Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

Web-Based Temporal Typography for Musical Expression
and Performance

Sang Won Lee
Computer Science and Engineering
University of Michigan
2260 Hayward Ave
Ann Arbor, Ml 48109-2121
snaglee@umich.edu

Georg Essl
Electrical Engineering & Computer Science
University of Michigan
2260 Hayward Ave
Ann Arbor, Ml 48109-2121
gessl@umich.edu

” '
Treeg £ the s g 4 . PP
. OFf ¢ Teerg ‘.09, % ‘5 a7 Her
Dimmeg liqh:sroaq bE“’OmE:anB -y P°4d‘(ﬁ J‘_‘? 7 1g ;'gfx] ﬂ)ﬁ Jnn.ym a]b'f
POOPle waiiyng o 2oCting iy ottt Pre Y B andsict SR G ad aid ST al
king roy " MY eyes K a0ttt ups Md}ﬂ’hm
nd in gpey, Qaguige m"? 4 1(1? w74, f 1 & g‘wmmmﬂegmfﬂ-

T am feeling tonesy 1o oy o, , B B, ¥
I feel the en zony. P e Sk g Hello rex AN

Shill deep in my bangh, dd? ey grd Ol K Fe—— aain.
The crowd is isolating me. Kh"ﬂd5 y';-’"Llﬂ -y 4 e o ot again.
In parancia I will be. 7 p 'l"”%" n ‘ad; iﬁ#‘;*h Hlo ot acain,

} & ¥ v K W 4 o Tils
xnis aleow ST LW, 40T A4 06 e esre .
my t Vo o5k .
park Aleve pecanes I ﬁj Ko YR s o g L ine o 7y, ny =
oc:curna'f"g : 0, £% 11 gt Je® ’ g vy, A,
N - 1 e O ale o W, " s EE
b A £
o y:ucaﬁe W'?@%a“%:bﬂ"
¥ ¢

Figure 1: Live Writing : Gloomy Streets using Web-Based Temporal Typography. The poem written by Pain

ABSTRACT

This paper introduces programmable text rendering that
enables temporal typography in web browsers. Typing is
seen not only as a dynamic but interactive process facili-
tating both scripted and live musical expression in various
contexts such as audio-visual performance using keyboards
and live coding visualization. With the programmable text
animation , we turn plain text into a highly audiovisual
medium and a musical interface which is visually expressive.
We describe a concrete technical realization of the concept
using Web Audio API, WebGL and GLSL shaders. We fur-
ther show a number of examples that illustrate instances of
the concept in various scenarios ranging from simple tex-
tual visualization to live coding environments. Lastly, we
present an audiovisual music piece that involves live writing
augmented by the visualization technique.

Author Keywords
Web Audio, Visualization, Live Coding, Live Writing

ACM Classification

H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, H.5.2 [Information Interfaces and Pre-
sentation| User Interfaces — Screen design

1. INTRODUCTION

Textual performance interfaces and textual visualizations
are common in computer music performance. Text is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.

Copyright remains with the author(s).

basic building block of modern computer music software, for
example, in live coding [9]. On the other hand, textual visu-
alization is a powerful medium to convey the idea “literally.”
Turning plain text into a visual mean affords novel oppor-
tunities for musical expression and performance. Temporal
typography - text that moves or changes over time - can be
used to express music in visual, textual, and control man-
ners. For musicians, this becomes an attractive channel by
which they can communicate with the audience. In this
paper, we introduce the foundation upon which the idea is
built. We further elaborate the core ideas and describe the
implementation structure. This is followed by a number
of proof-of-concept examples and a music piece that shows
the potential of this work in audiovisual performance mu-
sic. Finally, we outline future research plans that are made
possible by the system.

2. TEXTUAL VISUALIZATION AND LIVE
CODING

Textual information is ubiquitous in digital music instru-
ments, especially given the proliferation of music software
tools and audiovisual performance. Text as an expressive
medium for the purpose of better audience communication
can be found in many forms, tag-cloud [16], audiovisual per-
formances[4], audience participation music piece [10] and
interactive installation [32]. Text is used as basic building
blocks in most audio programming languages such as MAX
[24], Pure Data [25], SuperCollider [21] and Chuck [33].

In live coding [9], in particular, the code text projection
plays a significant role in communicating with the audience
in live coding performance. This principle is captured well
in the following statement of TOPLAP' manifesto: “Ob-
scurantism is dangerous. Show us your screens.” By screen
sharing, the audience can draw possible connections be-
tween the algorithm (code text) and its outcome (generative

"http://www.toplap.org/

65

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

music). Live coders have made efforts to develop techniques
to help audience understand live coding, for example, ac-
cessible variable naming conventions or writing code from a
clean slate [5].

Instead of projecting the plain code text editor, live cod-
ing environments/language has been developed to have vi-
sual artifacts as part of the code outcome. These visuals
are designed to help audience members associate them with
generative sound. Some live coding music environments
choose to overlay generative graphics on top of/behind /next
to the code text and create visualization that can be mapped
to the audio signal [14, 19, 27]. In contrast, there are live
coding environments where visual information is embedded
in the code text. SchemeBricks flashes code blocks when
the instruction triggers certain sound events [23]. izi lang
utilizes programming syntax with which the spatial position
of each symbol is interpreted as a rhythmic pattern of music
[20]. LOLC visualizes code text from networked performers
only at the moment of code execution (as opposed to reveal-
ing the whole process of typing), like chat messages in an
instant messenger; the code generates visual patterns that
represent tunes [19]. Swift and co-workers discuss the use
of visual annotation one three aspect of live-coding: (1) the
code text (State of Code), (2) the program state (State of
World), and (3) the relationship between two [30]. In a re-
cent update of Gibber [26], the authors added visualization
directly on code text, which highlights a literal correspond-
ing to a sound at the moment and changes text properties
according to audiovisual output [28]. Indeed, expressive
ways to visualize code text will be beneficial not only for
more appealing visuals but also to help audience associate
code text with music.

3. PROLIFERATION OF WEB BROWSER-
BASED MUSIC APPLICATION

Modern web browsers have become a common platform
for music making in many different contexts. A number
of previous works of web-based music applications discuss
the advantages of using web browser as a computer mu-
sic platform. Common reasons are: (1) no installation re-
quired, (2) platform independent, (3) rich set of open-source
libraries and (4) easy to distribute an application. Web
browsers have been deployed in collaborative music mak-
ing, networked musical systems [3, 6] and audience partici-
pation [13, 15, 34], to name a few usages. Recently, a Web
UI toolkit has been introduced to support rapid prototyping
of graphical user interfaces for music web apps [31].

The Web Audio APIT [29] accelerated emerging trends of
web browser-based music applications. In [35], the viability
of a web-browser as a computer music platform is evaluated
in terms of timing and extensibility. There are many live
coding environments built on the web browser using Web
Audio API, including Gibber[26], Lich.js [22], wavepot.com
[1], and livecodelab [11]. The Web Audio APT also invited
the development of high-level wrapper for better accessibil-
ity [8, 27]. Many of these web browser-based music appli-
cations will benefit from temporal typography that takes
input from a variety of inputs.

4. DESIGN AND IMPLEMENTATION

The goal of this work is to realize a font-rendering system
that supports expressive animations that can respond to
both live and recorded music while facilitating the injec-
tion of a range of control mechanisms. The result is the
support of expressive textual artistic expression. Its live
properties is what differentiates it from common temporal
typography techniques, i.e., kinetic typography [17]. Ki-

netic typography is usually created with a special software
(such as Adobe After Effects) in a slow off-line authoring
process and the outcome is fixed media (video) that does
not change. Although this video outcome may create con-
vincing visuals, it is not appropriate for live musicians who
want real-time interactivity in text. Our work seeks to pro-
vide an on-line form of temporal typography. In addition,
the approach is flexible in input and can take real-time in-
put from any source such as sensors and live audio. WebGL
takes advantages of accessibility, extensibility, and the grow-
ing popularity of web browsers while employing the power
of OpenGL-based graphical rendering. The current imple-
mentation of temporal typography utilizes state-of-the-art
web browser graphics libraries. It is written in javascript,
WebGL [2] and Three.js [7] to draw text on HTML5 canvas
objects.

One important technical factor in the implementation is
the emphasis of the use, for animation, of a computer’s
graphics processing unit (GPU). The number of letters can
be quite large for a certain context, potentially requiring
substantial computational power. Making heavy use of the
GPU for animations leaves the CPU available for audio pro-
cessing and user input handling on the web browser. Im-
plementing an animation algorithm in GPU can be done
using OpenGL Shading Language (GLSL) shaders. GLSL
is a high-level programming language syntactically close to
C. There are two types of programmable shaders in GLSL:
the verter shader (operates on every vertex) and the frag-
ment shader (runs per pixel). In this work, we update the
position of vertices in the vertex shader, which can deform
a letter in its shape, size, position, orientation, and rota-
tion. The fragment shader is also used to change color and
to manipulate texel (texture coordinate). For instance, the
distorted letters of Step 4 from Figure-2 were created us-
ing sine wave to parametrically displace the texture coordi-
nates. The main application written in javascript can com-
municate with GLSL shaders using uniform and attribute
variables. For example, to change the font size based on the
volume of audio, the WebGL program can set the value of
a uniform variable, named volume, and then the variable is
passed to the vertex shader to change the positions of the
vertexes of letters. Attribute variable is used for the same
purpose while attribute variables are defined per vertex.

There are four steps that constitute the final visualiza-
tion (see Figure-2). The first step is to create a font texture
atlas that allows for fast font rendering. The second step
is to layout letters of the writing and generate the array
of vertices. The texture associated with the array vertex
is based on the texture coordinates of the font glyph from
the texture atlas. For example, to draw “Hello, World” on
screen, the second step would create a vertex array for 12
squares (which provide 48 vertices) and assign texture coor-
dinates for each vertex. The third step is to generate data
that is needed to animate the text (or part of the text)
that will be passed to GLSL shaders. For example, if one
wants to create a “Hello, World” that fades out over time,
one need to create a uniform variable for the vertex shader
and send timestamp values to the vertex shader using this
variable. In the fourth step, the GLSL shaders create an-
imation effects using whatever data is fed from the third
step. For example, for fading out, the color of the fragment
should be the product of the original color and a variable
that goes from 1 to 0 over time based on the timestamp
uniform variable passed from the javascript part. The first
step determines the font-family and the resolution of the
font that the visualization uses. The second step deter-
mines the placement of the text that the animation will be
based on. The third and fourth steps are the placeholders

66

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

javascript / WebGL / Web Audio - CPU

| Step 1 | I Step 2 |

GLSL - GPU

[Csteps | [Cstepa)

Set the layout of letters

Draw font texture atlas and assign texture

Pre-process the data to
feed shaders per frame

Deform or displace text
based on the algorithm

in a grid form. coordinate of each using Web Audio API / written in vertex shader
letter from Step 1 sensors and fragment shader.
TSI @g W”"—“‘

ML P Mo [r-1 " 4 ¥
sreziiitiityre——>Hellg, NIME. = = Hwklﬁ:}, NIME.
nsisianiinini® |

________ GLSL Shader Program

Figure 2: The procedure of programmable temporal typography

for the algorithmic visualization. Steps 1-3 of the algorithm
of temporal typography are implemented in javascript while
Step 4 is implemented in GLSL.

Interactive text in motion enabled by the algorithm above,
does offer a wide range of expressivity. Algorithms writ-
ten in javascript and GLSL shaders can access a variety
of text properties, to name a few, font size, shape, posi-
tion, color, texel (texture coordinate per fragments). On
the other side, the algorithm can take input from audio sig-
nals, user input (keystrokes, mouse, camera, microphone,
etc.), and pre-processed data. The algorithm in between
will determine the mapping between these two sides and
be able to create diverse audiovisual artifacts on top of the
text.In conjunction with expressive text rendering, typing
itself can be the site of the performance itself [12], leading to
expressivity not only in sound but associated type. Typing
has temporal characteristics which themselves can be made
parameters in mappings. For example rapid typing can be
visually and sonically differentiated from slow typing.

S. EXAMPLE APPLICATIONS

We present several examples of programmable temporal ty-
pography built on a web browser. These examples illustrate
a range of possible application domains of temporal typog-
raphy. All these examples are accessible at:
http://www.sangwonlee.com/temporal-typography

5.1 Example 1: Volume to Font Size

The first example is a straight-forward illustration of sim-
ple mapping. The z position (depth) of letters on screen is
connected to the volume of the audio signal. Steps 1 and 2
are trivial tasks in preparing the font texture atlas and to
place letters in the layout of usual writing. In Step 3, us-
ing Web Audio API, the javascript program plays an mp3
file and creates an audio analyzer node to retrieve an array
of samples and to calculate the overall volume of the sig-
nal. Then the javascript program feeds shaders a uniform
variable with the volume. For Step 4, the vertex shader will
increase the z-position of letters (vertexes more specifically)
in proportion to the volume value. Therefore, it creates an
animation effect of increasing the font size in conjunction
with the sound’s volume. In point of fact, the letters are
put closer to the camera so that they look larger than when
in their original positions.

5.2 Example 2: Karaoke Lyric

Karaoke lyrics offer an example that explores audio signal
in conjunction with timestamped scheduling data. The vi-
sualization displays the lyrics of the Beatles’ song “Come

Together” and the music plays along with the visualization.
As the song progresses, the lyrics that correspond to the
vocal at a particular moment are made to stand out. At
the same time all of the text jitters based on the volume
of the audio signal, using the same technique described in
Example 1. The combination of two different visualizations
enable richer expression of the relationship of lyrics to the
music.

For the implementation of this example, the javascript
program creates four types of input: overall volume, aver-
age frequency, the timestamp data per each word (or sylla-
bles), index of each letter as a vertex attribute. The first
two variables are global values that all vertices share and
are linked to two uniform variables in the shader. The last
two variables are for the lyric progression, which is handled
differently. First, timestamp data per word (or syllable) is
annotated in advance. Second, while playing, the javascript
will send two uniform variables - the starting-letter index
and ending-letter index, specifying the range of words that
should stand out at one moment. In the meantime when
vertices are generated during Step 2, all vertices are given
an index attribute of the associated letter. The four ver-
tices that make one letter will have the same letter index.
Lastly, vertex shader changes the z coordinates of all the
vertices whose letter index falls into the two uniform vari-
ables passed from the script. As time passes, the draw func-
tion will update this starting index and ending index so that
the next word will stand out at the proper time.

5.3 Example 3 - 5: Microphone Input

What the following three examples have in common is that
they are based on input from a microphone; they differ
in their visualization approach. Example 3 computes the
fft spectrum of the audio signal coming from the micro-
phone and changes the height of the letter. The low fre-
quency sound will heighten the left side of the text while
the high frequency sound will lengthen the right side of the
text. Example 4 is similar, though that it makes the let-
ter stroke convoluted with the weighted average frequency
of the sound that the microphone is capturing. This tech-
nique is particularly interesting because it utilizes the frag-
ment shader and manipulates texels (texture coordinates).
The texel is adjusted so that a fragment color is set with
the color of a point displaced from the original position. In
Example 5 vertices of each letter are displaced based on the
time domain data of the microphone audio signal. For all
three example above, the javascript part passes an array
of audio data (either in frequency domain or time domain)

67

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

captured from the microphone to one of the shaders and
displaces vertices’ positions (or texture position).

5.4 Example 6: Live Coding Code Visualiza-
tion

This example demonstrate how the State of World (or the
program state) in live coding can be visualized on top of the
code text using programmable temporal typography. This
example simulates a live coding editor where textual visu-
alization is connected to the audio signal that is associated
with the code. The sound outcome is composed of two
samples-drum and harp. The upper part of the text is the
code that generates the drum sound and the lower part the
harp. Looking at the whole code with two visualizations,
one can easily distinguish the code text related to the drum
sound.

We believe such textual visualization adds liveness to a
live-coding performance. Typically, a live coder’s typing is
only related to certain events in the near future except the
moment of the code run. However, with this kind of vi-
sualization, the audience will have a clearer idea of which
code generates which sound regardless of which code the live
coder edits. It also enhances the audience’s anticipation.
For example when the live coder modifies a parameter in
the part where the drum sound is convoluted, the audience
can expect that there will be a change in the drum pattern
just by looking at where the live coder writes, as opposed to
expecting that “something is going to happen.” In addition,
when a live coder writes a program from scratch, the au-
dience will be able to quickly differentiate the code that is
presently generating sound from code yet to be submitted
so still unavailable in the program state.

The technique used in this example is the same as that
used in Example 5, with the exception of there being two
sets of data for two types of sound: two arrays of time
domain audio data from two Web Audio analyser nodes
playing two generative patterns. Each node sends an array
of uniform float variables to the vertex shader. The ver-
tex shader checks vertex attributes to identify which array
(drum or harp) to use and displace the vertex y position
based on the selected data. To realize multiple tracks of
sound, multiple sets of data will simply be needed. How-
ever, it should be noted that optimization is needed due to
the limit in the number of uniform/attribute variables that
the shader can hold at once.

5.5 Example 7: Writing Interface

The last example demonstrates the potential of this work
in an audiovisual performance where typing is the primary
musical control. There are two types of data used in this ex-
ample: microphone input and inter-keystroke interval. As
a musician types a letter, it will appear on the screen as
if it were a plain text editor with expressive visualization.
The overall volume of the microphone input will change the
size of the letter so that the typing sound level is visualized
by the size of each letter. The average interval between
keystrokes is used to determine the motion of the text and
to change the intensity of the font color. Keystrokes are
mapped to control visualization and to trigger certain mu-
sical events so that typing does generate, simultaneously,
sound and visual with the textual content. This makes a
unique audiovisual performance. The algorithm of sonifi-
cation can be altered by typing a set of words selected in
advance that will help a musician progress the music piece.

6. LIVE WRITING - GLOOMY STREETS.

As suggested in the previous section, the textual visualiza-
tion introduces typing as a new performance interface that

not only produces a music piece but also presents a piece
of writing to audience. We presented an audiovisual music
piece and strategically prefixed the title of the piece with
“Live Writing”, emphasizing the real-time writing shown to
the audience (similar to what live coding does) and the live
sound coming from the writing activity. While it is possible
to completely improvise the writing as well (so-called live-
poetry), the writing content of the piece is borrowed from a
poem, “Gloomy Streets” by Pain-a multi-instrumental mu-
sician, composer, and lyricist. The music accompanied is
composed by Lee with the poem in mind so that the com-
position will reinforce the content of the poem.

The piece is composed of three parts (or pages; see Figure-

1). The mapping between inputs and sound is pre-programmed

to alter whenever a performer presses a shortcut, writes a
special letter, or the writing reaches a certain length. In the
piece, interactivity of the piece mainly utilizes keystrokes to
play a set of samples, to trigger the onset of synthesis al-
gorithms and to change the mapping as the piece progress.
Microphone input is used to capture the sound of typing.
The amplified sound of typing helps convey the idea of live
writing and introduces temporal dynamics of typing let-
ters, words, and sentences. Towards the end of the piece,
the algorithm incorporates more responsive and dynamic
visualization that combines techniques used in the afore-
mentioned examples with typing sonification and composed
soundscape. The trackpad of the laptop is used to trig-
ger synthesized tones and change the perspective of the
camera so that the writing can be viewed from different
perspectives, creating three-dimensional visuals of writing.
The piece, which premiered at the University of Michigan’s
Performing Arts and Technology Showcase 2015, was well
received. More detailed motivation and footage behind the
piece is available at www.sangwonlee.com/gloomy-streets.

7. CONCLUSIONS AND DISCUSSION

In this paper, we introduced programmable text rendering
that enables temporal typography on web browsers. We
believe this is useful for textual performance interface and
textual visualization, as it expands the range of musical ex-
pression and performance. The system is realized through
the use of state-of-the-art Web Audio and Graphic libraries.
The implementation of examples of distributed algorithms
in GPU and CPU are given in detail. We outlined our fu-
ture plan to explore the system in the context of a music
performance, open source API, and a live coding environ-
ment.

We believe this will be useful in live-coding environments
to help the audience better understand code text. We plan
to build temporal typography enabled live coding editor
that can be integrated with existing live coding languages
on the web browser. The visualization of code text will be
embedded in the editor and support textual visualization
by default, as seen in Example 6.

In addition, typing that generates expressive animation
can create a form of highly audiovisual performance that in-
corporates live writing, live poetry, sonification, and textual
visualization. We plan to develop an accessible javascript
library to support easy integration of programmable tem-
poral typography in any web-based performance. We apply
the concept of a control signal graph to the textual visu-
alization so that one can connect any input to a property
of text (e.g., connecting audio output to font size). Our
goal is to develop the system in such a way that it can eas-
ily be incorporated in a wide range of web browser-based
audiovisual performances for musical expression.

With a number of applications in practice, we believe
there will emerge a set of interesting questions. Such ques-

68

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015

tions may include: How will this text in motion enhance au-
dience and musicians’ engagement with the interface? How
will it impact the reading comprehension of textual infor-

mation and assist information visualization?

Finally, we

recently explored the program state visualization separate
from code text in the context of collaborative live coding

[18].

This raised the intriguing question of how the tempo-

ral typography changes the program state view, which can
be now integrated into the code text for networked collab-
oration.

8.
(1]
2l

3l

4]

5]

(9

[10]

(11]

[12]

(13]

[14]

[15]

REFERENCES

wavepot. http://www.wavepot.com.

Webgl-opengles 2.0 for the web.
http://www.khronos.org/webgl.

A. Barbosa. Public sound objects: a shared
environment for networked music practice on the web.
Organised Sound, 10(03):233-242, 2005.

J. Blonk and G. U. Levin. Ars Electronica Festival.
Linz, Austria, 2005.

A. R. Brown and A. C. Sorensen. aa-cell in practice:
An approach to musical live coding. In Proceedings of
the International Computer Music Conference.
International Computer Music Association, 2007.

P. Burk. Jammin’on the web-a new client/server
architecture for multi-user musical performance. In
ICMC 2000, 2000.

R. Cabello. Three. js. URL: hitps://github.
com/mrdoob/three. js, 2010.

H. Choi and J. Berger. Waax: Web audio api
extension. In Proceedings of New Interfaces for
Musical Ezxpression, pages 499-502, 2013.

N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(03):321-330, 2003.

L. Dahl, J. Herrera, and C. Wilkerson. Tweetdreams:
Making music with the audience and the world using
real-time twitter data. In Proceedings of the
International Conference on New Interfaces for
Musical Ezpression (NIME), 2011.

D. Della Casa and G. John. Livecodelab 2.0 and its
language livecodelang. In Proceedings of the 2nd ACM
SIGPLAN international workshop on Functional art,
music, modeling € design, pages 1-8. ACM, 2014.

R. Fiebrink, G. Wang, and P. R. Cook. Don’t forget
the laptop: using native input capabilities for
expressive musical control. In Proceedings of the 7th
international conference on New interfaces for
musical expression, 2007.

J. Freeman. Web-based collaboration, live musical
performance and open-form scores. International
Journal of Performance Arts and Digital Media,
6(2):149-170, 2010.

D. Griffiths. Fluxus. In A. Blackwell, A. McLean,

J. Noble, and J. Rohrhuber, editors, Collaboration
and learning through live coding, Report from
Dagstuhl Seminar 13382, pages 149-150. 2013.

A. Hindle. Swarmed: Captive portals, mobile devices,
and audience participation in multi-user music
performance. In Proceedings of the 13th International
Conference on New Interfaces for Musical Expression,
pages 174-179, 2013.

O. Kaser and D. Lemire. Tag-cloud drawing:
Algorithms for cloud visualization. arXiv preprint
¢s/07038109, 2007.

J. C. Lee, J. Forlizzi, and S. E. Hudson. The kinetic
typography engine: an extensible system for

18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[34]

[35]

69

animating expressive text. In Proceedings of the 15th
annual ACM symposium on User interface software
and technology, 2002.

S. W. Lee and G. Essl. Communication, control, and
state sharing in collaborative live coding. In
Proceedings of New Interfaces for Musical Expression
(NIME), London, United Kingdom, 2014.

S. W. Lee and J. Freeman. Real-time music notation
in mixed laptop—acoustic ensembles. Computer Music
Journal, 37(4):24-36, 2013.

T. Magnusson. ixi lang: a supercollider parasite for
live coding. In Proceedings of International Computer
Music Conference, pages 503-506. University of
Huddersfield, 2011.

J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61-68, 2002.

C. McKinney. Quick live coding collaboration in the
web browser. In Proceedings of New Interfaces for
Musical Expression, London, U.K., 2014.

A. McLean, D. Griffiths, N. Collins, and G. Wiggins.
Visualisation of live code. Proceedings of Electronic
Visualisation and the Arts, 2010.

M. Puckette. Combining event and signal processing
in the max graphical programming environment.
Computer music journal, pages 68-77, 1991.

M. Puckette et al. Pure data: another integrated
computer music environment. Proceedings of the
Second Intercollege Computer Music Concerts, pages
37-41, 1996.

C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proceedings of the
International Computer Music Conference (ICMC),
Ljubljana, Slovenia, 2012.

C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In Proceedings of
the International Conference on New Interfaces for
Musical Ezxpression, pages 313-318, 2013.

C. Roberts, M. Wright, and J. Kuchera-Morin.
Beyond editing: Extended interaction with textual
code fragments. In Proceedings of the International
Conference on New Interfaces for Musical Expression
(NIME), 2015.

C. Rogers. Web audio api. 2012.

B. Swift, A. C. Sorensen, H. Gardner, and J. Hosking.
Visual code annotations for cyberphysical
programming. In Ist International Workshop on Live
Programming (LIVE). IEEE, 2013.

B. Taylor, J. Allison, W. Conlin, Y. Oh, and

D. Holmes. Simplified expressive mobile development
with nexusui, nexusup and nexusdrop. In Proceedings
of the New Interfaces for Musical Expression
conference, 2014.

C. Utterback and R. Achituv. Text rain. SIGGRAPH
Electronic Art and Animation Catalog, 78, 1999.

G. Wang, P. R. Cook, et al. Chuck: A concurrent,
on-the-fly audio programming language. In
Proceedings of International Computer Music
Conference, pages 219-226, 2003.

N. Weitzner, J. Freeman, Y.-L. Chen, and S. Garrett.
massmobile: towards a flexible framework for
large-scale participatory collaborations in live
performances. Organised Sound, 18(01):30-42, 2013.
L. Wyse and S. Subramanian. The viability of the
web browser as a computer music platform. Computer
Music Journal, 37(4):10-23, 2013.

