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ABSTRACT

When performing with gestural devices in combination with
machine learning techniques, a mode of high-level interac-
tion can be achieved. The methods of machine learning
and pattern recognition can be re-appropriated to serve as
a generative principle. The goal is not classification but re-
action from the system in an interactive and autonomous
manner. This investigation looks at how machine learning
algorithms fit generative purposes and what independent
behaviours they enable. To this end we describe artistic
and technical developments made to leverage existing ma-
chine learning algorithms as generative devices and discuss
their relevance to the field of gestural interaction.
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1. INTRODUCTION

The use of machine learning (ML) techniques in live per-
formance of electronic music poses a number of interesting
challenges and opens opportunities for different types of in-
teraction. In this article we investigate the application of
such algorithms for gesture recognition and explore some
concepts for their application. First we will delineate the
starting premises, before discussing the tool development
phases and technical implementations. We show how in a
concrete musical piece we explore these techniques using
gestures acquired by motion sensing and discover a specific
solution for generating interactivity through machine learn-
ing techniques. As such, this article will focus less on the
technical foundation and characteristics of these models but
rather attempt to address the question of the value and the
impact of using them for musical performance.
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At the beginning of a development for a piece that uses
ML techniques, the first question to be answered should be
what the role of these algorithms in the overall composition
and what the expected outcome of their application can be.
The answers to that will vary greatly, and further down we
show one concrete solution that we found. The roles can
range from that of an intelligent cue system that recognises
key moments or phrases [3], to an adaptive mapping for the
control of single or grouped parameters, to observation and
classification of higher-level features for autonomous gener-
ative behaviour. It is this latter model that we investigate
in a piece for trombone and live-electronics that provides
the exemplary use-case for this article.

2. CONCEPTS

Machine learning algorithms represent a class of analysis
tools that are widely used for data-mining and pattern-
recognition tasks. They become increasingly relevant in
the musical context both for sound and motion analysis,
in particular in a realtime setting during performance. The
algorithms provide powerful means for identifying salient
features and classifying complex and compound patterns in
the spectral and gestural domains. See [2] for a comprehen-
sive overview of the field of machine learning for musical
gesture. In the context of this project, we are dealing with
capturing an instrumentalists movement, therefore relating
to a field that is described with the problematic term ‘mu-
sical gesture’ [11].

Generative algorithms are categorised as rule-based sys-
tems that exhibit emergent qualities and that follow larger
contextual constraints in order to generate their specific
output [9, 4]. In their simplest form, a generative algo-
rithm can take the shape of a random number generator
that merely controls certain parameters of the sound pro-
duction. More sophisticated algorithms are frequently de-
rived from simulation-based approaches that deal with the
modelling of complex natural phenomena. Such phenom-
ena are characterised by a structural organisation, which
emerges from processes of self-organisation and combines
regular and chaotic properties [21]. When adapted and em-
ployed as artistic and musical tools, these algorithms might
also exhibit completely artificial relationships and struc-
tures that find no correspondence in the natural world. In
the context of electronic music performance, additional as-
pects of interactivity and autonomy come to the forefront.
Here, the behaviour of the algorithm becomes related to
the actions of one or several musicians and both supports
and opposes the musicians’ intentions and activities. Ac-
cordingly, the generative system exhibits levels of agency
and thereby establishes an interaction paradigm in which
two subjects enter into dialogic relationships [13]. A large
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number of conditional inter-dependencies form a network of
relationships that generate complicated behaviours within
a field of possible actions. For true interaction to occur, the
rule-based system needs to be capable of perceiving the mu-
sician’s action and based on this alter its decision making
processes and behavioural responses. An example of such a
system is the seminal and historical case of George Lewis’s
Voyager system, an improvisation tool that is based on ma-
chine observation and intended as an improvisation partner
for open form performance [15].

Machine learning algorithms principal purpose is to find,
recognise or describe patters in large sets of data. However,
and since they have the capability of observation and can
therefore be applied to generative, decision-taking purposes
as defined in the third category above. In this sense, the
algorithm can be set to listeningto the performance of the
musician in the same manner than a human co-performer,
even if the ‘sense’ i.e. the technical channel it uses pro-
vides a much narrower view and much lower-dimensional
data than the human perceptual apparatus. Derived from
this ‘machinic’ perception, the ML algorithm’s generative
potential can be leveraged for creative purposes.

Fiebrink [7] et al. have worked extensively with ML soft-
ware suite called Weka' and integrated it into a combined
real-time tool called the Wekinator [6]. They explore the
uses of machine learning as a creative tool, especially in the
context of designing gesturally controlled musical instru-
ments [5] and investigate machine learning as a means of
generating surprising and complex machine behaviours, the
differences between using machine learning in creative vs.
conventional contexts, and the mechanisms for refinement
and comparison of alternative models.

3. SOFTWARE TOOLS

The music technology developments in this project are em-
bedded in a larger research context, which is investigating
the meaning and affective impact of musical actions and
gestures [20]. In order to bridge the gap between the disci-
plines of artistic practice and systematic quantifiable work,
we chose to implement a software toolset that could be ap-
plied in gestural electronic music performance as well as
serve as testbed for collecting experiences and knowledge
about the handling and evaluation of different ML algo-
rithms. In conjunction with this application but also for
the use in other related software task within the project we
implemented a simple dataset format definition and soft-
ware library.

In order to examine different machine learning algorithms
for gesture classification, a dedicated software, called the
Machine Learning Workbench (in short MLWorkbench),
was developed. The requirements for this workbench were
specified in an iterative cycle and resulted in the data-flow
scheme depicted in Figure 1.

The software receives multidimensional sensor data over
the network in OSC packets [22] or as bytes through serial
ports. The incoming data gets recorded and the trajectories
of gestures can simultaneously be plotted for immediate in-
spection, at the same time specific segments of the recorded
data can be extracted as samples necessary for the training
of the machine learning models in supervised modes. This
can be done in real-time on the fly or from a previously
recorded stream of data. The gesture segments as well as
the recorded raw or cooked data from the sensor devices can
be stored as dataset files for later re-use and analysis.

Once a sufficient number of samples is provided, the soft-
ware automatically commences the training of an ML model

http://www.cs.waikato.ac.nz/ml/weka/
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Figure 1: The MLWorkbench: data flow schema.

employing the chosen algorithm. After the training, incom-
ing sensor data can be classified in realtime. The classifica-
tion results and the likelihoods between the incoming sensor
data and each trained model are visualised above and be-
low the plotted data (see Figure 2). In order to compare
and examine the differences between machine learning algo-
rithms, the software is capable of processing incoming data
in parallel through several machine learning pipelines that
each can execute a distinct algorithm.

For the implementation of core machine learning routines,
the Gesture Recognition Toolkit (GRT) is used [10]. In ad-
dition to the supervised and unsupervised classification al-
gorithms provided by the GRT, we have implemented the
Gesture Variation Follower (GVF) as an additional classi-
fier [1], and we intend to include another group of ML al-
gorithms [8] capable of real-time gesture classification, thus
making the MLworkbench a versatile tool for the parallel
evaluation of ML algorithms.
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Figure 2: The MLWorkbench: application view.

The control of most of the functionalities as well as data
interfacing with the software is done via OSC. Recording,
playback and parametrisation of the algorithms can be con-
trolled remotely, thus giving the MLWorkbench the ability
to function as a standalone service in the background. Thus,
for the use in real-time performance scenarios, the software
is able to send the all the classification results to the other
software, such as Max, PureData or SuperCollider, via OSC
in real-time. The software is entirely programmed in C++
and utilises openFrameworks? [17] as its foundation, binding
the GRT, GVF and all the dataset definitions as external
libraries.

2w, openframeworks.cc
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For the purposes of storing and handling data we defined
a light-weight format for a data structure and file-format
that doesn’t have to fulfil the complex needs and require-
ments of all kinds of movement-related tasks [12]. The stor-
age and retrieval of multimodal sensor data is managed
by a group of container and data conversion classes that
are provided by the external library written in pure C++.
Apart from its role as generic container, the dataset class
also provides functionality for converting data values. By
embedding these functions in the host environment, which
provides file-writing and file-reading capabilities, i.e. our
workbench application, the library deals only with the for-
matting of a variety of files such as the training sample ma-
trices and the captured data-streams in the raw or cooked
formats.

4. AN ARTISTIC USE-CASE

The development of the gestural piece “Double Vortex” for
trombone and live-electronics serves as the test-case about
the operation and the potential of machine learning tech-
niques in this context.

For the gestural movement-based interaction, an existing
motion-sensor-pack was adapted to the trombone. It con-
tains everything needed to measure and wirelessly transmit
the movement of the instrument and provides two addi-
tional channels of analog input, which are used to connect
pressure-sensors as buttons (see Figure 3, right half).

The piece is developed using a compositional frame-
work that balances between the elements of open-form ex-
ploratory playing of sound materials, a categorisation of
expressive qualities of the different playing techniques, an
equal number of movement and sound instructions, and a
composed block-wise model for the overall form. In this
modular system a number different interaction patterns be-
tween sound and movement are explored. The clear side-
by-side juxtaposition of movement and sound leads to a pe-
culiar section where playing of sound and moving the body
alternate, producing a perceptual shift between eye and ear.
The addition to the sound performance instructions of im-
pulsive movements supposed to affect sound, results in a
section where body impulses add reverberation effects to
the sound of the trombone (this a clear case of a simple and
direct mapping and was achieved with another movement
sensor strapped to the knee that is moving up and down).
In other sections more complex movement patterns are over-
laid to the playing and begin to influence sound treatment
in various ways.

Figure 3: The trombone player, mounted sensors.

Finally, two sections are created in which three ML
pipelines simultaneously observe the trombone player’s
movements. The top of figure 4 shows the six movement
primitives that were taught to the different ML algorithms,

applying in parallel the Dynamic Time Warping (DTW)
twice and once the Gesture Variation Follower (GFV).
Through different parametrisations, varying degrees of sen-
sitivity to the trombone player’s actions are achieved. This
is visualised in the plots in figure 4 that depicts the sensor
values and classification results, and the trigger points and
durations as produced by the classifiers. The output of the
algorithms is used in a pure live-electronic mode to record
and playback sound materials performed by the trombone
player himself.

In a majority of musical applications, in particular in Mu-
sic Information Retrieval, ML is applied with the intention
of getting a precise and repeatable result. However, since
we are more interested in using the mechanism as a gen-
erative device, in line with the earlier categorisations, we
decided on a different approach. To achieve this we need to
explore the breaking points of the algorithms or rather the
state where the output of the algorithm doesn’t reproduce
the original templates in a recognisable form. In addition,
we also leverage the differences in reaction time between
the two types of algorithm used. DTW is quite robust,
however it comes too late because it can only provide an
answer once a segment is finished. The GFV on the con-
trary, in particular in streaming mode, is relatively fragile
but produces results in a more continuous manner. We use
these different behaviours to operate two function of the au-
tonomous behaviour: the first algorithm is used to trigger
the response of the system via prerecorded sounds; while
the the decision for recording is given to the second less
predictable algorithm.

This technique results in the appearance of something
akin to a ‘second voice’, where the ‘machinic’ response is
clearly decoupled from the immediate action of the trom-
bonist and gains the status of an independent dialogue part-
ner. The structure operates as an autonomous sampling
agent, providing the musician with unforeseeable musical
elements that have the characteristic of calls rather than
responses. The trombone player’s movement remain the
source for this additional musical material and activity but
the direct correlation is no longer perceivable, neither for
the instrumentalist nor the audience.
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Figure 4: Six movements and two sensitivities af-
fecting an identical movement segment.

In both cases the limitations of the algorithms are appro-
priated to produce an emergent quality not given by the
method itself but rather by the context and linkage with
which it is applied. Two areas of using real-time ML [7,
6] that is, gesture recognition and music generation, are
approached by this configuration. On the level of gesture
recognition and mapping, breaking the direct linkage from
a gesture to a sounding result provides the perceptual inde-
pendence that is necessary to ascribed agency. The use of
parallel and multiply scoped observation modes [16] and the
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establishment of a relationship through a ‘reflexion’ to the
musician’s playing by selectively mirroring sound-elements.
On the level of gesture recognition, we follow the design rule
of reduction [19] by selecting movement primitives that nat-
urally occur in trombone playing, thus enabling the lever-
aging the observation of both the fine-grained as well as
large scale movement patterns to enable decision-taking.
This could be extended by deriving salient dynamic features
from the data rather than spatial shapes. In this use-case
a very limited model of inter-relating pattern-recognition is
applied, thus building a behaviour space that can be under-
stood with practice by the musician. This is a crucial aspect
in the sense that musically it is the seamless inter-play and
the feedback loop between the player and the system that
generates tension, surprise and musically satisfying forms,
in what Pachet calls an ‘interactive reflexive musical sys-
tems’ [18].

S. CONCLUSION

Applying machine learning techniques in a real-time, inter-
active, and gestural live-electronics performance is capable
of producing artistically as well as conceptually relevant re-
sults. The challenge is to find the boundaries of behaviours
and by transgressing them to establish a generative prin-
ciple. The insights gained in the process of creating the
tools and the specific musical piece shown here seem to per-
tain more to the domain of composition methods for live-
electronics than engineering or HCI. They are nonetheless
relevant for the fields of gestural interaction, applied ma-
chine learning and generative interactive music. It is evident
that the notion of using ML techniques for music interac-
tion is not new (cf. the liner notes in Lewis’ Voyager Album
[14]). But we believe that the tools and methods available
today considerably alter and extend their impact on musi-
cal pgactice and think our application shows an example of
that.
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