
Open Sound Control: Constraints and Limitations
Angelo Fraietta

Smart Controller Pty Ltd
PO Box 859

Hamilton 2303, Australia
61-2-90431806

info@smartcontroller.com.au

ABSTRACT
Open Sound Control (OSC) is being used successfully as a
messaging protocol among many computers, gestural
controllers and multimedia systems. Although OSC has
addressed some of the shortcomings of MIDI, OSC cannot
deliver on its promises as a real-time communication protocol
for constrained embedded systems. This paper will examine
some of the advantages but also dispel some of the myths
concerning OSC. The paper will also describe how some of the
best features of OSC can be used to develop a lightweight
protocol that is microcontroller friendly.

Keywords
MIDI, Open Sound Control, Data Transmission Protocols,
Gestural Controllers.

1. INTRODUCTION
Open Sound Control (OSC) has been implemented as a
communications protocol in more than a few hardware and
software projects. The general impression appears to be that
“MIDI is a simple and cheap way to communicate between a
controller and computer, but it is limited in terms of bandwidth
and precision and on the way out, OpenSound Control [sic]
being a better alternative”[1]. In some cases, developers felt that
they had to implement OSC in new instruments to maintain any
sort of credibility in the NIME community [4]. It appears that
the general consensus in computer music communities is that
OSC is computer music’s new ‘royal robe’ to replace the
outdated, slow, ‘tattered and torn’ MIDI and its “well-
documented flaws” [18]. This perception could be implied due
to the lack of papers critical of OSC.

OSC has provided some very useful and powerful features that
were not previously available in MIDI, including an intuitive
addressing scheme, the ability to schedule future events, and
variable data types. Although more and more composers are
developing and composing for low power, small footprint, and
wireless instruments and human interfaces [3, 13, 14]; a move
toward OSC in these application is not always possible, nor
desirable. Although OSC has addressed some of the limitations
of MIDI, OSC does not provide “everything needed for real-

time control of sound” [17] and is unsuitable as an end-to-end
protocol for most constrained embedded systems.

This paper will first describe some of the powerful features
provided by OSC before dispelling some of the myths regarding
OSC. Finally, some strategies will be proposed that could be
used to develop a protocol to meet the needs of constrained
systems.

2. OSC FEATURES
2.1 OSC Addressing Scheme
The OSC address scheme provides three main features: the
ability to give the mapped address an intuitive name, the ability
to increase the maximum number of namespaces, and the ability
to define a range of addresses within a single message.

2.1.1 Intuitive Names
OSC is similar to MIDI in that it defines mapped points and
values to be assigned to those points. For example, if a gestural
controller had the left finger position mapped to ‘MIDI
controller 12 on Channel 1’, a value of ‘127’ would be
accomplished by sending the bytes ‘0xB01 0x0C 0x7F’. The
point being mapped is defined by the first two bytes, while the
value of the point is defined by the last byte. In OSC, setting a
point with a value could be done with the following message:
‘/minicv/forefinger 127’; the address being ‘/minicv/forefinger’.
The ability to provide an intuitive name to a parameter is a
function of composition rather than a function of performance.
It is much easier for a composer to map a musical event to a
meaningful name, such as ‘/lefthand’ than it is to map to some
esoteric set of numbers such as ‘0xB0 0x0C’.

2.1.2 Increased Namespace
The addressing feature of OSC enables the users to increase the
possible number of mapped points. In MIDI, for example, after
continuous controllers 0 to 127 on channels 1 to 16 have all
been assigned, the namespace for continuous controllers has
been exhausted. In OSC, however, if two performers required
the namespace ‘lefthand’, the address space could be expanded
“through a hierarchical namespace similar to URL notation”
[18]. For example, the two different performers could use
‘/performer1/lefthand’ and ‘/performer2/lefthand’. Each OSC
client will receive these messages, and due to the packet
paradigm of OSC [18], the client that does not require the
message will discard it.

1 0x in front of the number signifies it is a hexadecimal value.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 5-7, 2008, Genova, Italy
Copyright remains with the author(s).

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

19

2.1.3 Address Ranges
The namespace feature of OSC is extremely powerful in that it
enables a significantly large number of namespaces and the
ability to define a range of points in a single message. For
example, the OSC namespace ‘/minicv/left* 127’ would set the
value of ‘127’ from ‘/minicv/leftThumb’ right through to
‘/minicv/leftPinkie.’

2.2 OSC Data Types
One of the brilliant features of OSC is the ability to define
different data types that can be transmitted in a message.
Although it is possible to send any data type of any resolution
using MIDI system exclusive messages, OSC has provided a
standard for software and hardware developers from different
vendors.

2.3 Time Tags
OSC contains a feature where future events can be sent in
advance, allowing “receiving synthesizers to eliminate jitter
introduced during packet transport” [18] providing “sub-
nanosecond accuracy over a range of over 100 years” [19].

3. MYTHS
When one considers that OSC has been used in some very
impressive installations and performances, such as
“multichannel audio and video streams and robot control
sequences at Disneyland” [OSC Newsgroup], it is not too
difficult to understand why one may be reluctant to write a
critical paper when OSC is gaining a ‘legendary’ reputation. If
one is to consider using OSC on a constrained system, one
should separate fact from the fable, using maths to dispel the
myths. The two myths this paper will dispel are that OSC is fast
and that OSC is efficient.

3.1 OSC is Fast
There is a belief in the NIME community that OSC is a fast
communications protocol; for example, “The choice for OSC …
was for its high speed, powerful protocol, and driver/OS-
independency” [5]. Statements such as these are normally based
on a comparison between the data transmission rate between
OSC and MIDI in their typical applications [OSC Newsgroup].2

It is, however, misleading to compare the speed of OSC to
MIDI based on the data transmission rate because OSC does
not have a data transmission rate.

The Open Systems Interconnect (OSI) model [7] defines a
communication model where applications communicate through
a layered stack, where the transmitted message passes from the
highest layer of the stack to its lowest layer on the transmitting
end, and from the lowest layer to the highest layer on the
receiver. OSC does not define anything below the presentation
layer, but rather assumes the transport layer will have a
bandwidth of greater than 10 megabits per second [19]. MIDI,
however, can be defined using the OSI model [7], from its
Application Layer defining the message type right down to the
Physical Layer that defines the connector type and current loop

2 Personal communications on Developer's list for the
OpenSound Control [sic] (OSC) Protocol
osc_dev@create.ucsb.edu will be referred to as OSC
Newsgroup.

[4]. The speed comparison between OSC and MIDI is always
made at the 31.25 kilobits per second Data Layer in MIDI3, and
so Wright and Freed state that MIDI is “roughly 300 times
slower” [18] than OSC. Speed, by its definition, is a function
of time; in the same way the weight is not just a function of
mass, but also a function of gravity. Comparing the speed of
MIDI with that of OSC is akin to comparing the weight of a
2Kg ball on earth with a 600Kg ball in outer space where the
gravity is zero. A more accurate speed comparison between
OSC and MIDI would be made by comparing the two protocols
at identical layers on the OSI stack, comparing the time taken
for the target data to be encoded and then decoded on identical
layers on the stack using identical processors. If one was to
measure the number of machine instructions required to parse a
typical MIDI message with that of a typical OSC message,
MIDI would win hands down.

3.2 OSC is Efficient
“Open SoundControl [sic] is … efficient… and readily
implementable on constrained, embedded systems.” [18].
Efficiency is generally the ability to accomplish a particular task
with the minimum amount of wastage or expenditure. In the
context of a gestural controller, it would be the ability to
provide the same or similar functionality with the minimum
amount processor speed, memory, power, and bandwidth while
providing the same or similar functionality. Efficiency is a
relative term—what is deemed efficient today may be deemed
inefficient tomorrow when newer technologies or algorithms are
developed. In order to evaluate whether OSC is efficient, one
does not necessarily need to compare it in its entirety to a pre-
existing system, but rather, to demonstrate how the resources
are being wasted.

In a real-time system, such as a music performance, the ability
to meet timing constraints is of primary importance [15]. The
system “must respond to external events in a timely fashion,
which means that for all practical purposes, a late computation
is just as bad as an outright wrong computation” [8]. Many
newer mobile musical interfaces are communicating wirelessly;
for example, the “Pocket Gamelan”, which uses mobile
telephones that communicate amongst themselves [14].
Although the speed of processors in wireless devices is
increasing, this “increase in the processor speed is accompanied
by increased power consumption” [13]. An increase in power
means a decrease in the period that a battery powered controller
can be used in a performance. Furthermore, power usage
contributes to the carbon footprint of the instrument. Efficiency,
therefore, is also an environmental issue.

The developers of OSC state “our design is not preoccupied
with squeezing musical information into the minimum number
of bytes. We encode numeric data in 32-bit or 64-bit quantities,
provide symbolic addressing, time-tag messages, and in general
are much more liberal about using bandwidth for important
features”[18]. A major aspect of this “liberal use of bandwidth”

3 The MIDI Manufacturers Association (MMA) has approved a
standard for MIDI over IEEE-1394 (FireWire) [8] and is
already being used by instrument manufacturers including
Yamaha, Presonus, Roland, and M-Audio [Personal
communications]. Furthermore, other implementations of
MIDI over other protocols exist, so the speed limitation of
MIDI is no longer technically correct.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

20

is the address, which defines the mapped point being
referenced. As stated previously in this paper, the advantages
given by the addressing scheme are the intuitive names, the
increased namespace, and addressing a range of points and will
be addressed later in the paper.

3.2.1 Communications Bandwidth
An example was given previously for a mapped point—one
using MIDI, ‘0xB0 0x0C 0x7F’; the other using OSC
‘/minicv/forefinger 127’. The first example uses only three
bytes while the second uses over twenty bytes. A significant
problem with the increased message sizes for wireless systems
is that “the more data that is transmitted the greater the chance
that part of the message will need to be retransmitted due to
noise - increasing latency and jitter” [OSC Newsgroup4]. Some
developers of embedded and wireless instruments that have
been using OSC have resorted to developing pseudo device
drivers, whereby OSC is converted to a lightweight protocol
before being transmitted [3], reporting a five hundred percent
increase in throughput and efficiency [OSC Newsgroup5].
Although this is an efficient alternative to transmitting the
whole OSC packet over the serial port, it effectively means that
OSC is not the complete end-to-end, server to client protocol.

3.2.2 Processing Bandwidth
Although the transmission rate is taken into consideration—
hence Wright and Freed’s assumption “that Open SoundControl
[sic] will be transmitted on a system with a bandwidth in the
10+ megabit/sec range” [18]—many seem to forget that after
transmission and reception, the packet also needs to be parsed
by the target synthesiser. Furthermore, it is not just the target
synthesiser that needs to parse the data, but all synthesisers that
are not the intended recipients are required to stop what they are
doing and parse a significant number of bytes before rejecting
the message. This in turn affects the minimum processing
requirements of each and every component in entire system.
Although many microcontrollers are being developed with
higher processing speeds, the “increase in the processor speed is
... accompanied by increased power consumption” [13].

3.2.3 Processing Efficiency
Although the string based OSC namespace is more efficient for
a human to evaluate, a numerical value is much more efficient
for the computer because computers are arithmetic devices.
Apart from the number of bytes that need to be parsed, the OSC
implementation requires that the namespace be parsed through
some sort of string library, requiring additional computation
and the memory space to contain the library. In a performance
where a mapped point is changed one hundred times a second,
the human would not be expected to read that value for every
message sent; the computer, however, is. Hence, the message is
optimized for the entity that requires it least during
performance. This problem with the OSC addressing model is
that the coupling between the human cognition of the
namespace and transmission mechanism to the target computer
is too tight [6]—the naming, which is effectively the human
interface, should be abstracted away from the implementation
using a mapping strategy. Two such strategies that uses this
type of mapping are the Internet Name Server [10] for
addressing domain names, and the Address Resolution Protocol

4 Christopher Graham posting on 23 January 2008.
5 ibid.

(ARP) [9] used on local Ethernet networks. Without going into
the exact details, a brief explanation of how each mechanism
operates is presented, showing how similar paradigms to the
OSC address space are efficiently implemented.

3.2.3.1 Internet Mapping
The intuitive naming strategy used in OSC is similar to domain
names on the internet. When addressing a computer on the
internet, one does not normally type in the Internet Protocol
(IP)[11] address; rather, they type in the domain name. This
makes it very easy for a human to remember how to locate and
communicate with a particular computer on the internet. The
calling computer, however, does not send a request to every
computer on the internet. Instead, the domain name is mapped
to an IP address through an Internet Name Server[10]. For
example, if one was to ‘ping’ a domain from the command line,
the computer will obtain the IP address from the name server
and then send ping messages to the IP address. For example:

$> ping smartcontroller.com.au
Pinging smartcontroller.com.au [210.79.16.38]
with 32 bytes of data:
Reply from 210.79.16.38: bytes=32 time=16ms
TTL=56

This activity is done behind the scenes and is abstracted away
from the user. Although obtaining the IP before sending a
message is effectively a two step procedure, these two steps
make it much more efficient than sending the domain name to
every web server.

3.2.3.2 Local Network Ethernet Mapping
On local networks, the abstraction is done through the Media
Access Control (MAC) address through ARP [9]. If, for
example, a computer whose IP address was ‘192.168.0.2’ on a
local network wanted to send a message to the computer
addressed ‘192.168.0.4’, it does not send a message to all the
computers on the local network expecting all but ‘192.168.0.4’
to reject it. If this was the case, every time a network card
received a message, it would be required to interrupt the
computer, impacting on the performance of the rejecting
computer. Rather, the ARP layer maps the IP addresses of the
computers on the network to MAC addresses. This MAC
address is used to address the network card. The other network
cards on the local network ignore the message and do not
interrupt the computer. This mapping can be viewed on a
computer by typing ‘arp –a’ from the command prompt.

$> arp -a
Interface: 192.168.0.2 --- 0x2
Internet Address Physical Address Type
192.168.0.1 00-04-ed-0d-f2-da dynamic
192.168.0.4 00-13-ce-f4-63-b6 dynamic

Although these steps are complicated, this is the sort of thing
computers are good at and it makes communication on complex
networks very efficient. A similar approach to these could be
used as an underlying layer to OSC. Implementation of such a
mechanism for OSC is well beyond the scope of this paper; this
does show that such processes are being used by other
technologies for improved efficiency and should probably be
used in OSC.

3.2.4 Address Pattern Matching
The method of mapping multiple points to a single message,
for example, the OSC namespace ‘/minicv/left* 127’ is based

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

21

on the UNIX name matching and expansion [18, 19]. Once
again we see a tight coupling between the human interface and
the computer implementation. Although the developers of OSC
claim that “with modern transport technologies and careful
programming, this addressing scheme incurs no significant
performance penalty ... in message processing”[18], using two
numbers to define a range would require significantly less
processing than decoding a character string with wildcards. For
example, in the address range ‘/minicv/left*’, every character
would need to be parsed and tested to see if it was one of the
defined wildcard characters. Next, one would have to factor in
the string comparison that would be required for every mapped
address on the client computer.

Protocols such as MODBUS [http://www.modbus-ida.org/] and
DNP [http://www.dnp.org/] are used by telemetry units to
control pump stations in real time [2]. These protocols can use a
message type that sets a range of mapped points using a single
message. When a range is defined using two numbers, it is a
simple matter to test if a mapped point is within the range. For
example, if a message from a protocol that defined two mapped
point ranges ‘UPPER_RANGE’ and ‘LOWER_RANGE’, the
algorithm to test would be as follows.

IF MAPPED_POINT <= UPPER_RANGE
AND MAPPED_POINT >= LOWER_RANGE THEN

ProcessValue
ENDIF

As with the intuitive names, this requires an additional layer of
mapping and abstraction, which in turn means work for the
developer. Software engineering has a similar paradigm where
some languages are scripted and some are compiled. Scripted
languages require the server to compile human readable code
each time it is executed, while compiled languages use a tool to
convert human readable code to something that is more efficient
for the computer. The first type is more efficient for the
programmer because he or she does not need to compile the
code after each modification; however, there is a definite
performance hit. Compiled languages require an extra step:
compiling the human readable code to machine code; however,
there is an enhancement in performance. In terms of
communications protocols, OSC is like a scripted language:
extremely powerful, but requiring significantly more computing
power than what is available to most embedded technologies
today.

3.2.5 Message Padding
Another possible inefficiency is the padding of all message
parameters to four byte boundaries. For example, a parameter
that is only one byte in length is padded to four bytes. The
reasoning behind this is that the OSC data structure is optimised
for thirty-two bit architectures [OSC Newsgroup]. There have
not yet been any conclusive tests to determine whether the gains
obtained from this optimisation exceed the additional overhead
created by inserting and later filtering these additional padded
bytes [OSC Newsgroup]; however, these results should be
forthcoming in the near future. It does, however, mean that
there would be a decrease in efficiency for eight, sixteen, and
sixty-four bit architectures.

4. FAULT TOLERANCE
OSC is a packet driven protocol that does not accommodate
failure in the underlying OSI layers. UDP [12] is a protocol that

is used by many implementations of OSC [19]. UDP not
guarantee that a packet will be received if transmitted;
moreover, it does not guarantee that the target will receive
packets in the order they were sent. OSC is based on the same
paradigm as UDP in that it is packet driven. “This leads to a
protocol that is as stateless as possible: rather than assuming
that the receiver holds some state from previous
communications” [18]. The problem with the paradigm is that it
is no longer event driven, and assumes all the relevant data is
transmitted at once. If a gestural controller sends an OSC
message that was supposed to change a robot motor direction,
immediately followed by a message to start the motor, the OSC
receiver may receive those in the opposite order, which may be
worse than not receiving the information at all. For example, if
a server was to send the following messages using UDP:

/lefthand/motor/direction 1
/lefthand/motor/start

The client could receive them as follows:

/lefthand/motor/start
/lefthand/motor/direction 1

This now means that the composer will need address the
possibility of messages arriving in the wrong order without any
notice from the protocol. Although, one could use TCP “in
situations where guaranteed delivery is more important than low
latency” [19], lower latency has been one of the OSC
evangelists’ greatest catch cries.

5. STRATEGIES FOR IMPROVEMENT
The first strategy for improvement is the intelligent mapping of
namespaces to numbers. OSC must move away from the
stateless protocol paradigm and begin to embrace techniques
such as caching [16], which has been used for many years now
to improve the performance of networks, hard drives, and
memory access on CPUs. MIDI’s use of running status is an
example of how caching can improve performance by nearly
thirty-three percent. Caching will be the key to efficient
mapping of address patterns to simple numbers without
significant impacting upon performance.

OSC must move toward an event delegation model, where
clients register whether to receive OSC messages within a
particular namespace. Needlessly receiving and parsing large
irrelevant messages from OSC servers is a waste of valuable
processing power.

The developers of OSC must change their attitude towards
MIDI. OSC has been anti-MIDI for a while, with OSC
developers often ridiculing MIDI developers [personal
correspondence]. Some OSC developers have made token
gestures towards MIDI by providing a namespace, which is “an
OSC representation for all of the important MIDI messages”
[19]. This completely defeats the innovative address pattern
provided by OSC. Instead, an underlying network layer should
convert an intuitively mapped name, such as
‘/performer1/lefthand’ to a MIDI message and then transport it
via MIDI or vice versa. The MIDI controller number should be
completely abstracted away from the application layer in order
to reduce the coupling between the two. The OSC server should
not need to know at the application layer that the motor that
controls the robot’s left finger is MIDI controller 13. Likewise,
the motor that is being controlled by controller 13 should not
need to know that the OSC server is really addressing
‘/performer1/lefthand’. Although these sort of strategies have

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

22

been employed in dynamic routing schemes in some OSC
projects [19], this should be a function of the network layer, not
the application layer. When one considers that the longest
domain names on the internet can be addressed with only four
bytes, it is not unreasonable to expect that even the most
complex OSC namespaces could be translated into simple MIDI
messages if required.

There needs to be a greater number of message types—currently
there are only two. OSC needs to move towards an object
oriented paradigm in the communications protocol [4].

Currently, all the network, data link, and transport layers of
transmission have been delegated to the application layer. This
is above the presentation layer, which is where OSC exists—
this is completely upside down when comparing to the OSI
model. OSC needs to develop an underlying OSI stack where
the protocol between the client and server is abstracted away
from the user. The underlying mapping should direct the
message from the source to the destination.

6. CONCLUSION
Although OSC has provided a standard “protocol for
communication among computers, sound synthesizers, and
other multimedia devices” [19], and was supposed to overcome
“MIDI's well-documented flaws … [, its] liberal [use] … of
bandwidth” [18] may be its Achilles heel, preventing it from
ever being the standard end-to-end protocol for communication
for low power and wireless microcontroller interfaces. If OSC is
to have any hope in servicing this significant and important area
of the NIME community, an OSI stack needs to be developed
that has efficiency and performance at the forefront, while at the
same time, implementing proven design patterns [6]. This,
however, would be a significant research project within itself.

7. ACKNOWLEDGMENTS
I would like to thank Adrian Freed from Center for New

Music and Audio at Univ. California, Berkeley for answering
the many questions I asked about OSC. I would also like to
thank all the members of the Developer's list for the OpenSound
Control [sic] (OSC) Protocol osc_dev@create.ucsb.edu for
their input.

8. REFERENCES
[1] Doornbusch, P., Instruments from now into the future: the

disembodied voice. Sounds Australian, 2003(62): p. 18.

[2] Entus, M., Running lift stations via telemetry. Water
Engineering & Management, 1989. 136(11): p. 41-43.

[3] Fraietta, A. Mini CV Controller - Conference Poster. in
Generate and Test: the Australasian Computer Music
Conference. 2005. Queensland University of Technology,
Brisbane: Australasian Computer Music Association.

[4] Fraietta, A., The Smart Controller: an integrated electronic
instrument for real-time performance using programmable
logic control, in School of Contemporary Arts. 2006,
University of Western Sydney.

[5] Kartadinata, S. the gluion: advantages of an FPGA-based
sensor interface. in International Conference on New
Interfaces for Musical Expression (NIME). 2006. IRCAM
- Centre Pompidou, Paris, France.

[6] Larman, C., Applying UML and patterns: an introduction
to object-oriented analysis and design and the unified
process. 2nd ed. 2002, Upper Saddle River, NJ: Prentice
Hall PTR. xxi, 627.

[7] Lemieux, J., The OSEK/VDX Standard: Operating System
and Communication. Embedded Systems Programming,
2000. 13(3): p. 90-108.

[8] Pawlicki, J. Formalization of embedded system
development: history and present. in Quality Congress.
ASQ's ... Annual Quality Congress Proceedings. 2003:
PROQUEST Online.

[9] Plummer, D.C. RFC 826 - Ethernet Address Resolution
Protocol: Or converting network protocol addresses to
48.bit Ethernet address for transmission on Ethernet
hardware. < http://www.faqs.org/rfcs/rfc826.html >
accessed 28 January 2008

[10] Postel, J. IEN-89 - Internet Name Server. < ftp://ftp.rfc-
editor.org/in-notes/ien/ien89.txt > accessed 28 January
2008

[11] Postel, J. RFC 760 - DoD standard Internet Protocol. <
http://www.faqs.org/rfcs/rfc760.html > accessed 28
January 2008

[12] Postel, J. RFC 768 - User Datagram Protocol. <
http://www.faqs.org/rfcs/rfc768.html > accessed 21
January 2008

[13] Schiemer, G. and M. Havryliv. Wearable firmware: the
Singing Jacket. in Ghost in the Machine: the Australasian
Computer Music Conference. 2004. University of Victoria,
Wellington.

[14] Schiemer, G. and M. Havryliv. Pocket Gamelan: a Pure
Data interface for java phones. in International Conference
on New Musical Interfaces for Music Expression (NIME-
2005). 2005. University of British Columbia, Vancouver.

[15] Son, S.H., Advances in real-time systems. 1995,
Englewood Cliffs, N.J.: Prentice Hall. xix, 537.

[16] Vitter, J.S., External memory algorithms and data
structures: dealing with massive data. ACM Comput.
Surv., 2001. 33(2): p. 209-271.

[17] Wright, M. Introduction to OSC. <
http://opensoundcontrol.org/introduction-osc > accessed
21 January 2008

[18] Wright, M. and A. Freed. Open SoundControl: A New
Protocol for Communicating with Sound Synthesizers. in
International Computer Music Conference. 1997.
Thessaloniki, Hellas: International Computer Music
Association.

[19] Wright, M. and A. Freed. OpenSound Control: State of the
Art 2003. in International Conference on New Interfaces
for Musical Expression (NIME-03). 2003. Montreal,
Quebec, Canada.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

23

