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ABSTRACT 
The Hayward Tuning Vine is a software interface for exploring the 
system of microtonal tuning known as Just Intonation. Based 
ultimately on prime number relationships, harmonic space in Just 
Intonation is inherently multidimensional, with each prime number 
tracing a unique path in space. Taking this multidimensionality as its 
point of departure, the Tuning Vine interface assigns a unique angle 
and colour to each prime number, along with aligning melodic pitch 
height to vertical height on the computer screen. These features allow 
direct and intuitive interaction with Just Intonation. The inclusion of a 
transposition function along each prime number axis also enables 
potentially unlimited exploration of harmonic space within prime 
limit 23. Currently available as desktop software, a prototype for a 
hardware version has also been constructed, and future tablet app and 
hardware versions of the Tuning Vine are planned that will allow 
tangible as well as audiovisual interaction with microtonal harmonic 
space. 
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1. INTRODUCTION 
Just Intonation is sometimes referred to as ‘natural’ tuning, as distinct 
from tempered tuning systems. Whereas the musical intervals 
contained within Just Intonation are always based on whole number 
frequency ratios, most of the intervals contained within a system of 
tempered tuning are altered, and therefore deviate from these whole 
number ratios to a greater or lesser extent. The current dominant 
tuning in western culture, based on dividing the octave into 12 equal 
parts, is known as ‘12-tone equal temperament’. The harmonic space 
implicit within this system is essentially one-dimensional, as all 
intervals are restricted to the 12 equidistant points contained within 
the octave. In contrast to this, the harmonic space opened up by Just 
Intonation is inherently multidimensional. What counts is 
relationships between prime factors contained within whole number 
ratios, and each different prime number opens up a new dimension in 

harmonic space [5] [6]. An explanation of the significance of prime 
numbers for Just Intonation is given below in Section 2.    
    In conceptualizing harmonic space in Just Intonation it therefore no 
longer makes sense to think of intervals extending only along a single 
line, rising from low to high, but rather as extending along multiple 
sets of parallel lines, each set formed by a different prime number. 
Pitches and their associated ratios and intervals may then appear at 
equidistant points along these lines. This paper describes how an 
examination of the full consequences of this conceptualization of 
harmonic space led to the development of the Hayward Tuning Vine 
software interface, and how it allows direct and intuitive audiovisual 
interaction with harmonic space in Just Intonation.  

2. THE HARMONIC LATTICE  
2.1 Background 
Using lattices to visualize two- and three-dimensional harmonic 
space is fairly commonplace within the field of Just Intonation. This 
section reviews how such lattices are constructed, and explains how a 
consideration of their limitations led to the development of the 
multidimensional Tuning Vine. 

2.2 Dimension zero: the 1/1 ratio 
The most basic interval in Just Intonation is absolute consonance, 
from which all other intervals are derived [3]. It is described 
mathematically as the ratio 1/1 (pronounced 'one to one'), which may 
be represented as a single point in space, as shown in Figure 1. Such 
a single point is described geometrically as having zero dimensions. 

  

Figure 1. The ratio 1/1 represented as a single point in space. 

2.3 Dimension one formed by prime number    
        two 
If the frequency of any given pitch is multiplied by two, the relation-
ship between the resulting and initial frequencies is described by the 
ratio 2/1, which in the language of conventional music theory is 
equivalent to the interval of an octave. If for example the initial 
frequency were A440, then multiplying it by two would result in the 
frequency A880. The relationship between the resulting and initial 
pitch would therefore be 880 Hz / 440 Hz, forming the ratio 2/1. 
 This multiplication by two opens up the first dimension in the 
geometric representation of harmonic space in Just Intonation. 
Because the octave extends above the 1/1 unison, it seems logical to 
display it vertically above it, as shown in Figure 2.  
 

 
 
 

 

Figure 2. The ratio 2/1 extends an octave above the 1/1. 
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If the 1/1 frequency is divided rather than multiplied by two, the 
relationship between the resulting and initial frequencies is described 
by the ratio 1/2. It would therefore extend an octave below the initial 
1/1, as shown in Figure 3.  

 

 

 

 

 
Figure 3. The ratio 1/2 extends an octave below the 1/1. 

2.4 Dimension two formed by prime number 
        three 
If the frequency of A440 is multiplied by three, the resulting pitch 
will be E1320, extending an octave and a Just perfect fifth above it. 
The ratio between E1320 and A440 will then be 3/1. The 
multiplication by three opens up the second dimension in the 
geometric representation of harmonic space in Just Intonation. As the 
first dimension, based on prime number two, has already been 
assigned to the vertical axis, it seems logical to assign to prime 
number three the horizontal axis, opening up a two-dimensional 
plane between prime numbers two and three. The 3/1 may now be 
represented geometrically as extending to the right of the 1/1, as 
shown in Figure 4. 

 
 

Figure 4. The ratio 3/1, representing an octave and a fifth 
above the 1/1, is displayed as extending to the right of it. 

The ratio 1/3, extending an octave and a fifth below the 1/1, may now 
be displayed as extending to the left of it. The harmonic space 
extending along the horizontal axis from 1/3 through 1/1 to 3/1 is 
shown in Figure 5.  

 
 

Figure 5. Harmonic space extending along the horizontal 
axis from 1/3 through 1/1 to 3/1. 

Figures 3 and 5 may now be combined to create a two-dimensional 
model of harmonic space, as shown in Figure 6. The distance 
between the points is proportional to the size of the musical intervals.  
 
 
 
 
 
 
 

 

Figure 6. Basic model of two-dimensional harmonic space. 

Once the two dimensions have been established, they may be 
extended indefinitely in any direction: up / down in the case of prime 
number two, and right / left in the case of prime number three. Figure 
7 shows the basic model of two-dimensional harmonic space 
extended by one step in each direction. 
 

 
 
 
 
 
 

Figure 7. Extended model of two-dimensional harmonic 
space. 

Based on multiplying ratios, this extended model is no longer 
comprised exclusively of prime numbers. 4/1, equivalent to two 
octaves, is produced by multiplying 2/1 by itself; 1/9 by multiplying 
1/3 by itself etc. If the model were to be extended one step further the 
ratios would be cubed rather than squared, leading to the ratios 8/1 
(equivalent to three octaves), 27/1, 1/8 and 1/27. For every step 
further along a dimension opened up by a prime number, the initial 
ratio is raised by a higher order power. This is the reason why it is the 
prime numbers that are important. Numbers such as four and nine, 
which arise from multiplying a specific prime number together, are 
by definition already contained within the axis of that prime number.  

How might a number such as six, the product of two different 
prime numbers, fit into this scheme? Figure 8 shows the model 
further extended into a lattice, in order to include ratios that are the 
product of the first two prime numbers. 
 
 

 

 

 

 

 

Figure 8. Lattice of two-dimensional harmonic space. 

2.5 Dimension three formed by prime number   
        five 
The next prime number above three is five, and it is therefore this 
number that opens up the third dimension in harmonic space. This is 
illustrated in Figure 9. 

Figure 9. Lattice of three-dimensional harmonic space. 
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Whilst the cube structure makes the three-dimensionality of the 
harmonic space relatively easy to follow, such a portrayal remains of 
fairly limited use, especially when reduced to the two dimensions of 
a piece of paper or computer screen. Firstly, the relative proportions 
of the intervals are clearly visible only for the dimensions based on 
prime numbers two and three. Secondly, it is only the dimension 
based on prime number two that can be interpreted as accurately 
reflecting pitch height. It was through considering how to overcome 
such limitations that the Tuning Vine first came into being.1 

3. THE DEVELOPMENT OF THE     
      PHYSICAL PROTOTYPE 
3.1 The fourth dimension 
The three-dimensional lattice that directly preceded the Tuning Vine 
was slightly different from that shown in Figure 9. There is no reason 
why the three dimensions need be assigned to the first three prime 
numbers, and it is fairly common to construct three-dimensional 
lattices of harmonic space which leave out the octave, allowing prime 
number seven to be displayed together with prime numbers three and 
five [1] [7].  

The author's Stained Glass Music, composed in 2011, takes a 
subset of such a three, five, seven lattice as the basis for a graphic 
score, as shown in Figure 10. As it was written for amateur 
musicians, notating directly by means of the lattice seemed an 
appropriate way of conveying the idea of microtonal harmonic space 
to people with widely varying degrees of understanding of 
conventional music theory. The colour-coding – yellow for prime 
number three, red for prime number five, and blue for prime number 
seven – was also introduced primarily for pedagogical reasons. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Excerpt from the graphic score  
Stained Glass Music. 

As the octave is not present in this lattice, the precise octave positions 
of the microtonal pitches are not defined by the lattice itself. Instead, 
the octave positions of the various pitch classes are indicated by the 
inclusion of conventional music notation. 

The first question that arose after the premiere of Stained Glass 
Music was how octaves might be included within this seven-limit 
lattice. Such a lattice, based on the prime numbers two, three, five 
and seven, implies four-dimensional space. It therefore pointed in the 
direction of a four-dimensional hypercube, or tesseract, as depicted in 
Figure 11. 

 
                                                                    
1 From an early stage in its development, a further incentive in 

developing the Tuning Vine was to visualize the harmonic space 
implicit within a microtonal tuba, developed together with the 
musical instrument makers B&S in 2009. 

 

 

 

 

 

 

 

Figure 11. The tesseract could act as a possible model for 
four-dimensional harmonic space. 

3.2 Using Zometool to model harmonic space 
The most immediate problem that arises from attempting to model 
harmonic space on the tesseract is overcrowding. In order to be of 
much musical use, both the smaller and larger cubes portrayed in 
Figure 11 would have to be directly connected to neighbouring 
cubes. This would very quickly result in visual chaos, especially 
when reduced to the two-dimensional space of the computer screen. 

In searching for a solution to this problem, I began experimenting 
with the children’s toy Zometool.2 Zometool consists of sets of 
coloured plastic struts of varying lengths that may be connected to 
each other at a wide variety of angles via plastic balls. It is therefore 
an ideal tool for the exploration of hyperspace not only in four 
dimensions, but in higher dimensions as well.  

Being able to physically move the lattices around in three 
dimensions proved to be enormously helpful in exploring possible 
models for harmonic space. Solutions started suggesting themselves 
not just to the issue of overcrowding, but also to the other limitations 
of the three-dimensional lattice outlined above, namely of the 
correspondence between interval size and geometric distance, and of 
aligning all pitches (not just those contained within the octave axis) 
with their corresponding vertical pitch heights.  

3.3 Matching strut length to interval size 
Starting out by constructing a square using Zometool struts 5.72cm 
long, it soon became clear that, even with only the third and fourth 
dimensions added, the lattice would become too full to allow a clear 
overview of the pitch relationships. The next size up of Zometool 
strut available – 10.35cm – led to a larger square that helped 
ameliorate the overcrowding issue, but also to an unwieldily large 
size for the overall lattice. I therefore started experimenting with a 
rectangle with the dimensions 7.49 x 12.12cm.3     

Although these proportions are not identical to those contained 
within the two-dimensional lattice in Figure 8,4 as a working model 
they offered a close approximation. Attempting to open up space for 
higher primes had therefore inadvertently also suggested a way of 
incorporating some degree of correspondence between interval size 
and geometric distance within the Zometool model. 

                                                                    
2  Product details are available at http://www.zometool.com 
3 The Zometool balls have a diameter of 1.77cm, and therefore a 

radius of 0.885cm. As a ball is placed at each end of the strut, two 
radius lengths (i.e. one diameter) must be added when calculating 
the dimensions of the resulting rectangle. 

4 In calculating the correspondence between interval size and 
geometric length, tempered semitones are used as a grid against 
which Just tunings are measured. As 7.49cm is defined as being 
equivalent to 12 semitones, the perfect 12th, comprised of 19 
tempered semitones plus two cents, would ideally be equivalent to 
7.49cm x 19.02/12 ≈ 11.9cm. 
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Maintaining such a relationship becomes increasingly difficult for 
higher prime numbers. Assigning the 2/1 octave ratio to 7.49cm 
implies a length of c. 11.9cm for the 3/1 ratio, c. 17.3cm for the 5/1 
ratio, and c. 21cm for the 7/1 ratio.5 Prime numbers above seven 
would of course require even longer lengths.  

Although the original intention had been to construct a model of 
four-dimensional harmonic space following on from the composition 
of Stained Glass Music, the sheer variety of angles and struts made 
available by Zometool suggested that there was no reason to stop at 
prime number seven, assuming the problem of overcrowding could 
be overcome. The issue of the extremely long lengths required for 
higher prime number ratios therefore either needed to be resolved, or 
the correspondence between the ratios and the geometric lengths 
abandoned.   

It was through contemplating this problem whilst rotating the two-
dimensional lattice in space that a solution first presented itself. 
Rotated by 90 degrees, with the 10.35cm struts now positioned 
vertically and the 5.72cm struts positioned horizontally, it became 
clear that if the vertical axis remained assigned to prime number two, 
and the horizontal axis to prime number three, then the relative 
lengths of the struts would closely correspond to the intervals 2/1 (the 
octave) and 3/2 (the perfect 5th).6 The 3/1 octave-and-a-fifth intervals 
at which the pitches are placed along the horizontal axis in Figure 8 
thus became reduced to 3/2 perfect fifth intervals, as shown in Figure 
12.  

 
 

  

  

 
 

 
 

 
 
 

Figure 12. Two-dimensional lattice extending at perfect 
fifth 3/2 intervals along the horizontal axis 

(compare Figure 8). 

The principle of transposing intervals to within an octave could now 
be applied to all higher primes, making the need for unrealistically 
long strut lengths redundant. So for example the 5/1 ratio could be 
reduced to a 5/4 ratio, and the 7/1 ratio reduced to a 7/4 ratio etc. 

3.4 Aligning pitch height to vertical height 
In the process of exploring how the struts corresponding to 5/4 and 
7/4 could fit into this two-dimensional lattice, I continued rotating it 
in space. When it was positioned at around 45 degrees anticlockwise, 
I observed that the vertical position of all the ratios contained within 

                                                                    
5 The geometric length corresponding to 5/1, two octaves and Just                                       

major third, is calculated as 7.49cm x 27.76/12 ≈ 17.3cm, and that 
corresponding to 7/1, two octaves and a septimal minor seventh, as 
7.49cm x 33.69/12 ≈ 21cm. 

6 As the octave would now correspond to 12.12cm, the correct length 
of the horizontal perfect fifth struts would ideally be 12.12cm x 
7.02/12 – 1.77cm ≈ 5.3cm. 

the lattice now corresponded to their relative melodic pitch heights. 
This is shown in Figure 13. 

 

   
Figure 13. Two-dimensional lattice rotated so as to facilitate 

vertical alignment of relative pitch heights. 

In contrast to Figures 8 and 12, in which only the axis based on prime 
number two bears any relation to pitch height, both axes are now 
aligned to reflect the melodic pitch height of the tones contained 
within them. From this point on it was simply a question of fitting the 
appropriate struts at the correct angles, in order to construct a 
multidimensional model that visualized not only harmonic space, but 
the relative melodic heights of the pitches contained within that space 
as well. Of all its features, this is the one that makes the Tuning Vine 
so intuitive to use and distinguishes it most from previous attempts to 
visualize harmonic space through constructing multidimensional 
lattices.7  

Figure 14 shows a subset of the original prototype of the Tuning 
Vine made from Zometool parts. It includes the first four dimensions 
of harmonic space based on prime numbers two, three, five and 
seven. 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 14. Subset of Tuning Vine showing dimensions based 
on two, three, five and seven (photograph by Tania Kelley). 

                                                                    
7 The Mexican / American music theorist Erv Wilson has constructed     

a wide variety of models of harmonic space, but they are generally 
not colour-coded and, more importantly, do not relate the melodic 
pitch height of the ratios to vertical height for lattices above two 
dimensions. Further information on his work may be found at 
http://anaphoria.com/wilson.html 
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3.5 Colour-coding 
As in the score of Stained Glass Music shown in Figure 10, the prime 
numbers contained within the Tuning Vine are colour-coded. The 
need for colour-coding as an additional visual aid becomes 
increasingly acute the more prime numbers are included. Figure 15 
shows the first fully developed prototype of the Vine, which includes 
the first nine prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, and 23. 

 

 

 
 
 
 
 
 
 
 
 

Figure 15. The first complete prototype of the Tuning Vine. 

The choice of which colour to link to which prime8 was made 
through a process of loose association rather than according to any 
strict system.9 The ball corresponding to the central 1/1 is black 
because it is the origin from which all other intervals are derived.10 
Prime number two is colour-coded grey because of the octave's close 
association with unison; despite the change in frequency, the pitch 
class remains unaltered.  

Prime number three is coded light blue as it opens up the two-
dimensional lattice which may be regarded as the rational foundation 
upon which the other intervals may be placed. Prime number five is 
coded red because it contains the intervals of the major and minor 
thirds, often associated with emotion in music. Dark blue is assigned 
to prime number seven because it is this number that underlies the 
harmonies distinct to blues music. 
 Prime number 11 corresponds on the Vine to 11/8, almost exactly 
equivalent to a tempered perfect fourth plus quarter-tone. Orange 
seems an appropriate colour for this interval which might be 
perceived as being glowing and hot. The next prime number, 13, 
opens up the intervals of the neutral third 16/13 and neutral sixth 
13/8. At the edge of the visible colour spectrum, violet seems to 
correspond well to intervals lying so far outside the traditional 
paradigm of western harmony.  

Prime numbers 17 and 19 return to more familiar territory, 
respectively opening up the intervals of the semitone 17/16 and the 
minor third 19/16, both of which are within five cents of equal 
tempered tuning. They are therefore assigned the more prosaic 
colours green and yellow. The highest prime number contained 

                                                                    
8 Harry Partch also uses colours in order to help the player know 

which ratio each key represents on his Chromelodien. His colour 
scheme, which he describes as being “purely arbitrary”, does not 
go beyond prime number 11 [4]. I was unaware of Partch's colour 
scheme when the Tuning Vine was being developed. 

9 A more scientific approach to colour-coding would be to take 
account of light frequency spectrum to link colours and primes. But 
as the intention was to develop an interface for intuitive human 
interaction, it seemed more appropriate to opt for a coding based on 
psychological association. 

10 Whilst the central 1/1 ball could equally well have been coloured 
white, this would have been impractical when applying the colour-
coding to a system of notation for Just Intonation, white being 
invisible against a white background. 

within the current version of the Tuning Vine is 23. Opening up the 
interval 23/16, the colour turquoise, based on a mixture between two 
of the colours used for lower primes, seems an appropriate choice for 
this unfamiliar interval, 28 cents larger than a tempered augmented 
fourth [2]. 

3.6 Limitations of the physical prototype 
The white balls in Figure 15 are 'function' balls, and the coloured 
balls along the base of the Vine 'transposition' balls. Their presence is 
indicative of the fact that the prototype was originally intended as a 
fully functional hardware interface, to be used in combination with 
computer software. Each ball in the Vine is fitted with an RFID 
(radio-frequency identification) tag, which when triggered by an 
RFID receiver fixed at the end of a 'sound wand', results in the 
associated microtone being played by the computer software.  

Using RFID technology has the advantage that the physical body 
of the Tuning Vine can remain free from cabling. By using two 
sound wands, it is possible to play the Tuning Vine from either side, 
reminiscent of playing a harp, with the undertones operated by the 
wand held in the left hand and the overtones operated by the wand 
held in the right hand.  

Nevertheless, the resulting physical interface remains far from 
satisfactory. Perhaps the most serious problem is that it provides no 
visual clue as to which balls are currently sounding, making it 
difficult to keep track of which microtones have been activated. 
Though fitting each ball with LEDs that light up when activated 
would be theoretically possible, this would mean fitting the entire 
Vine with cabling, for which the Zometool parts are not designed.  

Although the wands are quite effective in sounding the microtones, 
the feeling when using them remains more one of operating rather 
than playing an instrument. It is also only possible to turn pitches on 
and off, allowing no control over the sound while it is actually 
resonating. Finally, the structure is not nearly robust enough to 
withstand regular transport and everyday use. The Zometool model 
provided the playground in which the Tuning Vine came into being, 
but once built its main purpose would be to act as a prototype, on the 
basis of which truly interactive versions of the Tuning Vine could be 
developed. 

4. THE SOFTWARE INTERFACE 
The first challenge in developing the software was how to further 
reduce nine-dimensional harmonic space from the three dimensions 
of the physical prototype to the two dimensions of the computer 
screen.11 Displaying the two-dimensional space of the octave / fifth 
lattice was of course no problem, as is shown in Figure 16. 

 

 

 

 
 
 
 

 
Figure 16. Two-dimensional octave / fifth lattice displayed 

within the Tuning Vine software. 
 
                                                                    
11 The software was developed by Robin Hayward, Erik Jälevik and 

Björn Næsby Nielsen between September 2013 and April 2014. 
The application code is C++, following the ‘Model/View/ 
Controller’ programming pattern. Qt, libpd (Pure Data), and 
Portaudio are used as open-source library components. Further 
information may be found at http://www.tuningvine.com 
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Rather than attempting to portray prime number five as the third 
dimension, the decision was made to abandon the red struts shown in 
Figures 14 and 15 and portray only the red balls corresponding to the 
ratios. This is shown in Figure 17.  

 
 
 
 
 
 
 
 
 
 

Figure 17. Three-dimensional octave / fifth / third lattice 
reduced to the two dimensions of the computer screen. 

Although reduced to two dimensions, the spatial positioning of the 
balls in combination with the colour-coding means that this portrayal 
of three-dimensional harmonic space remains fairly easy to follow. 
The 5/4 overtone ratios corresponding to the Just major third are now 
portrayed by the small red balls above and to the right of larger balls, 
and the 4/5 undertone ratios are below and to the left of them. 

The decision not to include connecting struts beyond prime 
number three also addresses the problem of overcrowding, that 
would very quickly become an issue once the higher primes are 
introduced. The balls may be played by clicking on them, and they 
remain highlighted until clicked off. A card also appears to the right 
of the lattice containing the pitch's musical and scientific notation, 
cents deviation from tempered tuning, ratio and hertz number. If 
multiple pitches within a narrow melodic range are sounded, their 
corresponding cards will overlap. The user may then bring any 
desired card to the foreground by hovering the mouse over its 
associated ball. Figure 18 shows the full virtual Tuning Vine 
extending to prime number 23 with five microtones sounding. 

Figure 18. Nine-dimensional harmonic space reduced to two 
dimensions. 

The arrows next to the column of number boxes to the left of the 
computer screen allow the user to transpose independently along 
each prime number axis. In Figure 18, for example, the Vine has 
been transposed down an octave by clicking once on the arrow to the 
left of the grey number box. This feature of multidimensional 
transposition makes possible the virtually unlimited exploration of 
Just Intonation within prime limit 23, throughout the entire audible 
frequency range from 20Hz to 20kHz. 

Toggling between 'MONO' and 'POLY' modes at the bottom left of 
the screen makes it possible to choose between playing melodies and 

building chords; in the former case each pitch turns off automatically 
when the next pitch is sounded, and in the latter case each pitch 
remains sustained until actively turned off. The remaining functions, 
placed along the top of the screen, allow the user to select the wave 
form, load a patch from the open source visual programming 
language Pure Data, alter the volume, panning, attack and release 
times, as well as adjust a low-pass filter to alter the overtone 
spectrum of each individual microtone. By clicking on the 'options' 
symbol above the main volume slider in the top right-hand corner, it 
is possible to set the central 1/1 ratio to any frequency. The software 
is therefore not restricted to the default setting of A440. 

The first version of the Hayward Tuning Vine software was re-
leased in April 2014, almost exactly two years after the Zometool 
prototype was first developed.  

5. DISCUSSION AND CONCLUSION 
Through its incorporation of melodic pitch height within a colour-
coded two-dimensional lattice of multidimensional harmonic space, 
the current software version of the Tuning Vine goes a long way 
towards allowing direct and intuitive audiovisual interaction with Just 
Intonation. Along with acting as a tuning interface for musicians and 
composers, it is also a powerful pedagogical tool for teaching and 
learning about Just Intonation. Nevertheless there is still much room 
for improvement, particularly with regard to corporeal interaction. 
The visual tracking of transposition functions for prime number five 
and above could also be made easier to follow.  

Along with software updates to the current desktop version, a tablet 
app version is currently being planned that will respond to touch and 
gesture rather than mouse clicks, allowing the simultaneous sounding 
of multiple pitches along with a greater degree of corporeal 
interaction. For example, the transpose function could respond to 
sweeping gestures to ‘climb’ through the Vine along the axis of the 
relevant prime number, making it much more intuitive than the 
current desktop version. 

The original idea of making a hardware version that could function 
as a fully developed musical instrument has by no means been 
abandoned. Although technically challenging to develop, such an 
instrument would make the interface not just audiovisual, but 
tangible as well. Because it takes the multidimensionality of 
harmonic space as its point of departure, the Tuning Vine could 
potentially become a standard interface for Just Intonation, much in 
the same way as the piano keyboard has become a standard interface 
for 12-tone equal temperament.  
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