
WAAX: Web Audio API eXtension

Hongchan Choi
Center for Computer Research in Music and

Acoustics(CCRMA)
Stanford University
Stanford, CA, USA

hongchan@ccrma.stanford.edu

Jonathan Berger
Center for Computer Research in Music and

Acoustics(CCRMA)
Stanford University
Stanford, CA, USA

brg@ccrma.stanford.edu

ABSTRACT
The introduction of the Web Audio API1 in 2011 marked
a significant advance for web-based music systems by en-
abling real-time sound synthesis on web browsers simply by
writing JavaScript code. While this powerful functionality
has arrived there is a yet unaddressed need for an exten-
sion to the API to fully reveal its potential. To meet this
need, a JavaScript library dubbed WAAX2 was created to
facilitate music and audio programming based on Web Au-
dio API bypassing underlying tasks and augmenting useful
features. In this paper, we describe common issues in web
audio programming, illustrate how WAAX can speed up the
development, and discuss future developments.

Keywords
Web Audio API, Chrome, JavaScript, web-based music sys-
tem, collaborative music making, audience participation

1. NEW ERA OF WEB AUDIO
After years of muteness, the web gradually attained the
power to integrate sound through plugins such as Flash
and QuickTime, albeit without capability of real time sound
synthesis. The new audio element in HTML5 was remark-
able in allowing for common audio needs including stream-
ing of audio playback [6]. The recent introduction of Web
Audio API opened a new chapter to the next level of au-
dio application. Currently under the active development,
the goal of this API is to incorporate the capabilities found
in modern music software such as sound synthesis, mixing,
and processing tasks into the web browser without addi-
tional third-party components.

Web Audio API opens the path to use a web browser as
a full-blown music environment and we believe this trans-
formation brings several benefits to the NIME community:
developers can iterate and experiment in a way that never
has been possible; distribution or publishing of a work to
common users or audiences becomes possible with minimum
effort; cutting-edge web technologies such as WebSocket,
WebGL, and WebRTC can be easily integrated into the mu-
sic project simply by writing JavaScript codes [7].

1http://www.w3.org/TR/webaudio/
2https://github.com/hoch/waax

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

The other benefit of the Web Audio API is that the W3C
Audio Working Group developing it which consists of mem-
bers from leading software companies including Google, Ap-
ple, Mozilla Foundation, and W3C invited experts - with the
primary contributor being the Google Chrome team.

2. BREEDS OF MUSIC APPLICATIONS
There have been several breeds of professional music appli-
cations designed to be used on specially equipped worksta-
tions for serious music production. Over the past decades
we have observed their rapid development fueled by indus-
try competition, such that at present it can be difficult to
differentiate them from individual features.

Before the advent of new form factors such as smart-
phones and tablets, most music applications were devel-
oped for the professional market. The difference in form
factors introduced new paradigms by emphasizing casual,
playful and social quality of the application. The success
of mobile apps contributed to a newly emerged market for
music software by embracing these key elements [16]. It is
also worth mentioning that some mobile applications are re-
portedly used for professional music production. Thus, the
boundary between casual and serious production is getting
increasingly ill-defined.

Figure 1: Music Applications built with Web Audio
API

Between the two parallel worlds of professional and mo-
bile music applications, web-based music systems have a
very unique position. Its presence is not limited by form
factors because the web browser exists on various platforms
such as workstation, laptop, handheld and even embedded
system. With the power of real-time audio processing, the
strength in visual interaction, and the freedom from central-

�4�9�9



ized regulation (i.e. App Store), the overall user experience
of web music system shows a huge potential even though
the application may lose some of the advantages of native
execution.

As shown in Figure 1, various projects on the web are
using Web Audio API to demonstrate its power and flexi-
bility: Jam with Chrome, BBC Radiophonic Workshop, and
Plink [4] [2] [8]. The purpose of these demos is to present
novel user experience with the implication of performance
and versatility of Web Audio API.

Using this API is plain and simple as writing JavaScript
codes. However, many web developers who are unfamil-
iar with programming music or audio face a steep learning
curve. Conversely, audio programmers are often unfamiliar
with the details of web programming Our goal is to find
a sweet spot between two opposite ends of the spectrum
accommodating needs from both sides.

3. RELATED WORK
There are numerous JavaScript libraries that simplify and
accelerate the web development. Some of them are so inno-
vative and efficient that they change how developers think
and work. For example, WebGL is derived from OpenGL
ES 2.0 and it is fairly difficult to program OpenGL ES with-
out prior experience [11]. Three.js, a JavaScript WebGL
library, is specifically designed to solve this problem by hid-
ing OpenGL ES behind the high level (human readable)
API [5].

The same approach can be taken to audio programming
and several JavaScript libraries have been crafted to serve
the purpose. The most prominent one is audioLib.js. Its
reliance on plain JavaScript for processing audio results in
low performance, however, the scope of the project is fairly
comprehensive and well-designed inspiring other JavaScript
projects in many ways [9]. Tuna is another library for guitar
effects. It is comparable to WAAX in terms of the imple-
mentation due to the fact that it runs on Web Audio API for
optimized audio processing, but its primary focus is encap-
sulating several audio effects with a simplified interface [1].
Gibber also attempts to provide a platform for experimental
music performance, but its audio processing depends on au-

dioLib.js, which performs audio processing in JavaScript,
as well as other web development libraries [15].

WAAX is distinct from the projects mentioned above:

• WAAX has its own abstraction layer called unit as
an atomic building block. It is derived from the con-
vention of unit generators in common computer music
frameworks.

• All sound synthesis or signal processing is performed
by native code, not in the script level, ensuring opti-
mum efficiency.

• WAAX introduces syntactic sugars3 making the code
more comprehensible with considerably less effort.

• It offers several useful tools for web or audio devel-
opers: analyzer units for canvas element or WebGL
visualization, GUI units for interactive parameter con-
trol, and a simple web-based IDE for rapid develop-
ment.

As WAAX is in early stages of development, there are
several components (which are yet to be released publicly)
to be incorporated into this library in the near future. One

3Syntax within a programming language that is designed to
make things easier to read or to express

of missing parts is WebRTC, the new web technology that
enables peer-to-peer connection between browsers [12]. It
realizes the idea of real time collaboration by interconnect-
ing multiple clients without heavy server-side programming.
The other interesting working draft is Web MIDI API that
empowers the browser to access local MIDI devices (i.e.
USB-MIDI keyboards and controllers) [10].

4. WAAX: KEY FEATURES AND EXAM-
PLES

With our progress on WAAX so far, we report three key
features in this paper: the WAAX unit framework, the vi-
sualizer unit, and the interactive code editor. This section
describes the merits of these features and short code snip-
pets to demonstrate basic usages.

4.1 WAAX Unit Framework
A node is an atomic object of the Web Audio API and an
audio graph (patch) can be generated by connecting multi-
ple nodes in a certain order. Built on top of it, a WAAX
unit is an abstraction of an audio graph with additional
features for a specific purpose. This abstraction is to hide
underlying tasks from users and to provide easy access to
parameters.

1 // creating units

2 var saw = new WX.Oscil({ type:"sawtooth" }),

3 sqr = new WX.Oscil({ type:"square" }),

4 lpf = new WX.ModLPF({ cutoff:2500, Q:12 }),

5 env = new WX.ADSR({ a:0.001, d:0.002 }),

6 vrb = new WX.ConVerb({ source:"ir/hall.wav" });

7 // building an audio graph

8 WX.link(saw, lpf, env, vrb, WX.DAC);

9 // additional connection

10 sqr.to(lpf);

11 // adjust parameters

12 saw.frequency = sqr.frequency * 2;

13 saw.gain = 0.2;

14 rev.mix = 0.3;

15 env.params = { s:0.5, r:0.2, gain:0.5 };

16 // trigger a note

17 env.noteOn();

Listing 1: Using WAAX

From line 2 to 5, the code constructs 5 units with initial
settings by passing JavaScript object literals. Line 6 implies
that loading an impulse response file for reverberation can
be done simply by passing a URL. The WX.ConVerb unit en-
capsulates all the necessary steps to fetch data file from the
server via XHR(XMLHttpRequest)4. Line 8 shows the exam-
ple of syntactic sugar connecting 5 units in one line of code.
Note that WX.Out is the master fader of the WAAX system.
Getters and setters set parameters (line 12-15) and assign-
ing an object literal to the .params setter will automatically
map values accordingly (line 15). Finally, a developer can
trigger a note with the method .noteOn() of WX.ADSR unit
as shown at line 17.

4.2 Visualizer
HTML5 brought 2D and 3D graphics into modern browsers.
A stream of audio sample can be displayed by these visual
components but it requires a bit of configuration to draw au-
dio into the visualization. This is where the analyzer units
4The Web API used to send HTTP requests directly to a
web server and load the server response data directly back
into the script.

�5�0�0



1 // create canvas and 2d context

2 var cvs = document.getElementById(’wx-viz’);

3 var ctx = cvs.getContext(’2d’);

4 // create an oscillator and a visualizer

5 var osc = new WX.Oscil({ frequency:688 }),

6 viz = new WX.Visualizer({ context:ctx });

7 // connecting units

8 osc.to(WX.DAC);

9 osc.to(viz);

10 // assign user-defined function

11 viz.onDraw = function(buffer, c, w, h) {

12 c.clearRect(0, 0, w, h);

13 c.beginPath();

14 for(var i = 0, b = buffer.length; i < b; ++i)

15 ctx.lineTo(i, buffer[i]*100+100);

16 ctx.stroke();

17 }

18 // rendering loop

19 (function draw() {

20 requestAnimationFrame(draw);

21 viz.draw();

22 })();

Listing 2: Using WX.Visualizer

in WAAX come in: WX.Waveform and WX.Spectrum are de-
signed to visualize waveform and spectrum. WX.Visualizer
takes care of a user-defined renderer to draw any arbitrary
visualization as shown in Listing 2.

Listing 2 demonstrates that the visualizer unit can be
treated as a regular audio unit. In line 9, an audio stream
goes into the visualizer unit. Line 11 to 17 defines the user-
defined renderer by assigning it to .onDraw property of the
visualizer which is executed every frame by the animation
loop in Line 19 to 22. Customizing visualization can be done
by modifying various visual properties of the 2D context
instance(viz).

4.3 Interactive Code Editor
The web-based code editing has become popular because it
introduces numerous advantages over offline editing: instant
publishing to the web, effortless collaboration, secure cloud
storage, and more. Services like jsfiddle5 and jsbin6 take
this concept further by providing small IDEs (integrated
development environments) for web programming. These
environments take care of all the prerequisites for common
web projects such as getting a hosting service, setting up
servers, and installing libraries.

The most remarkable benefit in this environment is that
the code modification can be instantly interpreted by the
JavaScript engine in the web browser. This encourages
rapid experiments and iterations with minimum effort - our
rationale for creating the interactive code editor for WAAX
and Web Audio API. (See Figure 2) With this mini IDE, one
can swiftly sketch a musical idea by writing code directly on
the web and hearing the result on the fly. To finalize their
work, a user can export their code as a HTML file that can
easily be imported to the other web projects.

5. USE CASES

5.1 Large Scale Audience Participation

5http://jsfiddle.net/
6http://jsbin.com/

We believe the most relevant use case out of this technology
for the NIME community is the audience participation and
collaborative music making. There have been attempts to
realize collective user experiences using mobile platforms
[13][14]. However, the distribution of mobile software in a
centralized marketplace suffers from regulatory procedures,
an obstacle that prohibits fast experimentation and even
participation, which makes on-site participation virtually
impossible. On the contrary, a web-based solution is perfect
to achieve this goal as the following scenario suggests:

• A web server can be established to serve two purposes:
software distribution and coordination between par-
ticipants.

• Users can load pre-made instruments onto their web
browser on any platform simply by accessing the web
page on the server. No additional installation or au-
thentication is required.

• Without reloading the page, the server can send and
receive data to arrange the connected clients by man-
aging rhythm, timbre, instrumentation and etc.

• The boundary of the network is not limited to the local
area, bypassing NATs or firewalls because the entire
communication is based on WebSocket or WebRTC
via ICE(interactive connectivity establishment), un-
like the UDP-based protocol OpenSoundControl.

5.2 Audio Programming Hub
Web-based code editors are already a great fit for this task.
With their service, developers can share code snippets with
others without setting up a web service. Furthermore, ver-
sion control systems allow anyone to fork the original code
to fix, improve or expand it. Collective efforts like this
might result in an ever-expanding audio code library that
anyone can fetch or contribute.

5.3 Collective Content Creation
With the WAAX framework, developers can easily create a
custom unit from a new idea or algorithm. Sound designers
can produce presets or a sample library that can be used
in conjunction with the new unit. A collection of WAAX
units and audio content can be bundled into one package for
easy distribution as in the business model we have seen in
the music production industry for decades. Needless to say,
using such well-crafted audio software will improve sonic
experience on the web.

6. CONCLUSION AND FUTURE WORK
For the last few months of development, our primary goal
was to build a solid scaffolding with a user-friendly interface.
With the recent addition of analyzer units and the interac-
tive code editor, we foresee the potential of this project
to transform the web browser into a music platform for
creation and performance. Although support for external
MIDI devices is still in the drafting phase, we will continue
to expand the territory once the Web MIDI API is publicly
released.

The Web Audio API is currently supported by cutting-
edge browsers such as Chrome and Safari. From the per-
spective of general web development, these inconsistencies
of implementation between various vendors have been a
great difficulty in web programming. Polyfills7 are com-
monly employed to work around this problem. WAAX will

7JavaScript code which provides facilities that are not built
into a web browser.

�5�0�1



Figure 2: WXIDE: The interactive code editor for WAAX

target Chrome as a primary platform and will try to sup-
port Safari and FireFox with polyfills as the project moves
forward. As of the time of writing, support on the Web
Audio API by Internet Explorer is not planned thus we will
not support it [3].

From the standpoint of the NIME community, we expect
to see larger scale experiments using the web as a musically
expressive media. The seamless integration with rich visual
components such as 2D/3D graphics, HTML and CSS will
open a whole new level of interactivity that cannot be found
in many native audio applications. Instant interconnection
between clients will enable a compelling form of collabora-
tive music making. Moreover, we can continue to design
mobile music experiences without spending resources devel-
oping or publishing of native applications since support for
the Web Audio API on mobile web browsers is planned by
major vendors in the near future.

7. ACKNOWLEDGMENTS
We would like to thank Chris Rogers(Google) for creat-
ing Web Audio API and Boris Smus(Google) for provid-
ing invaluable input to our project. We are also grate-
ful to Chris Chafe(CCRMA), Luke Dahl(CCRMA), John
Granzow(CCRMA) and Collin Sullivan(CCRMA) who helped
develop the academic research and offered technical advices
on web development.

8. CODE REPOSITORY
The entire code repository including code examples in this
paper is available on GitHub at:

https://github.com/hoch/waax

9. REFERENCES
[1] An audio effects library for web audio.

https://github.com/Dinahmoe/tuna. Accessed:
02/01/2013.

[2] Bbc radiophonic workshop.
http://webaudio.prototyping.bbc.co.uk. Accessed:
04/23/2013.

[3] Get ready for plug-in free browsing (internet
explorer). http://msdn.microsoft.com/en-us/
library/ie/hh968248. Accessed: 02/01/2013.

[4] Jam with chrome. http://www.jamwithchrome.com/.
Accessed: 04/23/2013.

[5] Javascript 3d library.
https://github.com/mrdoob/three.js/. Accessed:
02/01/2013.

[6] Mozilla developer network: <audio>.
https://developer.mozilla.org/en-US/docs/HTML/

Element/audio. Accessed: 04/23/2013.

[7] Mozilla developer network: Html5. https:
//developer.mozilla.org/en-US/docs/HTML/HTML5.
Accessed: 04/23/2013.

[8] Plink by dynahmoe.
http://labs.dinahmoe.com/plink/. Accessed:
04/23/2013.

[9] A powerful audio tools library for javascript. https:
//github.com/jussi-kalliokoski/audiolib.js.
Accessed: 02/01/2013.

[10] Web midi api, w3c editor’s draft.
http://webaudio.github.com/web-midi-api/.
Accessed: 02/01/2013.

[11] Webgl - opengl es 2.0 for the web.
http://www.khronos.org/webgl/. Accessed:
04/23/2013.

[12] Webrtc 1.0: Real-time communication between
browsers, w3c editor’s draft. http://dev.w3.org/
2011/webrtc/editor/webrtc.html#rtcdatachannel.
Accessed: 02/01/2013.

[13] G. Essl and M. Rohs. Interactivity for mobile
music-making. Organised Sound, 14(02):197–207,
2009.

[14] J. Oh and G. Wang. Audience-participation
techniques based on social mobile computing. In
Proceedings of the International Computer Music
Conference (ICMC 2011), 2011.

[15] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. In Proceedings of the
International Computer Music Conference (ICMC
2012), 2012.

[16] G. Wang, G. Essl, J. Smith, S. Salazar, P. Cook,
R. Hamilton, R. Fiebrink, J. Berger, D. Zhu,
M. Ljungstrom, et al. Smule= sonic media: An
intersection of the mobile, musical, and social. In
Proceedings of the International Computer Music
Conference (ICMC 2009), pages 16–21, 2009.

�5�0�2


	new era of web audio
	breeds of music applications
	Related Work
	waax: key features and examples
	WAAX Unit Framework
	Visualizer
	Interactive Code Editor

	use cases
	Large Scale Audience Participation
	Audio Programming Hub
	Collective Content Creation

	conclusion and future work
	acknowledgments
	code repository
	References



