
The OWL Programmable Stage Effects Pedal:
Revising the Concept of the Onstage Computer for Live

Music Performance

Thomas Webster
University of Bedfordshire

Luton LU1 3JU, UK
thomas.webster@beds.ac.uk

Guillaume LeNost

Lionfish Audio
 London SE4 2PB, UK

guillaume@lionfishaudio.com

Martin Klang

Rebel Technology
London E2 8HD, UK
martin@rebel-it.co.uk

ABSTRACT
This paper introduces the OWL stage effects pedal and aims to
present the device within the context of Human Computer
Interaction (HCI) research.
The OWL is a dedicated, programmable audio device designed
to provide an alternative to the use of laptop computers for
bespoke audio processing on stage for music performance. By
creating a software framework that allows the user to program
their own code for the hardware in C++, the OWL project
makes it possible to use homemade audio processing on stage
without the need for a laptop running a computer music
environment such as Pure Data or Supercollider. Moving away
from the general-purpose computer to a dedicated audio device
means that some of the potential problems and technical
complexity of performing with a laptop computer onstage can
be avoided, allowing the user to focus more of their attention
on the musical performance. Within the format of a traditional
guitar ‘stomp box’, the OWL aims to integrate seamlessly into
a guitarist’s existing pedal board setup, and in this way presents
as an example of a ubiquitous and tangible computing device –
a programmable computer designed to fit into an existing mode
of musical performance whilst being transparent in use.

Keywords
HCI, embedded computing, Digital Signal Processing, effects pedal,
effects patch, Open Source

1. INTRODUCTION
In HCI research, there are a number of areas of discussion related to
the design and use of computers in specific contexts, as opposed to
relying on general-purpose computers to accomplish particular tasks.
Ubiquitous computing relates to the discrete proliferation of
computers throughout society – Weiser [14] talks about enhancing
computer use by making them available throughout the physical
environment, but effectively invisible to the user. This idea could
apply to many devices from microwave ovens to digital alarm clocks
equally as well as to a variety of digital sound synthesizers and
effects units for music performance. Dourish [2] describes tangible
computing as an exploration of getting the computer out of the way
to “provide people with a much more direct – tangible – interaction

experience”. Both of these ideas, rooted in HCI research informed the
design process of the OWL, as the authors wanted to address a
perceived disconnect between performer / instrument and performer /
audience that has developed alongside the desire to use bespoke
audio programming for music performance and the use of general-
purpose computers onstage. By providing a programmable,
embedded computing platform for audio processing in the shape of a
guitar effects pedal, the project aims to address this issue by making
it possible for performers to write their own code and run it on a
dedicated and unobtrusive audio hardware device designed around an
established music performance paradigm.

2. MOTIVATION
Many gigs now feature performers using laptop computers as
musical instruments and sound processors onstage, and there
are arguments against this mode of live performance relating to
how well the performer is able to interact with the instrument
they are playing and the audience observing the performance.
Patten et al. [10] note that in the late 1990’s, “the transition to laptop
performance created a rift between the performer and the audience as
there was almost no stage presence to latch onto”. This could be
ascribed to a combination of the performer having to visually interact
with a computer screen, diverting attention, [13], and the limitations
of gestural expression afforded by the interface.
Godoy and Leman [4], in a study of musical gestures cite
Kurtenbach and Hulteen [8] defining gesture as “A motion of
the body that conveys information”, and going on to say that
“…pressing a key on a keyboard is not a gesture because the
motion of the finger on the way to pressing the key is neither
observed nor significant. All that matters is which key was
pressed”. As well as offering a definition of gesture this also
highlights the shortcomings of the keyboard as an interface for
real-time musical expression in performance. The mouse fares
little better in terms of expressive potential; as the main non-
discrete means of input, it only allows for movement in two
directions, whereas in interaction with traditional musical
instruments, performers are capable of a wider variety of more
complex gestures.
Drawing a distinction between control and communication
gestures in music, Godoy and Leman describe control gestures
as conveying information through physical contact (i.e. with a
musical instrument), and communication gestures as doing so
without physical contact (a nod or motion to a band mate as a
cue, perhaps). Later on in the study, when discussing sound-
related gestures this category is sub-divided into sound-
producing and sound-accompanying gestures, noting that there
is some crossover between them – for instance a guitarist may
exaggerate a strumming action in a chorus, which could be a
combination of: responding to the musical dynamics of fellow
performers, intentionally changing the sound from the guitar,
and using it as a “theatrical gesture to the audience”.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression

621

Playing a musical instrument like the guitar also involves
physical feedback between the performer and instrument,
facilitating a tactile, intuitive and constant refining of the sound
being produced. This is a level of physical interaction that is
difficult to achieve, and although many laptop performers use
external MIDI controllers or re-purpose built-in laptop devices
(such as webcams) to add expressive control [3] to the
computer, “most of these lack sufficient (visual and) haptic
feedback” [1].
Dobrian and Koppelman [1] also discuss playing technique,
describing virtuosity as “having complete mastery of an
instrument such that s/he can call upon all the capabilities of
that instrument with relative ease”, and expand upon how this
facilitates expression. With less well–established performance
instruments and interfaces, there is less potential for virtuosity,
as it would be difficult to quickly develop a tradition of
virtuoso playing as rich as those of traditional instruments.
Designing a computer system to work alongside a traditional
instrument rather than replacing it maximizes the expressive
potential of experienced players.
It’s arguable then that computer interaction for music
performance is still unable to match the level of refined gesture
and detail of instantaneous expression possible with traditional
musical instruments. In light of the ideas presented above, a strong
motivation for this project was to design a programmable computing
platform for music performance that works alongside a traditional
instrument, thereby allowing players to exercise their previously
acquired virtuosity in combination with an audio computing
device placed firmly in the background, keeping the emphasis on
performance and expression.

3. BACKGROUND
It’s arguable that any one of a number of digital guitar multi-effects
pedals can be examples of ubiquitous and tangible computing
devices for the performing guitarist. As a fully programmable device,
however, the OWL better fits the expectations of the modern
musician as to what should be possible with computing technology.
The authors are aware of several existing devices that also aim to
place programmable computing power inside dedicated hardware
designed for specific musical applications.
The Line6 ToneCore pedal range 1 is comprised of one of a
range of interchangeable hardware effect modules that plug in
to a base unit containing a Freescale Symphony DSP chip 2,
which runs the program from the plug-in module. Various
modules are available covering a range of different audio
effects. More closely related to the OWL project is the
ToneCore developer kit, which has a special base unit with a
USB socket and a programmable module. This system allows
the user to program an effects patch on an external computer,
and upload the code onto the MCU residing in the
programmable module. Effects are programmed in assembly
language specific to the Freescale Symphony chip, making it
difficult to program for many users. The OWL pedal, in
contrast, aims to make programming the device more accessible
by providing a C++ interface, a more widely used programming
language [12].
The OpenStomp guitar pedal 3 a project that began in 2007, is
designed around a Propeller Parallax microcontroller 4, can be
programmed using a high-level byte coded language called

1 http://line6.com/tcddk/
2http://www.freescale.com/webapp/sps/site/homepage.jsp?code
=563XXGPDSP&tid=prodlib
3 http://howleraudio.com/frontpage/
4 http://www.parallax.com/catalog/microcontrollers/propeller

‘Spin’ and a low-level assembly language. Some advantages
and potential uses of this embedded platform are described by
Nagashima [15]. Although Open Source [11] in theory,
programming the device requires proprietary software from
Parallax, unlike the OWL project which has an Open Source
tool chain not dependent on third party activity. Since the
development of the OpenStomp project, Parallax has developed
a Propeller system that is programmable in C.
Snazzy FX’s Ardcore 5 Eurorack 6 format module for modular
synthesizer systems is based around an Arduino 7 compatible
chipset, which is programmable in C using the Arduino
Integrated Development Environment (IDE). The Ardcore is
able to do some limited audio processing, but only has an 8-bit
converter, which is not high enough resolution for good quality
audio applications - the OWL, in comparison has a 24-bit
converter better suited for audio processing 8. The Ardcore
module is really only useful for low fidelity audio, or less
resolution dependent functions such as controlling the behavior
of other synthesizer modules by generating and manipulating
Control Voltages 9. For instance, the module could become a
bespoke sequencer, LFO or envelope function for a modular
system.
Gonçalves [5], also describes a embedded voltage controlled
computer developed for modular systems based on the Arduino
platform, presenting the microcontroller as no longer acting as
a bridge between the computer and the real world, but instead
providing autonomy and computational power for a specific
musical system. Amongst future planned work, the author
mentions plans for increasing processor speed by upgrading to
an ARM series microcontroller, and re-programming the
platform in C. These were also concerns for OWL project and
as a result the project is implemented around an ARM
processor and C++ tool chain.

4. DESIGN & IMPLEMENTATION
When discussing ubiquitous computing, Dourish [2] notes that the
difference between a general purpose PC and devices such as
microwaves and televisions is that the latter kind of device is
organized around human needs and functions and this was a key
criterion when designing the OWL. A possible cause of some of
the difficulties associated with peripheral computer controllers
may lie in the fact that many are designed to fit the performer
into the general-purpose computer paradigm, rather than fitting
the computer into the performers environment. The authors were
therefore conscious of designing a computing platform for a specific
purpose, and for it to readily fit in to an existing model of musical
performance without it adding complexity to a live situation. In this
way the pedal enables guitarists to benefit from the advantages of
running their own DSP code, but without compromising the potential
energy or interaction of a live performance.
Guitar pedals were considered a good target hardware type for the
project as these are an established element of any serious guitarists
stage setup [6], and are designed with particular requirements for the
sort of situations that they are likely to be used in. The guitarist’s
‘stomp box’ has to have a very high input impedance to carry the
signal without degradation from the guitar pickups high impedance
output, be sturdy and able to withstand the rigors of stage use, and
should be able to be easily switched in and out of a signal chain with
a bypass footswitch. In this way, the OWL stage effects pedal is
designed with the purpose of integrating into the guitarist’s normal

5 http://snazzyfx.com/ardcore.html
6 http://electronicmusic.wikia.com/wiki/Eurorack
7 http://arduino.cc/
8 http://hoxtonowl.com/hardware/specification/
9 http://en.wikipedia.org/wiki/CV/Gate

Proceedings of the International Conference on New Interfaces for Musical Expression

622

stage setup and the performance requires no adaptation in order to
benefit from its use. Figure 1 shows the final version of the OWL
stage effects pedal, with front panel knobs, bi-colour LED
pushbutton, and true bypass footswitch.

Amongst many reasons for the rise of the laptop computer onstage is
the degree to which the user can tailor musical applications for
generating, controlling and processing sound. Having the flexibility
to program the pedal in order to configure audio processing for
specific requirements was of paramount importance in designing the
OWL, as this is something which most digital stage effects pedals are
only able to achieve within the parameters of ready-made effects
patches.
OWL stands for Open Ware Laboratory, and this acronym reflects an
important design consideration in that the hardware and software for
the project are Open Source, and freely available under the Gnu
General Public License (GPL) 10. This allows for an iterative design
process [13], where users or groups of users in the project community
are able to actively contribute to the design and future development
of the project by creating new hardware and/or software designs
based on the device framework.
Found within mobile phones and other devices, an ARM Cortex
(M4) processor provides the computing power inside the pedal, and
this is powerful enough for most uses of a stomp box device. Also
inside is a 24-bit codec, suitable for high quality AD/DA audio
conversion and 1Mb external SRAM. Figure 2 shows the digital
circuit board containing the Surface Mount Technology (SMT)
components listed above, with header pins for attachment to the
counterpart analogue circuit board containing the pots, jacks,
pushbutton and footswitch. In this way, modified designs for an
alternative analogue circuit board based on this format could be
attached, allowing for the development of other types of audio
hardware device for specific musical applications.

10 http://www.gnu.org/copyleft/gpl.html

The microprocessor can be programmed using a simplified, cross-
platform C++ API that allows the user to focus on audio
programming without having to worry about the software
framework. Effects patches consist of a single .hpp file that inherits
simple functions from a parent Patch class. An example of perhaps
the most basic patch for the OWL pedal, a volume control,
implemented in code is shown in Figure 3.
By providing an API which allows the user to program the device
when connected to an external general-purpose computer, bespoke
DSP routines can be set up before a gig and modified (if necessary)
during a performance via the potentiometers on the surface of the
pedal or via a device connected to the expression pedal input.
Connection to an external computer is made via micro-USB on the
rear of the pedal, and using the USB On-The-Go 11 protocol, it is
possible for the device to act as host or peripheral, allowing for the
connection of external MIDI controllers.
Patches are written in C++ and complied using an IDE such as
XCode or Visual Studio within ready-made projects, or from
the Terminal using the Gnu Compiler Collection (GCC). At the
time of writing, new patches are loaded by updating the firmware on
the pedal, and this can done using the OwlNest GUI application or
with a couple of simple commands executed in the Terminal.

5. PATCH LIBRARY
There is already a reasonably sized online patch library 12 consisting
of approximately 40 effects patches that users can freely download.
Highlights of the library include a reverb based on the work of Jean-
Marc Jot [7], ports of effects from the mda 13 plugin collection and
the Open Source reverb, Freeverb 14, a phasing algorithm from the
Music-DSP Source Code Archive 15, by Ross Bencina 16, and ring
modulation, flanging and octave effects from Marek Bareza 17. Oli
Larkin 18 and Charles Verron 19 have provided interesting and
original examples of synthesis patches for the OWL platform with
their Dronebox and DubSiren patches, illustrating the potential for
using the OWL platform in different musical applications. There are
also filters & EQ’s, compression, overdrive & distortion, modulation
patches, delays and many of the standard effects that you would
expect to find on a guitarists pedal board. All of these effects patches
can be uploaded onto the pedal via a simple GUI interface 20 by a
user with no prior programming knowledge; or alternatively could be
used as a basis for creating a more complete guitar signal processing
chain, involving combinations of several patches.
Due to the Open Source nature of the project, the authors hope to
encourage code sharing amongst the user base, and that the patch
library will continue to grow as a result. By providing resources for
novices wanting to experiment and learn about audio DSP
programming in C++, we aim to encourage textual coding and
knowledge sharing in audio DSP generally.

11 http://www.usb.org/developers/onthego/
12 https://github.com/pingdynasty/OwlPatches
13 http://mda.smartelectronix.com/
14 https://ccrma.stanford.edu/~jos/pasp/Freeverb.html
15 http://www.musicdsp.org/index.php
16 http://www.rossbencina.com/
17 http://www.mazbox.com/
18 http://www.olilarkin.co.uk/
19 http://www.charlesverron.com/
20 http://hoxtonowl.com/software/owlnest/

Figure 1. The OWL stage effects pedal

Figure 2. OWL digital circuit board

Proceedings of the International Conference on New Interfaces for Musical Expression

623

6. SUMMARY & FUTURE WORK
Overall, the authors feel that the OWL project has achieved its goal
of offering an alternative to the general-purpose laptop onstage by
providing guitarists and performing musicians with a truly
programmable computer dedicated to audio processing that fits into
an existing mode of live performance.
The project was developed over the course of eight months last year
and funded by a Kickstarter crowd-funding [9] campaign 21. Enough
money was raised to make an initial production run of one-hundred
and eighty pre-ordered pedals, which shows that the concept of the
project has resonated with the target demographic of guitarists with
an interest in programming, audio DSP and hardware hacking. We
also now have users actively contributing to the online effects patch
library, demonstrating not only some of the benefits of an Open
Source approach, but also that people are using the device in the way
it was intended by developing their own audio DSP code for the
pedal.
In addition, the project has developed an Open Source, embedded
computing platform that is designed to be modifiable and can be
made to fit into a variety of different hardware housings and hacked /
repurposed to fit the needs of the user. In this way, other generic uses
for an onstage computer such as sequencers and synthesizers could
be realized using the same tool chain with similar hardware designs
and potentially utilizing more powerful chips such as the ARM A-
series.
After evaluating feedback about the project, it’s evident that potential
users can be discouraged by the idea of programming in C++, and
feel the API could be further simplified. The authors agree that there
is potential for improvement in this area – either with the
development of a GUI / visual programming interface or a simplified
IDE for coding patches (in the same vein as Processing or Arduino).
It’s been noted that one of the major challenges for people beginning
to program in C++ is navigating and learning to use complex IDEs
such as XCode and Visual Studio, and finding a solution for this
problem to better engage novice programmers is one of the future
challenges for the project. Currently we are looking at potential
collaborations with existing computer music development platforms

21https://www.kickstarter.com/projects/marser/owl-

programmable-effects-pedal

such as Faust 22 and Pure Data in order to develop a system that
would allow users to create patches within an external computer
music environment and then export those patches as C++ code so
that they will run on the OWL platform.

7. ACKNOWLEDGMENTS
Our thanks to London Music Hackspace 23, AndrewMcPherson 24,
Max at sfxsound 25, all at ROLI 26 and Torsten Anders 27.

8. REFERENCES
[1] Dobrian, C. and Koppelman, D. 2006. The ’E’ in NIME:

musical expression with new computer interfaces.
Proceedings of the 2006 conference on New interfaces for
musical expression (2006), 277–282.

[2] Dourish, P. 2004. Where the Action is: The Foundations
of Embodied Interaction. MIT Press.

[3] Fiebrink, R. et al. 2007. Don’t forget the laptop: using
native input capabilities for expressive musical control.
Proceedings of the 7th international conference on New
interfaces for musical expression (2007), 164–167.

[4] Godoy, R.I. and Marc Leman 2010. Musical Gestures:
Sound, Movement, and Meaning. Routledge.

[5] Goncalves, A. 2011. Towards a Voltage-Controlled
Computer Control and Interaction Beyond an Embedded
System. Proceedings of the International Conference on
New Interfaces for Musical Expression (2011), 92–95.

[6] Hunter, D. 2004. Guitar effects pedals: the practical
handbook. Backbeat.

[7] Jot, J.-M. and Chaigne, A. 1991. Digital delay networks
for designing artificial reverberators. Audio Engineering
Society Convention 90 (1991).

[8] Kurtenbach, Gord and Hulteen, Eric 1990. Gestures in
Human-Computer Communication. The Art and Science
of Interface Design. Addison-Wesley Publishing Co.

[9] Ordanini, A. et al. 2011. Crowd-funding: transforming
customers into investors through innovative service
platforms. Journal of Service Management. 22, 4 (2011),
443–470.

[10] Patten, J. et al. 2002. Audiopad: a tag-based interface for
musical performance. Proceedings of the 2002 conference
on New interfaces for musical expression (2002), 1–6.

[11] Perens, B. 1999. The open source definition. Open
sources: voices from the open source revolution. (1999),
171–85.

[12] Stroustrup, B. 2013. The C++ programming language.
[13] Vallis, O. et al. 2010. A shift towards iterative and open-

source design for musical interfaces. Proceedings of the
International Conference on New Interfaces for Musical
Expression (2010), 1–6.

[14] Weiser, M. 1993. Some computer science issues in
ubiquitous computing. Communications of the ACM. 36, 7
(1993), 75–84.

[15] Yoichi Nagashima 2009. Parallel Processing System
Design with “Propellor” Processor. Proceedings of the
International Conference on New Interfaces for Musical
Expression (2009), 171-172.

22 http://faust.grame.fr/
23 http://musichackspace.org/
24 http://andrewmcpherson.org/
25 http://www.sfxsound.co.uk/home/
26 https://www.roli.com/
27 https://www.beds.ac.uk/rimap/people/torsten-anders

Figure 3. C++ code for a volume control patch

Proceedings of the International Conference on New Interfaces for Musical Expression

624

