”, “adc”, “pwm”, “ttl”
 /state : returns “input”, “output”, “reserved”
 /set : accepts “low”, 0, 0.0, or “high”, 1, 1.0
 /get : see /set
/1-5 (same as /ra/0)
/rb fffffFFF : /rb port report (8 pins)
/0-7 (same as /ra/0)
/tx (same as /ra/0)
/rx (same as /ra/0)
/status
 /0 : controls the yellow status LED
 /set : accepts “off”, 0, 0.0, “on”, 1, 1.0
 /get : return LED state
/1 : controls the red status LED

9.2 Device Messages
/device

/platform : returns “Bitwacker”, “CUI”, etc.
/firmware : returns “uOSC 1.0”
/processor : returns “PIC18F2455 Rev. B4”
/ports : returns a list of port addresses
/pins : returns a list of pin addresses
/id : user-writeable 64-bit hex string
/save 1 : commits pin and module state to flash
/reset 1 : restore default state

/modules
/list : list available modules
/enable s : enable a module
/disable s : disable module

/pwm
 /0 : control the first hardware PWM
 /rate f : rate in Hz
 /duty f : duty cycle in [0.0-1.0]
/ttl

/0 : control first hardware TTL
 /open [baud, bits, stopbit]
 /read : return string data
 /write : write string data
 /close

/usb
 /stall : stall detected
 /error : error detected

10. HOST TIMING PERFORMANCE
In this section we analyze the timing performance (latency and
jitter) for data received by the host transmitted from an input
pin of a uOSC device attached to a simple switch circuit. The
method described in Wright et al. [11] is used, whereby the
acoustic signal of the switch activation is recorded with a
known latency simultaneously with a signal generated by the
method under test. Conditions are repeated with and without
background system load.

The data presented is intended to show typical performance
attainable with the current configuration and should not be
interpreted as the final target goal of this project.

10.1.1 CoreAudio
The CoreAudio path copies the sensor data into a dedicated
audio channel, available directly as audio in Mac applications in
particular as a signal in MaxMSP. Since primary interrupts and
core audio threads are the highest priority operations in OS/X
no priority inversion occurs. This represents the highest
reliability operating system path for musical applications, and
has a consistent input latency of 4 msec and peak jitter of 0.7
msec corresponding to the gesture-input scan rate.

10.1.2 /dev/osc
The /dev/osc path writes the sensor data into a UNIX-style
character-device file which is read using standard file I/O
operations via the devosc object for MaxMSP (see Footnote 2).
Although preemption can delay packet delivery to Max, only a
single context switch is required to read data.

10.2 uOSC via Serial Connectivity
The serial driver is known to contain some input buffering so it
is expected that this data pathway will not be as fast as the
reference platform. Two variations on accessing the serial port
data were tested:

10.2.1 MaxMSP serial -> slipOSC
The built-in MaxMSP serial object is used to perform high-rate
non-blocking reads on the corresponding serial port. A custom
object, slipOSC, decodes the SLIP framing into OSC
“fullpacket” messages compatible with the CNMAT
OpenSoundControl object.

10.2.2 py-serial to UDP
In this configuration, a Python program reads the serial port,
decodes the SLIP framing, and relays the resulting datagram to
MaxMSP via the network stack as a UDP datagram.

10.3 Discussion
The py-Serial method is clearly the worst performer (Figures 2,
3), as is expected due to the extra layer of indirection.

It is clearly possible to attain timing performance within the
desired latency bounds for musical performance (~ 6-8 msec),
however the jitter observed requires consideration. The use of
OSC bundle timestamping can be used to compensate for this
jitter, and will be an interesting topic for future work.

Figure 2: Latency histogram on idle system

Figure 3: Latency histogram under system load

11. Sample Applications
The uOSC platform has been successfully integrated into
several new music controllers developed at CNMAT [3]. The
compact size of various hardware platforms have also allowed
us to retrofit older MIDI and analog devices such as the Max
Mathew’s radio drum and various foot pedals.

A more sophisticated sensor platform was constructed using
custom hardware module extension added to uOSC that makes

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

179

use of the SPI port and other pins to communicate with a 3-axis
magnetometer having a digital communication interface.
Combined with standard analog input capabilities of uOSC, a
compact, high-speed inertial measurement module was
constructed for research into spatial gesture tracking (Figure 4).

12. CONCLUSION
This paper describes the implementation of OSC, including its
advanced timing features and type support, for an embedded
microprocessor.

By including deadline scheduling and timestamping, uOSC
contributes to a large project now underway to implement solid
deadline scheduling in future multi-core desktop and handheld
device operating systems. [5].

The inclusion of end-to-end latency and jitter performance
benchmarking demonstrates the current results with USB-serial
in relation to a best-case reference platform, an analysis that the
authors consider to be essential for the discussion and careful
analysis of any similar implementation.

13. FUTURE WORK
Measurements and tuning on a wide range of host platforms is
ongoing. We are exploring other USB device classes such as the
CDC-ECM (Ethernet Control Model) and USB-Audio classes,
both of which can use isochronous endpoints having improved
reliability for real-time applications.

As we release the source code we will support the community’s
applications and participate in ports to other processors with
initial focus on PIC controllers with integrated Ethernet.

The code structure of uOSC anticipates the desire to port to new
microprocessor targets by isolating platform-independent code
components. We are exploring the implementation of uOSC on
the ATmega controllers employed on the Arduino and Wiring
platforms. These implementations rely on a separate USB serial
controller instead of using integrated USB. Therefore they
cannot implement different USB protocols. They are also more
expensive and have slower performance than PIC18F systems
for time-critical applications. The Wiring platform, for
example, has three different unconnected clock domains. Many
Arduino-compatible systems such as the Lilypad use the cheap
integrated clock that is neither accurate nor precise. We have
achieved some success using forward and backward
sychronization on the host side to obviate these problems [8]
but we strongly encourage designers of future physical
computing platforms to carefully study these timing and
performance issues.

14. ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support of Sennheiser,
the pioneering implementations of Making Things by Liam
Staskawicz, and to Dan Overholt who brought the integration
advantages of the PIC processors to our attention with his CUI
board.

Figure 4: IMU+magnetometer hybrid sensor built on the
Bitwacker running uOSC, mounted on Sennheiser HD650

15. REFERENCES
[1] Brandt, Eli; Dannenberg, Roger, Time in Distributed Real-

Time Systems, in Proceedings of the ICMC (San
Francisco, CA, USA, 1998) 523-526

[2] Freed, Adrian, Towards a More Effective OSC Time Tag
Scheme, in Proceedings of the OSC Conference (Berkeley,
CA, USA, June 30 2004)

[3] Freed, Adrian, Application of new Fiber and Malleable
Materials for Agile Development of Augmented
Instruments and Controllers, in Proceedings of the NIME
Conference, (Genova, Italy, 2008)

[4] Freed, Adrian; Avizienis, Rimas and Wright, Matt, Beyond
0-5V: Expanding Sensor Integration Strategies, in
Proceedings of the NIME Conference (Paris, France,
2006), 97-100

[5] Hayes, Brian, Computing in a Parallel Universe,
American Scientist, Volume 95, Issue 6, 2007, 476-480

[6] Overholt, Dan, Musical Interaction Design with the
CREATE USB Interface: Teaching HCI with CUIs instead
of GUIs,, in Proceedings of the ICMC (New Orleans, LA,
USA Juny 11 2006)

[7] Romkey, J., A Nonstandard for Transmission of IP
Datagrams over Serial Lines: SLIP, RFC 1055,
http://rfc.net/rfc1055.html, 1988

[8] Schmeder, Andy and Freed, Adrian, Implementation and
Applications of Open Sound Control Timestamps, in
Proceedings of the ICMC (Belfast, Ireland, 2008)

[9] Wessel, David and Wright, Matthew, Problems and
Prospects for Intimate Musical Control of Computers,
Computer Music Journal, Volume 26, Issue 3, 2002, 11-22

[10] Wright, Matthew, The Open Sound Control 1.0
Specification, http://opensoundcontrol.org/spec-1_0

[11] Wright, Matthew; Cassidy, Ryan J. and Zbyszynski,
Michael F., Audio and Gesture Latency Measurements on
Linux and OSX, in Proceedings of the ICMC (Miami FL,
USA, 2004) 423-429

[12] The Universal Serial Bus Specification Revision 2.0,
http://www.usb.org, April 27, 2000.

[13] MCHPFSUSB User’s Guide, DS51679A, Microchip
Technology Inc., 2007

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

180

