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ABSTRACT
We present a system that determines whether an adult-sized
humanoid has correctly played a pitched percussive instru-
ment in real time. Human musicians utilize sensory feed-
back to determine if they are playing their instruments cor-
rectly and robot performers should be capable of the same
feat. We present a classification algorithm that uses audi-
tory and haptic feedback to decide if a note was well- or
poorly-struck. This system is demonstrated using Hubo, an
adult-sized humanoid, which is able to play pitched pipes
using paddles. We show that this system is able to deter-
mine whether a note was played correctly with 97% accu-
racy.

Keywords
Musical robots, humanoids, auditory feedback, haptic feed-
back

1. INTRODUCTION
As robots have become more sophisticated, it has become
possible for them to participate in increasingly complex and
intricate musical activities [1]. In particular, we are inter-
ested in developing general-purpose humanoids capable of
performing autonomously alongside humans in music en-
sembles. While the literature is replete with examples of
machines that can sing, dance, and play music, there is
more to a live musical performance than simply moving in
a predefined way to produce the desired sounds from an in-
strument [2, 3]. While being able to perform a pre-rendered
performance is one thing, live shows inevitably feature vari-
ations and differences from prior events that require the
performer to adapt and adjust. Humans can accomplish
this, in part, by using their senses to obtain feedback from
the performance around them and determine what is dif-
ferent. For robots to accomplish the same goal, they must
also use sensor feedback from their surroundings to adjust
their playing to suit the environment.

One particularly useful capability for a musical robot
would be the ability to determine if it is successfully play-
ing its instrument. In order to produce the correct notes
or sounds, instruments must be played in a particular way.
For example, a performer may need to pluck a string at a
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certain location, strike a drumhead in a particular place,
or move his or her arm into a specific position relative to
a theremin. Should the musician play the instrument in
a different manner, the resulting sound may be completely
different from the desired note. Because the instrument,
musician, and even environment may shift between or dur-
ing performances, the musician cannot assume that just be-
cause the previous song was performed correctly, the next
one will be accurate as well [4]. When humans perform, they
pay attention to how their instrument sounds and feels as
they play it in order to gauge their performance. To accom-
plish this same task, a musical robot should also be able to
use sensor feedback to estimate whether, when it attempts
to play a note on an instrument, it successfully does so.

In order to maximize the flexibility of such a performance
robot, the final system requires several key features. First,
it should be able to utilize different types of sensory infor-
mation. A robot in one situation may be able to hear its
own performance very clearly, and thus should be able to
use auditory feedback to determine if it is playing correctly.
A drum-playing robot might be able to feel the forces ex-
erted by the impact of its stick on a drumhead, and should
have the ability to utilize haptic feedback for similar pur-
poses. Ideally, the system will be able to combine different
types of feedback to produce more reliable results. The sys-
tem should also be able to work with physical instruments
and function in real acoustic environments. While certain
pitch detection algorithms that use clean digital audio have
been developed for robots, these have limited utility in a
live concert environment when the instruments are acous-
tic and the auditory source is contaminated by noise [5].
Robots themselves are often noisy, compounding the prob-
lem [6]. As such, the auditory portion of the algorithm
should be able to function, even when using microphones to
record acoustic instruments.

Our efforts focus on Hubo, an adult-sized humanoid de-
veloped by the Korean Advanced Institute for Science and
Technology (KAIST) (Figure 1). This robot has over forty
degrees of freedom and is capable of smooth and fluid mo-
tion [7]. In order to allow the robot to play musical notes,
Hubo has been provided with a PVC instrument referred
to as a “Hubophone” (Figure 2), which is similar to instru-
ments used by the performance artists Blue Man Group1.
Each Hubophone contains multiple pitched pipes that are
struck with a foam paddle. The system is designed to de-
termine if the robot successfully played a particlular note.

Hubo has previously been programmed to perform a mu-
sical sequence on pipe instruments. Specifically, this system
allowed a Hubo quartet to use three Hubophones and one
drum kit to play Come Together by The Beatles2 (Figure

1blueman.com
2youtube.com/watch?v=UMQLX-aw_dc
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Figure 1: Hubo, an adult-sized humanoid robot

3). The robots, however, had to be precisely positioned
to play each instrument, a process which took a great deal
of time. An automatic calibration system would make such
performances more viable by drastically reducing the set up
time. Automatically determining whether or not the robots
are correctly striking the instruments is an important first
step to such a calibration system.

2. LITERATURE REVIEW
Several musical humanoids have been developed by various
groups. As one example, the Toyota Partner Robots are
a series of humanoids that play musical instruments such
as trumpets, violins, and drums [2]. Another is the Ad-
vanced Step in Innovative MObility (ASIMO), a humanoid
designed and produced by Honda, which can step, scat, and
sing in response to music [8]. ASIMO also conducted the
Detroit Symphony Orchestra through a performance of The
Impossible Dream [9]. These robots, however, could not de-
termine if they made mistakes in their performance. This
made them less suitable for live performances of unknown
works.

The RoboNova, a small humanoid developed by HiTec
robotics, has been programmed to play simple melodies on
the keyboard using customized ‘fingers’ [5]. Before playing a
piece, this robot could use auditory feedback to determine
the position of the keys. This allowed the humanoid to
calibrate itself and resulted in better performances. Adding
other sources of data, such as a camera, was mentioned as
potentially fruitful future work.

Other groups have incorporated feedback and calibration
into their systems as well. Mizumoto et al explored using
audio feedback to assist HRP-2, a humanoid robot, in play-
ing a theremin [4]. This algorithm induced the robot to
move its arms around the instrument, analyzed the resul-
tant pitches, and determined the optimal arm positions to
produce a sequence of notes. This system, however, could
assume that there would always be a note being played,
and did not consider the possibility of missing the theremin
entirely. We are interested in implementing a system that
can determine whether or not a note was played, as this
information would also be useful for calibrating the robot.

Murphy et al developed a system for online calibration

Figure 2: A “Hubophone” as set up for a perfor-
mance

of a drumming robot [10]. Many drumming robots use rel-
atively inexpensive and imprecise solenoids to trigger the
actuators that generate the drumming motion, but the re-
lationship between the desired volume of the sound and the
solenoid’s actual output is generally nonlinear in a manner
that varies from robot to robot. In order to avoid hav-
ing to recalibrate for each robot, the authors developed an
algorithm for automatic pre-calibration that linearized the
solenoids based on feedback from the robot’s performances.
This system, however, used only a single data source: a
piezoelectric sensor mounted on the drum. It also required
that the instruments themselves be modified with the piezo-
electric sensors, limiting the applicability of the algorithm.
It would be preferable for performing robots to be able to
use instruments without needing them to have been pre-
pared in advance.

Ness et al consider a similar problem [11]. This group
had the robot strike the drum with many different veloc-
ities, then calculated the Mel-Frequency Cepstral Coeffi-
cients (MFCCs) of the sound produced by the robot. MFCCs
are a representation of the frequency content of audio, warped
according to how the human ear perceives sound. The first
MFCC coefficient was an approximator of the loudness of
the signal, and the remaining coefficients were used to evalu-
ate the timbre content of the strike. This data was then used
in a mapping to derive a correlation between the robot’s ve-
locity and the resultant sound. This system, while impres-
sively accurate, also only analyzed acoustic data, neglecting
haptic feedback.

O’Modhrain experimented with adding haptic feedback to
virtual instruments to determine whether or not this made
them easier for humans to play [12]. This study demon-
strated the importance of haptic feedback for playing in-
struments, and indicated that using this type of sensory
data could be useful for robotic applications.

3. ROBOT AND INSTRUMENT DETAILS
We chose the Hubo as our robot platform (Figure 1). Hubo
is an adult-sized humanoid that stands over four feet tall
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Figure 3: Four Hubo robots performing a rendition of Come Together by the Beatles

and possesses over forty degrees of freedom. It is capable of
grasping a paddle or drumstick in its hands with the aid of
velcro, and uses six motors (three shoulder, one elbow, and
two wrist) to move its arm and strike a percussive instru-
ment.

Hubo is equipped with multiple sensors, including three
to measure force and torque readings in each wrist. These
sensors detect changes in the force and torque placed on the
hand while playing an instrument. The robot is also capa-
ble of reading auditory data through external microphones
which, when mounted near the robot’s performance space,
allow it to hear the instrument that it is playing. Hubo
is therefore capable of detecting both auditory and haptic
data, which can then be used to help the system determine
if it is playing an instrument correctly.

The instrument that we have selected for the robot, the
“Hubophone,” consists of four open, pitched PVC tubes
(Figure 2). When an open cylindrical pipe is struck, it will
vibrate at its resonant frequency as well as integer multiples
(or harmonics) of that frequency. These harmonics can be
calculated with the equation:

fn =
nc

2L
(1)

Where n is the harmonic number, fn is the frequency of
that harmonic, c is the speed of sound, and L is the length
of the tube.

The pipes in each Hubophone are cut to a particular
length L such that the resulting f1 is the desired pitch.
The four-pipe configuration was chosen to allow each hand
to play two notes without requiring it to travel too far. This
allows the robot to play more rapidly without damaging its
motors, making the system more useful for performance en-
vironments.

In order for the robot to perform in live concerts and
shows, it must be able to determine whether or not its mo-
tion actually hits a pipe and plays a proper note. The pipes
are large and must be hit with sufficient force to make them
resonate. A blow that is too weak, or only glances off the
pipe, will not produce noticeable pitched content, and the
note will not sound correct. Accuracy is also crucial. If
the robot misses the center of the pipe by more than a few
inches, the paddle will glance off the side and produce a dull,
thumping sound instead of a clear note. Larger inaccura-
cies could result in the robot missing the pipe completely,
hitting the wooden frame or empty air.

4. DATA COLLECTION
In order to gather data to train and test our system, a Hubo
robot was recorded while striking the Hubophone pipes. We
collected force-torque and audio recordings as the robot re-
peatedly played two different pipes with its right hand. The
robot’s position was shifted approximately every 20 record-
ings in order to obtain more variety in the dataset. We
collected a total of 650 recordings for each pipe, evenly dis-
tributed between correct and incorrect hits. Immediately
after playing each note it was labeled as a good or bad hit
by at least one researcher with a musical background. These
judgements were based on both the audible quality of the
note and the position of the paddle when it struck the pipe.
Video recordings of the robot playing were used to assist in
the ground-truth labeling if there was any uncertainty.

Each hit was designed to take 0.25 seconds to complete.
Audio and haptic data were recorded for two seconds from
the start of the playing motion in order to analyze the sus-
tain and decay of the note. Monophonic audio was recorded
at 44.1 kHz through a microphone mounted near the struck
end of the pipes, and haptic data was recorded from both
wrists at 100 Hz. This data included the front-back and left-
right torques (denoted as Mx and My respectively), and the
up-down force (Fz). Both the audio and haptic data were
recorded by the same computer that signaled the robot to
play in order to ensure that they were synchronous with the
robot’s motions and each other.

5. SYSTEM ALGORITHM
After the robot plays a note, it must assess the note’s qual-
ity. This algorithm can be broken into two steps. First, the
robot must extract informative features from the auditory
and haptic data. Second, those features are used in a clas-
sification algorithm to estimate whether or not the robot
successfully played the desired note.

5.1 Feature selection
For audio data, we determined that the harmonic energy is
an informative and useful indicator of the robot’s accuracy.
A strong hit on a particular pipe will produce a sound that
contains more energy at that pipe’s harmonics than when
the robot misses, deflects off the side of the pipe, or hits
the pipe too softly. The first three harmonics in particular
should contain noticeably more energy on successful hits
than unsuccessful ones. By taking the ratio of the energy
in the first three harmonics to the total energy in the audio
frame, a feature called the harmonic ratio can be calculated.
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In order to calculate the total harmonic ratio for a hit,
the robot breaks the two seconds of input audio into 100
msec frames and processes each one separately. The fre-
quency content of each frame is calculated with a Short-
Time Fourier Transform, and the bins corresponding to the
first three harmonics of the desired note are identified. The
energy in these bins, total energy of the signal, and ratio of
these two values are calculated. Once all frames have been
processed, the average ratio for the entire signal is deter-
mined and used as the audio feature.

Figure 4 shows the harmonic energy in each example plot-
ted against the total energy for that example. These plots
show that the audio features labeled as ‘good’ or ‘bad’ tend
to cluster together, allowing classification with relatively
high accuracy in spite of the overlap between classes. The
plots also show different clustering patterns for the two
pipes, most likely resulting from the different motions re-
quired to play the notes.
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Figure 4: Audio features with ground truth labels

Features are also extracted from the force and torque
sensor readings. Each set of sensor readings is averaged,
creating a set of three features [F̄z, M̄x, M̄y]. This set of
features represents the average magnitudes of the force and
torque on the wrist. As the robot plays a pipe with vary-
ing force and at different locations, the force and torque
readings should reflect the differences in hit technique and
quality. Figure 5 shows three-dimensional plots of the train-
ing dataset with ground truth labels for both pipes. Like
with the audio data, examples labeled as ‘good’ or ‘bad’

tend to cluster together.
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Figure 5: Force-torque values with ground truth
labels

5.2 Classification
We used support vector machines (SVMs) to classify ex-
amples via the LIBSVM library [13]. SVMs create a multi-
dimensional decision boundary in order to classify new data
as either a good or bad hit. Prior to classification, each
set of features was normalized to have zero mean and unit
variance in order to aid in classifier training. A separate
SVM was trained for each pipe to account for the distinct
motions and forces required to play each note, as well as
the different pitch of the notes. In order to determine the
optimal features for classification, we also trained multiple
classifiers using different SVM kernels and different feature
sets (audio only, haptic only, and combined). Once trained,
these models could be used to classify new, unlabeled data
and determine whether the robot should change its playing
motion.

6. EXPERIMENTS
We evaluated our system on a dataset of 1300 examples,
650 per pipe. The samples for each individual pipe were
split into two sets, a training set (400 points per pipe) to
train our SVM, and a testing set (250 points per pipe) for
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Table 1: Training set system accuracy. Units are in %

Pipe 1 Pipe 2
10.5 in. from mike 14.5 in. from mike

SVM kernel Feature f1 = 49.9 Hz. f1 = 80.8 Hz. Mean

Linear polynomial
Harmonic ratio 70.0 97.5 83.8

Force-torque mean 93.3 85.5 89.4
Combined 97.8 99.3 98.5

2nd order polynomial
Harmonic ratio 70.3 78.5 74.4

Force-torque mean 76.8 97.5 87.1
Combined 84.8 98.0 91.4

3nd order polynomial
Harmonic ratio 64.3 92.0 78.1

Force-torque mean 88.0 80.3 84.1
Combined 96.3 98.8 97.5

Radial basis function
Harmonic ratio 78.75 97.5 88.1

Force-torque mean 93.8 97.5 95.6
Combined 99.3 99.0 99.1

Table 2: Testing set system accuracy. Units are in %

Pipe 1 Pipe 2
10.5 in. from mike 14.5 in. from mike

SVM kernel Feature f1 = 49.9 Hz. f1 = 80.8 Hz. Mean

Radial basis function
Harmonic ratio 94.2 95.0 94.6

Force-torque mean 98.2 76.0 87.1
Combined 97.1 98.7 97.9

verification. Each set contained equal numbers of good and
bad hits.

For the training set, we trained 12 SVMs for each pipe.
These classifiers tested four different kernels (linear, poly-
nomial degrees 2 and 3, and radial basis function) on each
of three feature sets (audio only, haptic only, and com-
bined). Each classifier was evaluated using leave-one-out
cross-validation (LOOCV), in which a classifier is trained
on all but one data point, and is then tested on the final
example. This process is repeated for all examples and the
final classifier accuracy is the average accuracy of all trials.
After evaluating the results on the training set, the best
kernel for each feature set was used to train new SVMs on
the testing set. The testing set accuracy was also obtained
using LOOCV.

We also compared our auditory results with other com-
mon features to validate our decision to use the harmonic
ratio. In particular, we considered the total energy in the
signal, as well as several statistical spectrum descriptors
(SSDs) commonly used to describe the shape of an acous-
tic spectrum [14]. These include the spectral centroid (the
‘center of gravity’ of a spectrum), flatness (a measure of
a spectrum’s uniformity), flux (a measure of a spectrum’s
derivative), and rolloff (frequency below which 85% of the
spectrum’s energy resides). To evaluate our system against
the best possible case of the SSDs, the SSD features were
classified with an oracle threshold system that was provided
with the 400 training examples and determined one or two
thresholds to optimally separate the classes. Finally, it was
tested on the examples from the testing dataset.

7. RESULTS
The SVM results on the training set are shown in Table 1.
As the data shows, the radial basis function (RBF) kernel
SVM outperforms the linear and polynomial kernels for all
feature sets on the training data. The results for the testing
data set, trained using the RBF kernel, are displayed in

Table 2. The algorithm achieves 94% accuracy using only
audio data and 87% accuracy using only haptic data. This
implies that both types of sensory data provide useful, but
different, information about the quality of a played note.

The comparison of our auditory classification to an ora-
cle system using various statistical spectrum descriptors is
displayed in Table 3. It is clear that, of the spectrum de-
scriptors, the spectral flux and centroid compare best to the
harmonic ratio. As the spectral flux measures the rate of
change of the spectrogram, and the centroid measures its
weighted spectrum, this is likely due to a Hubophone hit
abruptly shifting the spectrogram to a new center. The to-
tal energy of the signal also proved to classify the signal at
better-than-chance accuracy, likely because of the loudness
of the successful notes. Particularly for notes further from
the microphone, it could be useful to incorporate these three
features into a later version of the system. The harmonic
ratio, though, still proved to be superior.

The other statistical spectrum descriptors appear to be
less useful. Spectral flatness and rolloff classify very poorly.
This would imply that the relative uniformity of the spec-
trum, and the concentration of energy in the lower frequen-
cies, is not overly impacted by the successful performance
of a note.

8. CONCLUSION
This work demonstrates that audio and haptic feedback can
be utilized, jointly or alone, to determine whether a robot
has correctly played a pitched pipe instrument. With re-
sults exceeding 97% on average, the classification system
performs significantly better than chance (50%). This is the
first major requirement for designing an automatic calibra-
tion system, which would save time and energy for human
operators working with musical robots. This classification
algorithm, therefore, is a useful first step in making more
flexible and capable performing humanoid robots.

One major aspect of future work will include the uti-
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Table 3: Auditory feature comparison. Accuracy is in units of %

Pipe 1 Pipe 2
10.5 in. 14.5 in.

Feature Classification f1 = 49.9 Hz. f1 = 80.8 Hz. Mean
Total energy

Oracle threshold

83.6 58.8 71.2
Spectral centroid 18.0 70.0 44.0
Spectral flatness 47.6 47.6 47.6
Spectral flux 84.4 50.0 67.2
Spectral rolloff 48.0 46.4 47.2
Harmonic ratio SVM 94.2 95.0 94.6

lization of visual data. In addition to haptic and auditory
feedback, a robot should be able to use its camera to look
down and determine if it is hitting the pipes or not. The
introduction of such a system would allow the robot to be
more certain that it could truly hit the pipes correctly. Such
data could be especially useful in very noisy acoustic envi-
ronments (such as crowded dance halls), where it may be
difficult at first to distinguish between a correct hit and an
almost-correct hit based on audio data.

Accuracy and robustness to difficult situations, such as
noisy real-world environments, could potentially be improved
by incorporating other features into the SVM, particularly
the more useful of the statistical spectrum descriptors. It
would be interesting to see if adding information about
the spectral centroid and flux would improved accuracy
for pipes at varying distances from the microphones. We
may also consider still other auditory features, such as Mel-
Frequency Cepstral Coefficients [11].

The next step after creating an accurate classifier is to
develop a motion correction algorithm for the robot. Once
the robot has determined that ia note has been played in-
correctly, it should be able to change its playing motion to
try to correct its playing.

Finally, we want the robot to be able to play with mu-
sical expression. When human musicians play instruments,
they do not simply strike each note in exactly the same
way whenever they play it. They change how they play the
instruments in order to create different sounds that evoke
certain emotions or moods. By playing the notes in differ-
ent ways, the robot could demonstrate an expressive perfor-
mance. This would make it more useful for ensembles that
wish to have the robot display and perform the appropriate
mood for the music they are playing.
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