
Ping-pong: Musically Discovering Locations

Hyung Suk Kim
∗

CCRMA
Stanford University

660 Lomita Dr.
Stanford, California 94305

hskim08@ccrma.stanford.edu

Jorge Herrera
∗

CCRMA
Stanford University

660 Lomita Dr.
Stanford, California 94305

jorgeh@ccrma.stanford.edu

Ge Wang
CCRMA

Stanford University
660 Lomita Dr.

Stanford, California 94305
ge@ccrma.stanford.edu

ABSTRACT
A recently developed system that uses pitched sounds to
discover relative 3D positions of a group of devices located in
a shared physical space is described. The measurements are
coordinated over an IP network in a decentralized manner,
while the actual measurements are carried out measuring
the time-of-flight of the notes played by different devices.

Approaches to sonify the discovery process are discussed.
A specific instantiation of the system is described in detail.
The melody is specified in the form of a score, available
to every device in the network. The system performs the
melody by playing different notes consecutively on differ-
ent devices, keeping a consistent timing, while carrying out
the inter-device measurements necessary to discover the ge-
ometrical configuration of the devices in the physical space.

1. INTRODUCTION
Ping-pong is a system that uses coordinated pitched sounds
to discover the relative 3D positions of a network of devices
located in a shared physical space. The initial motivation
behind this system is to allow computer music ensembles [6,
9] to easily and musically discover the location of the devices
in the group, with sub-metric precision. By doing this, 3D
aware interactions are made possible. Pieces like Dahl’s
SoundBounce[3] and Sparks by McCurry, Harriman and
Sanganeria1 have used locations of the musicians/devices on
stage as a parameter relevant to the performance. In both
cases, a “manual” procedure is required for setup, either by
forcing the performers to locate themselves at pre-defined
positions or by calibrating the system using other sensors
such as compasses. Ping-pong was designed to avoid such
tedious procedures. Furthermore, it was designed to be a
musical piece in itself: as the music unfolds, the locations
of the devices on stage are discovered, using coordinated
sounds in a call-and-response manner.

Work previously published by Herrera and Kim [5] dealt
mainly with the problem of distance measurement between
a pair of devices using pitched sounds, but left aesthetic and
musical considerations unattended. This paper addresses
these issues, and is structured as follows: section 2 briefly
describes the system; section 3 describes how the system can

∗Both authors contributed equally
1http://www.youtube.com/watch?v=q9srwrBUQ88

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

be used musically; a specific implementation of the system
is detailed in section 4; finally, in section 5 findings and
insights are summarized and possible uses of the position
information are suggested.

1.1 Related Work
A sonic location system was presented by Harter, Hopper,
Steggles, Ward and Webster [4], but their system tracks
a specially developed device using ultrasound and special
hardware installed in the space. In Ping-pong , on the other
hand, only off-the-self devices—smartphones or laptops—
are required, and we purposely use sound to carry out the
measurement.

Priyantha, Chakraborty and Balakrishnan [7] presented
a system that uses dedicated hardware and works on ultra-
sonic and RF ranges. Despite using a different method, it
does share a similarity with Ping-pong , as they both work
in a completely decentralized way.

More recently, and using specific off-the-self smartphones,
Qiu, Chu, Meng and Moscibroda [8] proposed a system to
estimate 3D relative positions. While similar to Ping-pong ,
it differs in that it works for a single pair of devices only,
and also in that it uses specific features of certain devices
(e.g. multiple microphones, measured speaker frequency
responses, etc.).

To our knowledge, Ping-pong is the first location system
that carries out the measurement in a musical way.

2. SYSTEM DESCRIPTION
As previously mentioned, Ping-pong ’s goal is to discover the
3D positions of devices located in the same physical space.
To achieve this, first all pairwise distances are estimated.
Once all pairwise distances have been measured, the rela-
tive 3D positions of all devices can be found by minimizing
an error norm equation. The following subsections briefly
describe each step.

2.1 Measuring pairwise distances
Sound can be used to infer the distance between a speaker
and a microphone by measuring the time it takes a signal—
emitted by the speaker—to reach the microphone. This
time is then multiplied by the speed of sound in the propa-
gation medium to estimate the distance. This task is trivial
when there is a central clock that can accurately measure
this delay, for example, by using correlation methods.

However, in the case where microphone and speaker are
controlled by completely separate clocks that can’t be accu-
rately synchronized, the problem is much harder. The lis-
tening device can’t know the precise moment at which the
sound was emitted by the other device. Moreover, each de-
vice will most-likely have different internal latencies, which
also affect the time-delay measurement.

To overcome these problems, Ping-pong takes a differ-

Proceedings of the International Conference on New Interfaces for Musical Expression

273

http://www.youtube.com/watch?v=q9srwrBUQ88

t
audio

t′
audio

CPU

CPU

tping

fping

tpong

fpong

d+ ∆

d

pinger

ponger

P
i
n
g
P
r
e
p

A
C
K

Figure 1: Pairwise distance measurement timeline.

ent approach: the measurement initiator (the pinger) emits
a pitched sound (ping) and the other device (the ponger)
will reply with a potentially different sound (pong). Be-
fore carrying out the measurement they must first agree on
which pitches will be used and, more importantly, an ad-
ditional delay d that the ponger will wait before replying.
If the ponger does a good job at ponging exactly d after
the ping ’s onset time (compensating for his own internal
latencies), then the pinger only needs to measure the time
between the ping and the onset of the received pong . Fig-
ure 1 shows the time-line of events that take place when
estimating the distance between two devices. By subtract-
ing d and its own internal latencies, the time-delay due to
the sound propagation can be computed and the distance
between them (r̂) can be estimated as r̂ = c∆/2, where c is
the speed of sound.

It should be noted that 1 sample at a sampling rate of
22,050 Hz corresponds to approximately 1.5 cm. In other
words, an error of 10 samples when estimating the onset
(equivalent to 0.45 ms) translates to an error of roughly
about 15 cm. Therefore, a very accurate onset estimation
algorithm is required.

A simple method to achieve this is described in [5]. Suc-
cinctly, an onset detector and a pitched-signal detector run
in parallel on the input audio. The onset detection finds
possible onsets using a short-over-long term energy ratio.
This stage can generate a high rate of false positive can-
didates. Simultaneously, the pitched-signal detection uses
comb filters—tuned to the expected pitch—to detect the
ping or pong signals. By combining the slow acting pitched-
signal detection with the fast onset detection, accurate note
onsets can be estimated. More details can be found in the
cited reference.

2.2 Estimating 3D positions
To estimate the 3D positions, all pairwise distances need
to be measured. The IP network is used to coordinate the
measurements, schedule notes, and broadcast measured dis-
tances to all other devices.

Figure 2 shows, from a high level, the sequence of events
that take place to measure distances from all other devices
to a single device. The same procedure needs to be repeated
for all other devices in the network.

A

B

C

D

1

2
3

4

5

6

Sound

IP network

Figure 2: Event sequence to estimate the distances
from B to other devices.

Once all pairwise distances have been measured and broad-
casted to the other devices in the network, then any device
can estimate the locations of the other devices relative to
itself. The solution proposed by Wilson, Walter and Abel
[10] was used. Given a vector of squared distances from an
arbitrary origin rs (which, without loss of generality could
be the location of the devices performing the computations),
and a matrix of noisy inter-device squared distances Rs

rs =

 r
2
1

...
r2N

 Rs =

r
2
1,1 · · · r21,N
...

. . .
...

r2N,1 · · · r2N,N


where rj is the distance from the origin to device j and rj,k
correspond to the distance between devices j and k. The
matrix of positions X can be estimated by minimizing the
estimation error ε in

2XXT = 1rs
T + rs1

T −Rs + ε. (1)

The interested reader should refer to [10] for details.
It should be noted that at least 3 devices are required to

carry out this calculation, which would yield a 2D solution.
For a 3D solution, four or more devices are necessary.

3. SONIFICATION OF DISCOVERY
Possible answers to the question of how such a system can
be used musically are covered in this section.

The main parameter required by the system to discover
the positions is the delay d, which must be agreed between
two devices carrying out a distance measurement. Musically
speaking, d corresponds to the inter-onset-interval (IOI) be-
tween two notes. This delay d is essential to the distance
measurement.

Other parameters are also relevant for the measurement,
but their effect on the measurement depends on the imple-
mentation. As mentioned in section 2 the onset time esti-
mation is extremely important for accuracy. In the system
described in [5], sharp attacks are required to accurately
estimate the distance while other parameters—such as note
envelope and timbre—have little effect on the estimate. It is
possible to have a different implementation that uses agreed
waveforms (timbre plus envelope) and cross-correlation to
estimate onset times, in which case sharp note attacks are
not necessarily required.

Other musical parameters that don’t affect the discovery
process can be controlled or mapped following artistic and
aesthetic decisions. For example, scale, note durations (to a
certain extent) or other adornments such as pitch-bending
can be controlled without affecting the distance measure-
ment estimation.

There are several different strategies to control and make
use of these musical parameters. A simple system can de-
fine a fixed score, known by all devices in the network, and
use the IOIs in the score as the agreed d. In the next sec-
tion such system is discussed in depth. A more interest-
ing idea is a “form following function” approach, where the
score is dynamically generated by mapping parameters of
the discovery process to the music itself, either algorithmi-
cally or humanly driven. The dynamically generated music
can facilitate—or artistically obstruct—the discovery pro-
cess. For example, a composer or conductor could deliber-
ately control the articulation of the played notes—by using
legato notes—to distort distance measurements and gener-
ate “geometric tension”. This could later be resolved by
using staccato notes.

Proceedings of the International Conference on New Interfaces for Musical Expression

274

pinger

tponger

PingPrep

ACK

t′x

dk + 2∆max

dk + 2∆

dk

δ

tx

δ + ∆max

tz
η

score

t

nk−1 nk nk+1 nk+2

dk dk+1 dk+2

?

?

?

Figure 3: Timeline of events. The time axis t is an arbitrary absolute time. Vertical arrows show when
different events happen on the pinger (above the axis) and ponger (below). Arrows pointing into the time
axis are sent and arrows pointing out from it, received. Thick arrows correspond to notes; thin colored arrows
represent network messages. Delays due to network and physical distance are depicted simultaneously.

4. PERFORMING A SCORE
An implementation of the simple system mentioned earlier
is described here. The system uses a predefined musical
score, which is made available to all the devices in the net-
work. Much like in MIDI format, the score is defined as a
sequence of indexed notes (nk for the k-th note), each of
which specifies the following data: unique auto-incremental
index, onset time (in our case, as a time increment dk),
fundamental frequency, duration, intensity and timbre.

The scheme to play the melody is simple: at any point in
time there is a pinger , which is the temporary conductor in
control of the melody. This device determines which notes
it plays and which ones are to be played by other devices
in the network. All pairwise measurements are needed, so
a “baton-passing” scheme was decided: a device pings all
the rest and once all measurements have been carried out, a
“baton” is passed to the last ponger in the form of a message
over the IP network. The new pinger repeats the same
process. If all devices follow the same sequence of devices
(circularly shifted, so that the first ponger is the previous
pinger), then all pairwise distances have been estimated
once the initial pinger receives the baton back.

Every device must store the index k of the last note it
played. This is important to make sure that the baton pass-
ing scheme works without noticeably disrupting the timing
of the melody. When a pinger receives the baton, it also
receives the index of the next note to play. This way, it
is possible to keep the timing in a decentralized way, by
scheduling the notes with respect to previously played notes.

While holding the baton, a device determines who plays
what on a note-by-note basis. For the k-th note (nk) on
the score, the pinger decides whether to play it “unpaired”
(that is, without expecting an associated pong) or with the
intent of measuring the distance to another device. In the
latter case, implicitly deciding that nk+1 will be played by
the ponger . Prior to pinging, a“handshake”with the ponger
is required. The handshake is carried over the network. It
initiates with a PingPrep message identifying the pinger
and the next note to play. Upon receiving this message,
the ponger replies with an ACK message. The handshake
can take random time η to complete, depending on network
traffic and other network related delays. To prevent this
variable latency from disrupting the timing of the melody,
a few decisions have to be made at key times (see subsec-
tion 4.2).

Figure 3 shows the different events involved in a ping-pong
sequence. One interesting point to note is that although
there will be a small delay on playing the pong—due to
the distance between pinger and ponger—this delay doesn’t
accumulate, as the next ping is scheduled in relation to the
previous ping . This way, it is possible to keep playing the

melody on time.
It is possible for a measurement to fail (see subsection 4.2).

In this case, the pinger needs to repeat the measurement
before proceeding onto the next ponger .

Finally, once all pairwise distances have been estimated,
there may be notes left to be played in the score. These
notes are used to repeat measurements. Measurements to
be repeated are chosen by selecting pairs of devices (i, j)
with low measurement confidence. A simple metric of the
confidence Cij = 1/|r̂ij − r̂ji|, where r̂ij is the estimated
distance from device i to device j.

4.1 Considerations
Other melodic parameters such as note pitch, duration, en-
velope and intensity are derived directly from the score.
That said, it is important to point out some limitations of
the system.

There is a minimum duration required to detect a ping or
a pong , which in turns imposes a minimum note duration
on the notes played to carry out a measurement. This also
defines a minimum IOI required to carry out a distance
measurement. Other factors to consider are filter response
time, maximum distance (see below) and network and audio
latency.

The intensity parameter is difficult to control, as it is
highly dependent on the device. On one hand, devices
may have different characteristics (power output, frequency
range, etc.), so a note played at the same “amplitude” in
two different devices will most likely have different inten-
sity, and be be perceptually very different. Furthermore,
louder sounds mean better SNR, which improves the accu-
racy of the distance estimation. In fact, below some SNR
threshold, the measurement is impossible.

Related to the previous point, beyond some distance, it
is hard to estimate rij due to poor SNR. For this reason,
a maximum distance rmax = c∆max must be specified. As
will be discussed in the following section, ∆max helps to
recover from failures.

Regarding note envelopes, the measurement looks only at
the onset of the note, so there’s a lot of flexibility afterwards.
That is, as long as the note has a sharp attack, the other
parameters of the envelope can be manipulated freely.

Other problems may arise from the interaction of sound
and space. Reverberation distorts the signal by adding im-
ages due to multiple pathways from source to listener. If
there is a direct path, the proposed method for onset de-
tection will detect the corresponding onset, as long there
enough energy difference between the short and long term
filters. In other words, this also imposes further constraints
on the IOI between notes, to allow the previous notes to de-
cay. This also implies that in the absence of a direct path,

Proceedings of the International Conference on New Interfaces for Musical Expression

275

distance measurements will be noisy and overestimated, as
longer paths will be detected. The pitched-signal detection
using comb filters shouldn’t be affected, as it is insensitive
to phase differences.

4.2 Handling potential failures
Unfortunately, measurements do not always work as ex-
pected. Under some conditions (e.g. dropped packets), a
measurement can fail. In this case, the measurement needs
to be repeated. There are different types of failures that
can occur, and each type requires different handling, in or-
der to avoid disrupting the music. Table 1 lists the possible
failures and how these are handled.

Device Failure Handling / Consequence
pinger Fail to re-

ceive ACK on
time (due to
packet loss
or because
η > δ)

pinger doesn’t know if
ponger actually received
the PingPrep message. nk

won’t be played, and a
new measurement will be
attempted using nk+1 and
nk+2

ponger Fail to receive
PingPrep

This implies that the pinger
will fail to receive ACK, which
was explained earlier

ponger Fail to detect
ping onset

Abort measurement and
doesn’t play nk+1

pinger Fail to detect
pong onset

The measurement is re-
peated, using nk+2 (ping)
and nk+3 (pong)

pinger Erroneous
measurement

The measurement is dis-
carded and a new attempt is
made

Table 1: Potential failures and corresponding han-
dling when pinging nk and ponging nk+1.

The basic idea is to keep playing on time, despite possible
mistakes. This is possible by leveraging known information
about the score and who played what and when.

Instead of playing the right note at the wrong time, it is
better to simply skip it. The PingPrep message contains
the note index k. With this index, the ponger can read the
necessary delay dk from the score. In addition, the pinger
also send δ: the time left to ping , from the moment the
message was sent. The ponger can use this information to
determine a deadline tz, after which the ping has already
passed (see Figure 3):

tz = t′x + δ + ∆max (2)

If possible, plans can be changed if a failure is detected.
For example, if the pinger realizes the ponger won’t be able
to pong , it can decide to play the pong note itself.

4.3 Implementation
An iOS version of the system has been developed. It uses
OSC protocol (via OSCpack2) which allows broadcasting,
necessary to discover new devices in the network. Once de-
vices discover each other, they open TCP sockets to handle
device-to-device communication. All the DSP was imple-
mented in C++ using the MoMu-STK [1], a port of the
Synthesis Toolkit [2] for iOS.

For a detailed description and evaluation of the system,
including measurement results and analysis, refer to [5].

2http://www.rossbencina.com/code/oscpack

5. CONCLUSION
A system capable of discovering the location of networked
audio devices in a shared physical space has been described.
Possible approaches to sonifying the discovery process have
been covered and the musical limitation have been explained.

A specific implementation of such system was described in
detail. The system uses coordinated sequencing of spatially
distributed sounds to play a melody to carry out the mea-
surements required to estimate the relative locations with
sub-metric precision. Potential issues and failures have been
identified and solutions proposed.

The idea of not just using sound to carry out the mea-
surement, but also map the discovery process back into the
sound itself has been introduced and discussed. In this way,
the form of the musical piece could follow the function of
the system, which is to discover performers’ locations.

Finally, once the spatial position information is estimated,
it is possible to use this information to perform spatially-
aware musical performances. A simple example of using the
information is to pan a sound or melody by emitting it from
devices left to right, front to back, or around the audience,
depending on the device positions. Another example is to
use the position information to sonify the distance relations
(e.g. sonify a spanning algorithm, a shortest path problem
solution) by passing notes around from device to device.

6. REFERENCES
[1] N. J. Bryan, J. Herrera, J. Oh, and G. Wang. Momu:

A mobile music toolkit. In International Conference
on New Interfaces for Musical Expression, Sydney,
Australia, 2010.

[2] P. R. Cook and G. P. Scavone. The synthesis toolkit
(STK), 1999.

[3] L. Dahl and G. Wang. Sound Bounce : Physical
Metaphors in Designing Mobile Music Performance.
In International Conference on New Interfaces for
Musical Expression, pages 178–181, Sydney,
Australia, 2010.

[4] A. Harter, A. Hopper, P. Steggles, A. Ward, and
P. Webster. The anatomy of a context-aware
application. In 5th annual ACM/IEEE international
conference on Mobile computing and networking,
pages 59–68, New York, NY, USA, 1999.

[5] J. Herrera and H. S. Kim. Ping-pong: Using
smartphones to measure distances and relative
positions. Proceedings of Meetings on Acoustics,
20(1):–, 2014.

[6] J. Oh, J. Herrera, N. Bryan, and G. Wang. Evolving
the mobile phone orchestra. In International
Conference on New Interfaces for Musical Expression,
Sydney, Australia, 2010.

[7] N. B. Priyantha, A. Chakraborty, and
H. Balakrishnan. The cricket location-support system.
In 6th ACM MOBICOM, Boston, MA, August 2000.

[8] J. Qiu, D. Chu, X. Meng, and T. Moscibroda. On the
feasibility of real-time phone-to-phone 3d localization.
In 9th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’11, pages 190–203, New
York, NY, USA, 2011.

[9] G. Wang, N. Bryan, J. Oh, and R. Hamilton.
Stanford laptop orchestra (SLOrk). In International
Computer Music Conference, Montreal, August 2009.

[10] R. S. Wilson, J. H. Walters, and J. S. Abel. Speaker
array calibration using inter-speaker range
measurements. In Audio Engineering Society
Convention 116, Berlin, Germany, May 2004.

Proceedings of the International Conference on New Interfaces for Musical Expression

276

http://www.rossbencina.com/code/oscpack

