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ABSTRACT

Herein is presented a method of classifying hand-drum strokes
in real-time by analyzing 50 milliseconds of audio signal as
recorded by a contact-mic affixed to the body of the in-
strument. The classifier performs with an average accuracy
of about 95% across several experiments on archetypical
strokes, and 89% on uncontrived playing. A complete ANSI
C implementation for OSX and Linux is available on the au-
thor’s website * .
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1. INTRODUCTION

Any percussion instrument is capable of producing an in-
finite variety of sounds depending upon where and how it
is struck or actuated. In practice, however, players gen-
erally define a finite number of discrete methods of strik-
ing the drum (strokes), each with a characteristic timbre.
This is especially true for drums that are played with bare
hands. In general, rhythmic patterns on these instruments
are largely defined by the sequence of strokes that comprise
them. Therefore in order to characterize such a rhythm one
must model the strokes in addition to the durations used to
articulate it. The authors are currently developing a robot
that plays djembe, which can analyze and respond appro-
priately to a rhythm that a human improvises on another
hand drum. Such a robot may have uses in entertainment
or therapy, and we are working under the hypothesis that
its success in these domains will rely on its ability to re-
spond to subtle nuances of the human’s playing, such as
stroke patterns. It is thus desirable for the robot to tran-
scribe the human’s strokes. Because we want the robot to

"http://michaelkrzyzaniak.com/HandDrumClassifier/
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‘learn’ from the human, we want the human to play an in-
strument whose technique is similar to the robot’s. For this
reason we focus on instruments that are played with the
hands (such as djembe or cajon) as opposed to sticks (such
as snare drum), and whose strokes are not characterized by
subtle manipulations of the fingers (such as tabla).

2. PREVIOUS WORK

Exhaustive studies have been successful at classifying per-
cussive sounds [2, 5]. Such studies seek to grossly iden-
tify the instrument that produced the sound, but in the
present case we seek to identify more subtle nuances within
a single instrument. We also seek to use a smaller feature
set that can be implemented to run efficiently in real-time
while reducing the volume of the feature space, so that fewer
training examples may be used. Hochenbaum and Kapur
[3] detect nuances in a percussionist’s playing via an ac-
celerometer on their wrists. In their seminal robot Haile,
Weinberg and Driscoll [7] use fundamental frequency esti-
mation to estimate where (radially) a human strikes a large
‘pow-wow’ drum. Our work presented in section 3.2 below
suggests that this one feature is not sufficient to categorize
sounds in the current application. Sarkar [4] and Chordia
and Rae [1] evaluate several methods for classifying tabla
strokes, which are characterized by subtle digital manipu-
lations. Tindale, Kapur and Fujinaga [6] perform a study
similar to the present one focused on snare drum, which
is played with drumsticks. Although both [4] and [6] are
intended to be realtime, they both operate upon a few hun-
dred milliseconds of audio, which limits the maximum speed
of playing to a few Hz. The current study presents a full,
working realtime implementation for hand drums that does
not limit the player’s repetition rate.

3. IMPLEMENTATION
3.1 Onset Detection

In order to classify strokes in real time, it is first necessary
to detect where in the signal the strokes occur. In the cur-
rent context (a contact-mic affixed to a single percussion in-
strument), even the most naive onset-detection algorithm,
such as amplitude thresholding, would likely suffice for a
laboratory experiment. However, we implemented a more
robust algorithm — a variant of the one described in [7].
Specifically, we perform an STFT on the incoming audio
stream. At each analysis frame, we identify the bins whose
magnitudes have increased since the previous frame, and ac-
cumulate the amount of positive change over all of the bins.
The resulting values, computed at each successive analysis
frame, serve as an onset-strength signal (OSS). Noise is re-
moved from the OSS by low-pass filtering. Percival uses a
14th order filter which will introduce a delay of at 40 mil-
liseconds at a sample rate of 44.1 kHz. In order to minimize
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this delay, in our implementation the filter-order was hand-
tuned to the lowest acceptable value, 4, resulting in 12 ms
delay. Peaks are picked from the OSS as in [1]. Namely,
onsets are identified at any local maximum in the OSS that
is above a user-defined threshold. Our classifier uses the
first 50 milliseconds of audio after the peak is identified.
This value is short enough to exceed the maximum repeti-
tion rate that a human percussionist can sustain (roughly
16 Hz), but long enough to capture most flams as single
events, which is how they are typically used. Although a
50 millisecond analysis latency is noticeably late in musi-
cal contexts, the authors are developing a predictive music
generation algorithm which will correct for this and other
delays introduced by the robotic system.

3.2 Feature Selection

Preliminary analysis of the three fundamental djembe strokes,
bass, tone, and slap [5], indicated that the frequency distri-
bution is different for each stroke; Namely, more energy is
in the higher part of the spectrum for tone as opposed to
bass, and again for slap as opposed to tone, as can be seen
in Figure 1.
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Figure 1: Spectrogram of djembe strokes showing
different energy distributions in different strokes.

For this reason, spectral centroid was chosen as a classi-
fier feature (see [6] for definitions of the features used hence-
forth). It was furthermore hypothesized that other spectral
features such as spread, skewness, and kurtosis might be dis-
tinct for each stroke, and further analysis of several hand
drums revealed this to be broadly correct, as can be seen in
Figure 2.

spectral Spread

Figure 2: Cajon Stokes — Spectral centroid, spread,
and skewness on 50 millisecond samples of uncon-
trived playing.

However, it was also found that, in some cases, these fea-
tures were linearly dependent upon one another (an increase
in one is always accompanied by an increase in another, ob-
viating the need for both). Nonetheless, in most cases, the
performance of the classifier was marginally degraded by the

systematic exclusion of any one of these items, so they were
all included in the model. Additionally, spread, skewness
and kurtosis can be computed in a single pass through the
spectrum, so if any one is included, the computational over-
head of including all is small. These spectral features are all
computed using an STFT (N=1024, Hann, hop=256), and
averaged over the duration of the 50 ms sample. The fre-
quency bins of all four spectral features were logarithmically
weighted to model their perceptual interpretations. These
features alone still leave some overlap in the stroke cate-
gories. It was hypothesized that amplitude and noisiness
might account for some of this overlap. This was also found
to be true, as can be seen in Figure 3, so RMS amplitude
and zero-crossing rate were included as features.
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Figure 3: Cajon Stokes — Spectral centroid, ZCR
and Amplitude on 50 millisecond samples of uncon-
trived playing.

All features are normalized across the training set by sub-
tracting the mean and dividing by the standard deviation.
This prevents the feature with the largest scale from domi-
nating the classifier.

3.3 Realtime Classification

Following [8], we implement a kNN classifier. Although the
time-complexity of this algorithm is high, it by no means
precludes realtime operation in this case. A full analysis is
beyond the scope of this paper. Nonetheless, kNN, not in-
cluding distance calculations, can be implemented to run in
O(N) + O(k) time on average (Quicksort by distance, then
Quicksort lowest k by category), where N is the number of
training examples, k is the number of neighbors, and the
symbol O() is shorthand for the word ‘operations’. How-
ever, the implementation provided here has a higher com-
plexity in k, and runs in about O(Nk) + O(k?*/2). This
was tested to run about 10 times faster than the former for
values of k < 10, and twice as fast for very high values of k
up to 350. This is owing to much simpler ‘operations’ de-
spite a higher time-complexity. In any event, the classifier’s
accuracy was generally not found to improve for values of
k greater than about 5, so the added complexity is small
in practice. In both cases, the actual computation time of
kNN is dominated by calculating the distances, which has a
complexity of O(N f), where f is the number of features in
the model. Because f is fixed by the model, the goal would
be to reduce N, which could be done through a variety of
techniques, such as clustering. However, even this was not
necessary; In practice, the classifier was found to require
between about 14 and 32 microseconds to run on a 2.6 GHz
Intel i7, for kK = 5 and N = 100. On the other hand, fea-
ture calculation, including STF'T, required between about
1405 and 2220 microseconds. These calculations can run,
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at most, every 50 milliseconds (the amount of audio used
by this algorithm), which would consume at most about
4% of CPU time. Indeed, the operating system reported
the CPU usage of the classifier to be under 7% during a
barrage of strokes, and the excess is consistent with the
onset-detector’s computation time.

4. EVALUATION

Several experiments were designed to test the classifier’s
efficacy under a variety of conditions. The first few exper-
iments will go deep and analyze a single instrument, the
djembe, in a variety of contexts. Subsequently, a broad as-
sessment of the generalizability of the model will be made
by testing it on several instruments. Because in practice we
desire to capture only the sound of the instrument played
by the human, while eliminating the sound of the robot
and other extraneous sounds, all instruments in this study
are recorded using a piezo-disc contact-mic coupled with a
high-impedance amplifier.

4.1 The Ecological Case

The first experiment was designed to be simple but eco-
logically valid, representing how the classifier is intended
to be used. A contact-mic was affixed to a djembe. The
frequency sensitivity of the mic is highly dependent upon
its placement, and a location near the bottom of the drum
seemed to capture a good mix of low and high frequencies.
Because the curvature of the djembe is not amenable to a
flat piezo disc, the disc was coupled to the drum via a small
amount of putty. The classifier was trained by playing 20
archetypical examples of each stroke — bass, tone, and slap
— in succession. A rhythmic sequence of 125 strokes (49
bass, 47 tone and 30 slap) was then played, and the onset
detector and classifier’s performance were evaluated. The
onset detector correctly identified all onsets and gave no
false positives. The classifier was 95% accurate for k = 2.
The signal data was also recorded and fed back into the
classifier for each k from 1 to 5. The worst case was k = 5
with accuracy of 86%, as can be seen in Table 1 .

Table 1: Classifier confusion matrix for uncontrived
djembe strokes (worst-case scenario where k = 1;
Columns labelled by software; Rows by performer).

Bass | Tone | Slap
Bass 41 8 0
Tone 0 44 2
Slap 0 4 26

The confusion between tone and slap were attributable
to the same strokes for each value of k. These strokes were
aurally ambiguous to the authors as well. The variation in
accuracy as a function of k was attributable to variation in
confusion between bass and tone. This is likely due to tie-
resolution for ambiguous strokes, which could be improved
with a larger training set. It should be noted that leave-
one-out cross-validation on the training set indicated very
high accuracy: 100% for 1 < k < 3. The lower accuracy
on the independent set of observations is probably because
strokes used in actual rhythms are somewhat less consistent
than their archetypical counterparts, owing to timing con-
straints, expressive variability, noise in the human motor
control system, and the physics of the vibrating drum head.

4.2 loudness

In the previous experiment, the drum was played at a mod-
erate loudness with natural metric accents. Another exper-
iment was conducted to test the accuracy of the classifier

when extreme variations in loudness were present. In this
experiment, 30 strokes of each category (bass, tone, slap)
were recorded on djembe. Of these, 10 were played very
softly, 10 intermediate, and 10 very loud. In this case, even
after hand-tuning the threshold, the onset detector failed
to detect three strokes in the quietest category and spuri-
ously detected two false positives (immediately following a
true positive) in the loudest category. The spurious false
positives were removed from the data, and no attempt was
made to recover the missed strokes. Leave-one-out cross-
validation was performed on the data for all values of k,
treating them as three stroke categories. The accuracy is
slightly improved by choosing k a few greater than 1, and
then gradually decreases with increasing k, as can be seen
in Figure 4. The classifier was, on average, 93% accurate
for 1 <k < 10.
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Figure 4: Classifier accuracy as a function of k.

The shape of this curve is representative of all the data
sets analyzed.

4.3 Extended Techniques

Although bass, tone, and slap are the core strokes of djembe
technique, skilled players of this and other hand drums de-
fine and use many more strokes, which are typically subtler
variations on the core three. This experiment tested the
classifier’s accuracy on a set of 7 strokes: bass, tone, slap,
muted slap (dampened with free hand during stroke), closed
slap (the striking hand remains on drumhead after stroke),
closed bass (ditto) and flam (two quick slaps in rapid succes-
sion, taken as a single gestalt). Not all of these are proper
to djembe technique, but are characteristic of several Latin
American and African instruments. 50 examples of each
were played, and cross-validated. The classifier was 90.6%
accurate for k = 5, and on average 88.2% accurate for for
1 < k < 10. The confusion was as Table 2 for k = 4.

Table 2: Classifier confusion matrix for archetypi-
cal djembe strokes (k = 4; Columns as labelled by
software; Rows as labelled by performer).

Slap | Tone| Bass| Closed | Muted | Closed| Flam|
Slap Slap Bass

Slap 44 | 3 0 0 0 0 3
Tone | 5 45 0 0 0 0 0
Bass 0 0 50 0 0 0 0
Closed| 1 0 0 47 0 0 2
Slap

Muted | 0 0 1 0 46 3 0
Slap

Closed| 0 0 1 2 5 42 0
Bass

Flam | 2 0 0 11 0 0 37

It is interesting to note that the plurality of confusion,
46% of it, involved flam. This was unexpected because
flam was hypothesized to contain much more energy over
the sample than other strokes, owing to the second attack,
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which should make it easily identifiable.
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Figure 5: Djembe Stokes — Flams in Spectral Cen-
troid - RMS Amplitude space

Although this was true, as is seen in Figure 5, the effect
had great variance, which, on the low end, caused many
flams to intermingle with the other stroke categories. This
is suspected to be a side-effect of the temporal granularity
of the onset-detector rather than an acoustic property of
the strokes, although further analysis is needed.

4.4 Different Instruments

The previous experiments focused on djembe in order to
give a complete picture of the classifier’s performance on
a single instrument. However, the classifier was designed
to be more general, so another set of experiments tested
several instruments.

4.4.1 Cajon

In one experiment, 20 archetypical strokes from each of 4
categories — bass, tone, slap, and muted slap — were played
on a Peruvian cajon (wooden box) without snares. Cross-
validation revealed an average accuracy of 93% for 1 <
k < 10. In another experiment, an uncontrived rhythmic
sequence of 168 strokes from three categories was played
on cajon. Each stroke was manually labelled (bass, tone,
slap) and given to the classifier for analysis. Cross vali-
dation on this set yielded an average accuracy of 87% for
1 < k < 10. As with the djembe, the lower accuracy on
performed strokes as apposed to contrived ones is likely at-
tributable to greater variability in the acoustic content of
the strokes. Generally, archetypical strokes should probably
be used as training examples. Figures 2 and 3 depict this
dataset.

4.4.2 Darbuka

In this experiment, 30 archetypical strokes from each of 3
categories — doum, tek, and pa — were played on darbuka
(ceramic goblet drum). The classifier was on average 96%
accurate for 1 < k < 10.

4.4.3 Frame Drum

Furthermore, 30 archetypical strokes from each of 3 cate-
gories — doum, tek, and pa — were played on a small frame
drum (hoop and animal hide) with unusually thick skin.
Cross-validation indicated an average of 95% accuracy for
1<k <10.

4.4.4 Bongos

Several percussion instruments, such as bongos, are actu-
ally two separate drums of different pitch, optionally joined
together by a center block and bolts. While it would in prin-
ciple be possible to treat each drum separately, with a sep-

arate contact-mic and separate set of training examples for
each, we wanted to know to what extent such instruments
could be analyzed as a single unit. Therefore, a contact-
mic was placed on the center block joining a pair of bon-
gos. 30 exemplary strokes from each of 5 categories — open
and closed strokes on the larger drum, and open, closed, and
muted strokes on the smaller drum — were played. Cross val-
idation yielded an average accuracy of 94% for 1 < k < 10.
The majority of the confusion was between the open and
closed strokes on the larger drum. This is suspected to
be due in part to the placement of the contact-mic which
was not acoustically ideal but provided a strong signal for
both drums. It is hypothesized that the accuracy could be
increased by using two separate microphones, one placed di-
rectly on the body of each drum. Such microphones could
be soldered together in parallel and serviced by a single am-
plifier and set of classifier training examples.

S. CONCLUSION AND FUTURE WORK

In conclusion, we have found the provided classifier to work
with relatively high accuracy on a variety of instruments.
In practice, its correspondence to human perception is ac-
ceptably high for the intended application, i.e. collaborative
music making with a musical robot. Future work will use a
variant of this algorithm to allow percussion robots to per-
form auto-calibration. If a human played several archetyp-
ical strokes on the instrument as training examples, then
the robot could search its control-parameter space (impact
angle, velocity, hand tension, etc...) for a point that yielded
the lowest self-classification error.
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