
OSC-Namespace and OSC-State: Schemata for Describing
the Namespace and State of OSC-Enabled Systems

Ilias Bergstrom

Fondation Agalma
Rue Adrien-Lachenal 18, CH-1207 Genève

ilias.bergstrom@agalma.ch

EventLAB,
Universitat de Barcelona, Campus de Mundet - Edifici

Teatre, Passeig de la Vall d'Hebron 171, 08035
Barcelona, Spain

Joan Llobera

Fondation Agalma
Rue Adrien-Lachenal 18, CH-1207 Genève

joan.llobera@agalma.ch

Immersive Interaction Group
École Polytechnique Fédérale de Lausanne

EPFL-IC-IIG
Station 14

CH-1015 Lausanne

ABSTRACT

We introduce two complementary OSC schemata for two

contexts of use. The first is for the complete description of an

OSC namespace: detailing the full set of messages each OSC-

enabled system can receive or send, alongside choice metadata

we deem necessary to make full use of each system’s

description. The second context of use is a snapshot (partial or

full) of the system’s state. We also relate our proposed

schemata to the current state of the art, and how using these

resolves issues that were left pending with previous research.

Keywords

OSC, Open Sound Control, Mapping, Schema, Namespace

1. INTRODUCTION
The development of new instruments for musical performance

has always been at the forefront of technology, from the

mechanical and electromechanical instruments of past times to

the electronic and digital instruments of today.

The advent of synthesizers decoupled musical instruments into

the gestural controller and the sound generator. The gestural

controller forms the part musicians physically interact with,

emitting data for the sound generator to interpret and ultimately

produce the corresponding sound. This separation between

control and output devices can today be witnessed in most

forms of artistic performance, e.g. VJ-ing, new media art, light-

shows, etc., usually each with its own standards and protocols

for communication.

Today, modern performance systems converge towards using

what has emerged as a potential future universal standard for

real-time digital control data: Open Sound Control (OSC) [1].

The great advantage of OSC is that while there is a per-message

schema, there is no overall fixed schema to define or restrict the

set of possible messages, as is the case with legacy protocols

(e.g. MIDI, DMX). A second advantage is that older protocols

can be translated to OSC data with relative ease.

To describe OSC we paraphrase its creators [2]: the basic unit

of OSC is a message, consisting of an Address Pattern (AP), a

Type Tag String (TTS), and arguments. The AP is a string

specifying the entity or entities within the OSC server to which

the message is directed. The TTS gives the data type of each

argument. Finally the arguments are the data contained in the

message. So in the message /voices/3/freq, ‘f’ 261.62558, the

AP is followed by the TTS and finally the corresponding

argument. All points of control of an OSC server are organized

into a tree-structured hierarchy called the server’s address

space. An OSC AP is the full path from the root of the address

space tree to a particular node. In the above example the AP

points to a node named “freq” that is a child of a node named

“3”, itself a child of a node named “voices”. The full set of

possible combinations of APs and TTSs that an OSC server

responds to, we here refer to as that server’s namespace.

OSC provides for several advantages compared to the previous

de facto standards of their respective fields, MIDI, DMX, etc.

Using OSC, interoperability between an arbitrary number of

disparate sources and destinations is straightforward. No longer

are digital musical instruments forced to adhere to the strained

façade that they can behave as keyboard instruments, as was the

case with MIDI, when in fact they are nothing of the sort (see

for example drum, wind and guitar controllers).

However, OSC also introduces new obstacles. First, since there

is no fixed set of messages, each participating server needs to

know what messages it can send to the servers it intends to

communicate with. Currently the OSC standard does not

provide for a means of programmatically discovering all

messages a server responds to. We will refer to this as the

namespace discovery problem. Second, each server’s events

need to be mapped to the messages that the recipient servers

expect to receive, which we will here refer to as the mapping

problem. In this article we propose a solution to the namespace

discovery problem, and relate it to previous research addressing

the mapping problem.

2. BACKGROUND
Both obstacles mentioned are active areas of research. A

solution that has been proposed towards both is reintroducing

namespaces, using one namespace per context of use instead of

a single fixed namespace for all, as was the case with legacy

protocols. SynOSCopy [3] is one such standard namespace

designed for describing synthesizers. The only other such

initiative known to us is the now defunct OpenMediaControl

repository for OSC namespaces [4]. In our view however, this

idea is too restrictive and to some extent contradicting the main

benefit of OSC: its openness and flexibility. No matter the

extent of standardization, cases will always appear that need

functionality beyond that described in the standardized

namespaces. Be it conflicting versions of the same namespace,

or two entirely different namespaces, mapping is still needed in

both cases.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee.

NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression

311

The mapping problem has many proposed solutions, each with

its distinct advantages and disadvantages depending on context

of use. The Libmapper software [5] was first to provide a GUI

and toolset for the manual defining of mappings. The idea of

Mutable Mapping, as implemented in the Mediator software

[6], takes the extra step of facilitating that mappings be

gradually altered, created and destroyed, even during

performance as a form of expression in and of itself. Many

more mapping approaches exist [7], and much room is still left

for further innovation.

To address the namespace discovery problem, OSC querying

solutions have been suggested, the first being by OSC’s

creators [8]. Through a series of extensions to the OSC

protocol, their solution allows for querying an OSC server of its

namespace, as well as its current state.

Querying is intended to address two different problems:

 Describing the server’s namespace: this includes the set

of OSC messages it understands, plus metadata for each

message, such as units, default values, ranges, etc.

 Describing the full state of the server; that is, storing

current values for each of the parameters that can be

controlled with the above set of messages.

The above however, needs applying in two contexts of use:

 Run-time query of the namespace and state, directly

extracting this information from the servers.

 Long-term storage and retrieval of the namespace and

state information for future recall.

Querying systems allows discovering namespace, state and

metadata during run-time, provided a server supports querying.

While query systems provide useful functionality, they face

important obstacles. First, they exclude the vast number of

existing systems which only support OSC up to v 1.1, since

query functionality necessarily requires either that extensions to

the OSC protocol’s set of messages are introduced, or that a

particular address-space structure is adhered to. Second, query

solutions are inherently volatile: all namespace discovery

necessarily occurs during runtime. Mappings set-up are

consequently also volatile, a major obstacle when users have to

define complex mappings between a large number of systems,

arguably a common use case for OSC.

More query solutions have since appeared [9], [10], [11], but

none has seen any significant level of adoption, with the vast

majority of OSC capable systems today implementing no

support for query functionality at all.

3. A DIFFERENT APPROACH FOR

DESCRIBING NAMESPACE AND STATE
Without directly replacing any of the abovementioned

solutions, we here address the namespace discovery problem

with an approach that does not require extending the OSC

protocol, and without volatility: we introduce two XML

schemata, one for the description of an OSC server’s

namespace, and one for the description of its state. We

therefore also address the long-standing call on the

opensoundcontrol.org website, for machine-readable OSC

schemata [12].

While our suggestion of using namespaces may seem familiar,

an important distinction is that we do not at all intend for these

namespaces to ever be standardized. Each simply describes one

server, in one context of use. Moreover, for one particular

server (e.g. a synthesizer), we expect and even condone the

existence of several namespaces, either because the server has

evolved (e.g. new capabilities through a firmware update), or

because a user simply had no use for some aspects of the

servers’ functionality, and so did not include them in the

namespace specification. For this reason, we also predict for the

use of version fields per tag, to aid in differentiating between

evolutionary iterations of the same namespace.

Each schema file also begins with a compulsory tag which

specifies whether it is an OSC-Namespace or OSC-State file,

and a version field to specify which version of the schema the

file follows (the schemata in this article are both v1).

<OSC-Namespace Version="1">

<Node ID="SubtractiveSynth_1" AP="Synth_1" V="3" Continuity="Continuous" Direction="Bi">

<Node ID="Oscillator_1" AP="Osc_1" V="3" Continuity="Continuous" Direction="Bi">

<Node ID="Freq_OSC1" AP="Frequency" V="3" Continuity="Continuous" Direction="Bi">

 <TTS ID="TTS_OSC1_Freq" V="1">

 <TT ID="TT_F_OSC1" V="1" Tag="f" Min="0" Max="20000" Default="440" Unit=”Hertz”>

 </TTS>

</Node>

</Node>

 <Node ID="Filter_F1" AP="Filter_1" V="3" Continuity="Continuous" Direction="Bi">

 <TTS ID="TTS_OSC1_Filter" V="1">

 <TT ID="TT_OSC1_F1_Cutoff" V="1" Tag="f" Default="1.0">

 <TT ID="TT_OSC1_F1_Resonance" V="1" Tag="f" Default="0.0">

</TTS>

 </Node>

<Node ID="Apply_Preset" AP="Apply_Preset" V="3" Continuity="Discreet" Direction="In">

<TTS ID="TTS_AP" V="1" Description="Apply 's' immediately">

 <TT ID="TT_P " V="1" Tag="s" Defalut="Preset_1">

</TTS>

<TTS ID="TTS_AP_Interp" V="2" Description="Interpolate to 's' over 'f' seconds">

 <TT ID="TT_P_Interp" V="1" Tag="s" Default="Preset_1" Trigger=”1”>

 <TT ID="TT_P_InterpTime" V="2" Tag="f" Min="0" Max="1" Default=".5" Trigger=”0”>

</TTS>

</Node>

</Node>

</OSC-Namespace>

Figure 1: Minimal example of a file following the OSC-Namespace XML schema

Proceedings of the International Conference on New Interfaces for Musical Expression

312

3.1 OSC-NAMESPACE SCHEMA
The OSC-Namespace schema consists of only three XML tags (see

Figure 1 for an example namespace): Node, TT and TTS.

Node tags represent one node in the OSC address tree. So, for

example, the address “/Synth_1/Oscillator_1/Frequency” therefore

needs three nested Nodes to be represented. Node tags only have

one compulsory attribute, “AP”, which is the OSC address-part

of the Node. They may then have any number of optional

attributes. We deem the most useful to be:

 “Continuity” (Discreet, Continuous): states if the

message to be interpreted as an event or not. For

example, a button press message is a new event, even if

it has the same value as the previous button press

message, and is thus labelled Discreet. A message

communicating the output sound volume level

however, only makes sense as an event if the value to

be sent is different from the previous one, thus labelled

Continuous.

 “Direction” (in, out, bi): Is the message one the server

responds to, transmits to, or both? A musical controller

might transmit notes, but not respond to received ones

(in). A synth might respond but not transmit (out). A

toggle-button might transmit when pushed, but also

change state when a value is received (bi).

TT tags represent one node’s individual type-tag. They have the

compulsory attribute of “Tag”, which is a single character

representing the OSC type-tag, e.g. ‘i’, ‘f’, ‘s’, etc. Our

recommended optional attributes are:

 “Default” holds a value with which to initialize a new

instance.

 “Min” & “Max” define the range of numerical values

expected. If either or both are omitted, plus and/or

minus infinity should be assumed.

 “Trigger” (1, 0): should a new value set to the type-tag,

result in an entire new message being triggered?

Usually only one of the values should be set to trigger,

leftmost or rightmost, depending on whether the list of

parameters should be treated left to right, or right to left

(Pure Data style or Max/MSP style).

 “Unit” is a string description of the expected

measurement unit.

 “Clip”: if a numerical value reaches the minimum or

maximum, should it clip or be allowed to go beyond

these?

TTS stands for Type Tag String. TTS tags are used to group several

type-tags together. Their use is compulsory. They have no

compulsory or recommended attributes.

The OSC-Namespace schema’s syntax is such that each child

node can be copied out of the address space where it appears,

and still stand as a valid namespace specification. So, in Figure

1, node “Oscillator_1”, were it to be copied out along with its

sub-nodes, forms a valid namespace specification also outside

of the tree-structure within which it appears in the figure.

Also, all tags (Node, TT & TTS) can have the following

optional attributes:

 “ID” is meant to hold an ID String, unique within the

tree structure level, to represent the object to the host. It

is strongly recommended to use ID fields throughout, at

the very least for Node tags, as this facilitates absolute

associations between saved states and nodes.

 “V” is a version number to be incremented every time

the element is changed, useful when choosing between

conflicting versions of two files. If you increase a

version number, the version numbers of all its parent

nodes preceding it in the tree hierarchy should most

usefully also be increased. Note this refers to the

version of the field as decided by the maker of the file.

The schema version, deciding how the file is parsed, is

the field “Version”.

 “Description” is intended for a verbose, free-text

description of the node.

So, a TTS tag which uses all three optional attributes would

look as follows:

<TTS ID="TTS_AP" V="1" Description="Apply 's'

immediately">.

3.2 OSC-STATE SCHEMA (A PRESET)
The OSC-State schema too consists of three XML tags (see

Figure 2 for an example):

Node_State delineates a node’s state. It has no compulsory

attributes, but using an “ID” is recommended, as is specifying a

Node ID Path, “NodeIDP”, to associate the state with an OSC

namespace hierarchy’s root node.

Tuple describes an OSC destination for the state values. Each

Node_State can contain any number of Tuples. These are not

hierarchically organized to reflect the tree structure of the OSC-

Namespace whose state they describe. Instead the tree structure

is exploded sequentially, thus enabling that also partial sets of

state can be stored. Per Tuple, the compulsory attribute is

“NodeIDP” or “AP”, holding the full address to the node for

which the values held in the Tuple are intended. If it is set to

“NodeIDP”, it is expected that “ID” tags have been set in the

OSC-Namespace hierarchy referred to, and the “NodeIDP”

path directs to the node following the path of ID’s. If it is set to

“AP”, instead it refers to the OSC AP of the target node.

Value holds a single value. Each Tuple can hold any number of

Values, each of which has two compulsory attributes: “Tag”

holding the OSC type-tag, and “Val” holding the value.

Note that specifying a NodeIDP in a Node_State or in a Tuple

does not guarantee correct association, as the node pointed to

may not be found in the current state of the system into which

the state file is loaded. Also note the distinction between

NodeIDP, the AP pointing to a specific node within a

<OSC-State Version=”1”>

<Node_State ID="Cool Synth preset 1" NodeIDP="/SubtractiveSynth_1">

 <Tuple NodeIDP="/SubtractiveSynth_1/Oscillator_1/Freq_OSC1">

 <Value Tag="f" Val="440.0"/>

 </Tuple>

 <Tuple AP="/Synth_1/Filter_1" V="3">

 <Value Tag="f" Val="1.0" />

 <Value Tag="f" Val="0.5"/>

 </Tuple>

</Node_State>

</OSC-State>

Figure 2: Minimal example of a file following the OSC-State XML schema

Proceedings of the International Conference on New Interfaces for Musical Expression

313

namespace schema, and the AP stored in the node for which the

values are destined. Depending on the application, these could

be the same, but there are also cases where it is convenient that

they differ, hence providing for using either.

4. DISCUSSION/CONCLUSION
Using such schemata, namespace information is no longer

volatile, making for reliably reproducible mappings between

sessions. Moreover, any OSC capable system can be addressed,

old or new, as no extension to the OSC protocol is necessary.

If schemata such as ours gain adoption, all application-agnostic

OSC-servers will be able to seamlessly share data regarding the

OSC-servers they interact with. We therefore believe that

through using our schemata, interconnecting several OSC-

capable systems becomes more straightforward.

Wide adoption would imply that a user only needs to download

namespace files for his/her OSC-servers. In case no existing

definitions are found, since the format is minimal and

straightforward, it is relatively simple to create and upload

them for others to build on.

Our proposal is fundamentally different from how many OSC-

capable applications currently operate (e.g. TouchOSC [13],

Lemur [14]): we insist on maintaining exhaustive descriptions

of all input and output parameters of each OSC-server type that

can be connected to, rather than require users to enter each

message’s AP, type-tags and metadata manually, one by one, at

every instance of their use. Our solution may require more

work once up front, but it pays off quickly as it requires no

repetition of the effort.

While our design may be criticized for not providing syntax for

dynamic address spaces, we argue that this is in fact part of its

strength, and a deliberate choice made after careful

consideration. Discovery in a dynamic address space is

necessarily a task performed in real-time, and so best served by

a query system, specifications for which there are already

plenty. Furthermore, syntax for dynamic address spaces would

introduce additional software complexity and bring back the

volatility problem previously outlined, with no added benefit

that we are aware of. Our solution is instead purposefully

directed to the still very large number of OSC use contexts

which do not require dynamic address spaces. Finally, there is

nothing to preclude the possibility of using our solution

alongside a query system, thus combining the benefits of both.

The use of these or similar schemata provides functionality that

has been missing to date. It also places few restrictions on their

use, aiming for their adoption in a wide range of use contexts,

both predicted and unknown, in the spirit of the original OSC

protocol. Two software applications are currently in advanced

stages of development, which make use of these schemata.

First, an updated version the open-source, modular visuals

synthesis program Mother [15], is released to coincide with the

publication of this article, including functionality to

automatically generate OSC-Namespace files describing its

state. Second, a significantly updated version of the OSC

mapper/controller application Mediator [6] is to be released in

the near future, which can load and save both OSC-Namespace

and OSC-State files.

We have created a repository to hold documentation, and future

revisions of the schemata (http://code.google.com/p/osc-

namespace-and-state-schemata/). Readers of this article are

encouraged to refer to that address before implementing use of

the schemata, for access to the latest updates and developments.

The authors believe a more widespread adoption would be

beneficial for the community of OSC users.

5. REFERENCES
[1] M. Wright, “OpenSound Control: A New Protocol for

Communicating with Sound Synthesizers,” Proc. 1997

Int. Comput. Music Conf. ICMA, pp. 101–104, 1997.

[2] M. Wright, A. Freed, and A. Momeni, “OpenSound

Control: state of the art 2003,” in Proceedings of the

2003 conference on New interfaces for musical

expression, 2003, pp. 153–160.

[3] “fabb/SynOSCopy,” GitHub. [Online]. Available:

https://github.com/fabb/SynOSCopy. [Accessed: 27-Jan-

2014].

[4] “openmediacontrol Home - openmediacontrol.”

[Online]. Available:

http://openmediacontrol.wetpaint.com/. [Accessed: 06-

Feb-2011] Now defunkt.

[5] J. Malloch, S. Sinclair, and M. M. Wanderley, “A

Network-Based Framework for Collaborative

Development and Performance of Digital Musical

Instruments,” in Computer Music Modeling and

Retrieval. Sense of Sounds, R. Kronland-Martinet, S.

Ystad, and K. Jensen, Eds. Springer Berlin Heidelberg,

2008, pp. 401–425.

[6] I. Bergstrom, A. Steed, and B. Lotto, “Mutable

Mapping: gradual re-routing of OSC control data as a

form of artistic performance,” in Proceedings of the

international conference on Advances in computer

entertainment technology, Athens, Greece, 2009, pp.

290–293.

[7] E. R. Miranda and M. M. Wanderley, New Digital

Musical Instruments: Control And Interaction Beyond

the Keyboard. AR Editions, 2006.

[8] M. Wright and A. Schmeder, “A Query System for Open

Sound Control,” 2004. [Online]. Available:

http://cnmat.berkeley.edu/publications/query_system_op

en_sound_control. [Accessed: 06-Feb-2011].

[9] M. Habets, “Schema System for Open Sound Control

Query System,” 2005.

[10] T. Place, T. Lossius, A. R. Jensenius, N. Peters, and P.

Baltazar, “Addressing classes by differentiating values

and properties in osc,” 2008.

[11] A. Eales and R. Foss, “Service Discovery Using Open

Sound Control,” in Audio Engineering Society

Convention 133, 2012.

[12] “OSC Schemas: standardized OSC Address Spaces plus

their semantics | opensoundcontrol.org.” [Online].

Available: http://opensoundcontrol.org/osc-schemas-

standardized-osc-address-spaces-plus-their-semantics.

[Accessed: 29-Jan-2014].

[13] “h e x l e r . n e t | TouchOSC.” [Online]. Available:

http://hexler.net/software/touchosc. [Accessed: 29-Jan-

2014].

[14] “Lemur – Liine.” [Online]. Available:

http://liine.net/en/products/lemur/. [Accessed: 29-Jan-

2014].

[15] I. Bergstrom and B. Lotto, “Mother: Making the

Performance of Real-Time Computer Graphics

Accessible to Non-programmers,” in (re)Actor3: The

Third International Conference on Digital Live Art

Proceedings, 2008, pp. 11–12.

Proceedings of the International Conference on New Interfaces for Musical Expression

314

http://code.google.com/p/osc-namespace-and-state-schemata/
http://code.google.com/p/osc-namespace-and-state-schemata/

