
Unsupervised Play: Machine Learning Toolkit for Max

Benjamin D. Smith
University of Illinois at Urbana-Champaign

Institute for Advanced Computing Applications
and Technology
Urbana, Illinois

bdsmith3@illinois.edu

Guy E. Garnett
University of Illinois at Urbana-Champaign

eDream, Illinois Informatics Institute
Urbana, Illinois

garnett@illinois.edu

ABSTRACT
Machine learning models are useful and attractive tools for
the interactive computer musician, enabling a breadth of in-
terfaces and instruments. With current consumer hardware
it becomes possible to run advanced machine learning algo-
rithms in demanding performance situations, yet expertise
remains a prominent entry barrier for most would-be users.
Currently available implementations predominantly employ
supervised machine learning techniques, while the adaptive,
self-organizing capabilities of unsupervised models are not
generally available. We present a free, new toolbox of unsu-
pervised machine learning algorithms implemented in Max
5 to support real-time interactive music and video, aimed
at the non-expert computer artist.

Keywords
NIME, unsupervised machine learning, adaptive resonance
theory, self-organizing maps, Max 5

1. INTRODUCTION
While ML applications are providing significant develop-
ments and advances in interactive music performance, the
tools continue to demand high degrees of expertise. Typ-
ical applications today are either crafted by a sole techni-
cian/artist [10, 12] or by a team of developers and artis-
tic creators [9]. However prepackaged libraries and tool-
boxes for popular development environments are becom-
ing increasingly prevalent [3, 4], setting the stage for wider
adoption of these techniques within the larger community.

The ML techniques available to the interactive artist to-
day consist predominantly of supervised models and algo-
rithms. This approach allows the user to carefully cull train-
ing data in order to achieve high degrees of accuracy and re-
peatability in the system’s operation. Further, common lim-
itations, such as extremely long training periods and high
computational requirements, are being overcome in recent
implementations [3], enabling live, interactive learning and
model construction.

Adaptive or unsupervised techniques, which are largely
absent in available packages, can provide a number of ad-
vantages in certain situations [8]. Unlike supervised tech-
niques, the adaptive models learn incrementally, and train-
ing is always additive, avoiding the requirement of repro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’12, May 21-23 2012, Ann Arbor, Michigan.
Copyright remains with the author(s).

cessing the entire training set at each iteration or epoch.
They also learn immediately, while supervised techniques
often require thousands of epochs before they converge to a
suitable tolerance. Unsupervised algorithms arguably map
well to models of human perception and are self-organizing,
being able to function without any external intervention.

Towards making the breadth of ML models available to
the interactive musician and artist we developed and re-
leased a small library of unsupervised techniques for the
Max environment1. Self-organizing maps (SOM)[6], adap-
tive resonance theory (ART)[1], multi-layer perceptron net-
works (MLP), and spatial encoding techniques [2] are all
available as pre-compiled binaries and/or java objects for
Max. The library is freely distributed for non-commercial
applications. We present a discussion of the affordances and
limitations of these models as they relate to interactive mu-
sic to serve as a brief tutorial for the non-expert user on
the use of unsupervised ML techniques for real-time perfor-
mance.

2. ML.SOM
The self-organizing map (SOM) [6] provides unsupervised
clustering and classification, mapping high-dimensional in-
put data onto a two-dimensional output space, preserving
the topological relationships between the input data items
as faithfully as possible. The primary strength of the SOM
is its fundamentally visual metaphor, translating higher di-
mensional data into an easily portrayed map. In other
words, the SOM produces a projection of the input data
space onto a two-dimensional map such that proximity on
the map parallels some sort of similarity (or proximity) in
the source data space. Visualizing the map can lead to
quick, intuitive insights into the organization of the source
data, revealing clusters of importance and interest. It is
a computationally cheap model, and arguably mimics hu-
man cognitive models leading to results that parallel human
perception and decisions at a basic level.

At its core the SOM is a neural network lattice of nodes
connected in a two-dimensional configuration (although higher
dimensional arrangements are possible) in which each node
represents a possible category in the input. The SOM may
also be considered a nonlinear generalization of principle
component analysis over which the SOM arguably provides
many advantages [7].

When an input is presented to the SOM a search is per-
formed to locate the most similar (i.e. closest, using some
conventional distance measure) or winning node in the map.
Learning is then performed, adapting the winning node and
its neighbors to more appropriately represent this new in-
put. The learning is calculated as a gradual reduction of the
distance between the input and the matching map node (the

1http://cycling74.com



process can be understood as a simple low-pass filter), and
this rate of adaptation is controlled by the map’s learning
rate. The signature topographical appearance of the SOM
is a result of adapting nodes in a gradually decreasing neigh-
borhood around the winner. This effect is controlled by a
neighborhood radius parameter and the adaptation moves
nodes adjoining the winning node with proportion decreas-
ing towards the edge of the neighborhood (we employ a
linear gradation). The SOM is typically initialized with
random values, however this can produce markedly diver-
gent classifications (also dependent on input analysis order).
Other alternatives are to initialize the map uniformly or use
some form of prediction (such as principle component anal-
ysis or an older SOM on a previous, exemplary data set).

Finally, the SOM may consider the age of the map and
gradually become more resistant to change, eventually set-
tling on a permanent representation of the data. Both the
advantage and disadvantage of this is that data up to a
certain point is retained as the basis for the mapping, re-
maining immune to (i.e. ignoring) divergently new data
(controlled with the solidification property of the ml.som).

The results of SOM clustering can be seen in fig. 1, where
the map trains on a selection of colors. One employs three
colors (cyan, magenta, and yellow) which settle at three ex-
tremities of the map, overlapping to produce the range of
fully saturated colors. The other uses eight colors (the ini-
tial three plus red, green, blue, white, and black). Black
and white are pushed to the corners (the selection of the
top corners is coincident with the random seeding of the
map) and the remaining six colors organize themselves in
a classic color-wheel pattern. The SOM is highly depen-
dent on initialization state and the input data order and
the significance of the resulting perceived relationships in
the map may vary accordingly. Randomizing and retrain-
ing the SOM produces different orientations of the colors
(and different corners for black and white), but the domi-
nant patterning remains consistent.

Figure 1: SOM with 64x64 nodes trained on eight
colors (left) and three colors (right).

2.1 Example
As an example application we describe a minimal system
to cluster timbre exemplars from a live audio stream (see
fig. 2). The objective is to enable a live performer to play a
range of material and have the SOM bring samples of simi-
lar sounds (in timbre) together on the map. This is a useful
example because timbre similarity measures remain an open
problem in music perception theory. Ml.som aims to pro-
vide an easy-to-use, robust interface, and lists received by
the object are treated as new inputs resulting in immediate
matching and learning.

We start with the assumption that digital audio is being
processed in Max and that it has been analyzed for salient
features (spectral centroid, loudness, noisiness, Bark bands,
etc.). These features, ensuring that each value is scaled to
(0-1), are then fed directly to the SOM. We configure the
SOM with the following arguments:

• 64 nodes in width and height,

Figure 2: Minimal SOM patch to classify input fea-
tures (using java ml som object).

• 24 items in the input, feature vector,

• learning rate of 0.1 (or 10%),

• solidification rate of 0.01 (or 1%),

• neighborhood radius of 8 nodes.

In fig. 2 the randomize message will initialize the map to
a random state and should be used before operation com-
mences. Once playing is underway the 2D locations that
are being trained will be displayed in the number boxes de-
scending from the left-most outlet. We leave it to the end
user to define a function for the use of this data (perhaps:
record the coordinates at certain points during the perfor-
mance, calculate a distance measure, reflecting a degree of
timbrel similarity or difference, and using this result to drive
a synthesis engine).

The right outlet of the ml.som (middle outlet of the java
object) produces the modified, trained state of the matching
node (based on the most recent input or Get message). This
enables algorithmic analysis and/or display of the map’s
data.

It is expected that the playing of the live musician will
effectively trace shapes or patterns on the surface of the
map, traversing figures that map reliably to given musi-
cal statements (such as articulations, register, and dynamic
changes). These could easily be rendered visually (using an
lcd object, for example), to give the user an idea of the na-
ture of the mapping. Once a regularity is observed it could
be connected to another layer of machine learning (using
another ml.som or an ml.art) to learn these higher level
patterns and map to analogous functions in the performance
system.

3. ML.ART
Adaptive Resonance Theory [1] algorithms were initially
proposed as a computational model of human attention,
employing a neural network. Like the SOM, ART com-
pares new input feature vectors with known category nodes
and adaptively trains the network. However, ART nodes
do not influence one another during training (they are not
connected in the sense that the SOM employs), and their
is no dominant spatial metaphor at work. While the SOM
maps feature space in a continuous fashion across the map
(i.e. intermediary points between nodes in the SOM net-
work could be interpolated) the ART encodes a continuous
area of feature space into each node (ml.art implements
the fuzzy ART version).

When a winning category node is identified during in-
put presentation the node must pass a vigilance test before
learning can commence. The vigilance process verifies the
area that the winning category would represent if training
were to proceed and ensures that the category does not grow
beyond a preset limit (set with the vigilance parameter). If
the category will remain within the limit it is allowed to
adapt and learn the new input, much in the same fashion
as the SOM (using a learning rate parameter). However, if



the category would expand to encompass too much of the
feature space then the node is removed from consideration
and the search for a winning node is performed again.

Thus the ART is ideal for locating categories within con-
tinuous data streams and the granularity of the analysis can
be easily adjusted. As with the SOM the selection of fea-
tures is important but in the ART the full dimensionality
of the category relationships is preserved, allowing further
analysis of the ART results at any point (see [11], for ex-
ample).

The ART is computationally efficient and, because new
nodes may be added as needed, capable of classifying ex-
tensive data sets with a wide range of specificities (limited
only by hardware). It is arguably a suitable model of hu-
man long-term memory processes [5, 10] and thus is useful
in computational models of perception. While the node in-
dex of the ART has only internal significance it is trivial to
obtain the resonance (i.e. distance measure) of each cate-
gory with each input. This resonance, or fit, can describe
many useful aspects of the input, such as how clear the fit
is (difference between the peak and the average resonance),
how significant the input is (sum of all resonances), and how
this fit compares to previous fits (indicating movement in
classification space). This last measure can potentially give
a strong sense of sectional movement in a piece, indicating
transitional passages or sudden changes.

While the ART is not susceptible to initialization diver-
gences (all untrained nodes are considered null), it is highly
dependent on the input data order. The classifications, and
especially the boundaries defined by the ART nodes, can be
dramatically different if the inputs are presented in a dif-
ferent sequence. This can be both a strength, in the case of
music analysis where the identity of a piece or improvisation
demands a certain sequence, and a weakness, appearing to
be inconsistent where supervised models are consistent.
Ml.art has one inlet and two outlets and accepts lists

which are treated as input feature vectors. Here the input
feature vector size does not need to be specified in advance
as the nodes are only populated as data is received and the
network will continue to grow as needed to encode all of the
received data. By default the ART will always match the
best sub-set category to the received input, although this
behavior can be defeated by setting the choice parameter >
0, where higher values enforce more restrictive matches. All
of the parameters can be set dynamically with appropriate
messages and the ml.art can be cleared at any point. Upon
successful learning of a new node ml.art outputs the win-
ning category ID as well as the resonances of all the trained
categories.

3.1 Example
We now describe the construction of a small system to an-
alyze, learn, and identify melodic pitch sequences (modeled
on [5, 10], see fig. 3). Apart from ml.art, this will require
a method for producing a sequence of pitch data. Once
a pitch sequence is available it is reduced to pitch classes
(taking pitch modulo % 12).

In order to perform pattern extraction and matching on
this pitch sequence the ART needs a uniformly dimensioned
representation that captures both the pitch classes and the
ordering of the notes. This is accomplished using ml.spatial,
described below. For now, we place an ml.spatial object
at the bottom of the short processing chain (the resulting
feature vector for a chromatically descending melody is dis-
played in the chart on the middle-right of fig. 3).

Now, we add an ml.art object with the parameters “0 0.5
0.85” (corresponding to choice, learn rate, and vigilance,
respectively). These are set to encourage deep set-subset

Figure 3: Max 5 patch employing ml.art and
ml.spatial to identify melodic patterns.

searching, a mid-rate learning speed, and fairly tight cat-
egory generation, respectively. The ml.spatial connects
directly to the ml.art.

Finally, the category index for any given input is dis-
played in the number box at the lower left. Playing into the
system now causes the ART to extract and learn melodic
patterns. For example, a musician could choose several
short melodic fragments (5-7 notes in length) and make
a note of the category index numbers produced for each.
During an improvised performance the occurrence of these
indices could then be used to trigger desired actions.

This event oriented interaction model can be further aug-
mented to incorporate continuous variation by measuring
the relative resonance of each target node for any given in-
put. The right outlet of ml.art produces the resonance
vector resulting from each input as it is presented to the
ART (shown graphically in the lower-right chart in fig. 3).
Unpacking this list and watching the value at the position
correlating with the target indices will give a measure of
how closely the current input matches, or resonates with,
the trained pattern categories (in fig. 3, for example, the
most recent input matches category 8, shown in the number
box, resonates strongly with categories 1 and 2, but much
less so with categories 4, 5, 7, and 9). Thus a desired melody
or pitch sequence, once learned by the ART, can be used
as a reference during a performance continually answering
“how close is the current material to what I have already
learned?”

4. ML.SPATIAL
As has been mentioned, the identification, selection and en-
coding of features is a key component of ML techniques.
Many desirable traits can simply be scaled to an appropri-
ate range and fed directly into one of the models describes
above, however this is not always the case. For example,
simply treating pitch as a continuous frequency value misses
the functional relationships inherent in tonal musics. The
technique of spatial encoding provides a ready solution, al-
lowing the ML model to learn the relationships between
elements in a time ordered sequence.

Spatial encoding arose in natural language analysis where
letters of words are encoded into vectors and used as pat-
terns for classification [2]. The same principle can be ap-
plied to music, using any tokens from a set (such as scale
degrees or pitch classes) [5]. The encoding is accomplished
using a single layer neural net model with an attenuation
feed-back component. Each token in the given data set is
assigned to a node in the network (i.e. twelve nodes would
be used to encode pitch classes). When a token is presented
to the network the associated node is fully energized (value
set to 1) and a suppressant is applied to all of the other
nodes, modeling the attention of the network focusing on
the newest input (see fig. 4). This is typically accomplished



by reducing the energy of each node by a small amount (in
a linear fashion, say by 0.15), or damping the network as a
whole (exponentially, multiplying each node by, say, 0.85).
The product of the encoding is a uniformly dimensioned
vector-representation of the ordering of the most recent to-
kens (typically 7 ± 2 when modeling typical human short-
term memory).

Figure 4: Spatial encoding of short melodic frag-
ments.

Once the encoding is complete the vector can be processed
by a ML model. A spatially encoded token string makes
set-to-subset comparisons trivial and makes identification of
reordered sets possible as well (retrograde, extension, con-
traction, and ornamentation thus become transparent to the
classifier). Each of these will result in encoded vectors that
have some similar elements, enabling ready identification by
an SOM or ART, for example.

However, ambiguities can occur, for example when a to-
ken appears in a string multiple times and earlier appear-
ances are overwritten by the later ones. The effect of that
earlier token is still present in the decay of the other nodes,
yet depending on the required precision of the system this
can have a detrimental effect.

A dynamic activation mode [11], incorporated in ml.spatial,
attempts to reduce this negative aspect. This mode acti-
vates a node an amount proportional to the calculated at-
tention merit for the presented token (the merit value must
be input along with the token). This method obscures the
ordering of the tokens yet it allows a prominent token to re-
ceive a large amount of attention while insignificant tokens
are only minimally represented (this mode is activated with
an appropriate message to the ml.spatial object).

The parameters for controlling ml.spatial are: the num-
ber of tokens in the input dataset (26 for english text, 12 for
pitch classes, etc.), the decay rate (strength of attenuation),
and the choice of a linear versus exponential decay model.
The decay rate controls the length of the network’s memory
and can be calculated as one over the desired length (to re-
tain 7 tokens the decay rate should be set to 1/7 or 0.143).
The linear model subtracts this amount from each node at
each time step (new input presentation) while the exponen-
tial model multiplies each node by one less the decay rate.

Operation in Max is simply a matter of inputing an inte-
ger representing the token under consideration and receiving
the output feature vector (as a list of floats). This can then
be directly routed to ml.som or ml.art objects.

Proven cases for spatial encoding include melodic scale
degrees, tonal intervals, pitch classes, and interval classes
[5, 10, 11]. Timbrel space and rhythmic modeling may be
ready areas for encoding as well. Additionally, it becomes
possible to route the output of one ART (the winning cat-
egory ID) into a spatial encoder and create a multi-layered
ART system [5, 12], which serves to track hierarchical struc-
ture within the input.

5. CONCLUSION
Currently none of the ml.x objects explicitly support state
preservation between sessions. We plan to implement model
export capabilities to enable rapid saving and loading of
pre-trained states. Additionally, we intend to extend the
library to include more techniques as they are identified
or requested and a PD release of this library is also under
consideration.

We have described the functionality and theory behind
several powerful ML techniques implemented in a new tool-
box for Max. Simple yet pertinent examples were described
with the goal of providing access to these tools for non-
expert users, through the form of quickly and easily imple-
mented programs. Ultimately we hope that this work will
contribute to, and further enable the continued exploration
of the new aesthetic possibilities afforded by ML techniques
in interactive computer music.

6. ACKNOWLEDGEMENTS
The authors would like to acknowledge the support of eDream
and the National Center for Supercomputing Applications
at the University of Illinois at Urbana-Champaign.

7. REFERENCES
[1] G. A. Carpenter, S. Grossberg, and D. B. Rosen.

Fuzzy ART: fast stable learning and categorization of
analog patterns by an adaptive resonance system.
Neural Networks, 4:759–771, 1991.

[2] C. J. Davis and J. S. Bowers. Contrasting five
different theories of letter position coding: Evidence
from orthographic similarity effects. Journal of
Experimental Psychology: Human Perception and
Performance, 32(3):535–557, 2006.

[3] R. Fiebrink, P. R. Cook, and D. Trueman. Play-along
mapping of musical controllers. In Proceedings of the
International Computer Music Conference, 2009.

[4] N. Gillian, R. Knapp, and S. O’Modhrain. A machine
learning toolbox for musician computer interaction.
Proceedings of the 2011 International Coference on
New Interfaces for Musical Expression (NIME11),
2011.

[5] R. O. Gjerdingen. Categorization of musical patterns
by self-organizing neuronlike networks. Musical
Perception, 1990.

[6] T. Kohonen. The self-organizing map. Proceedings of
the IEEE, 78(9):1464–1480, 1990.

[7] Y. Liu, R. Weisberg, and C. Mooers. Performance
evaluation of the self-organizing map for feature
extraction. Journal of Geophysical Research-Oceans,
111(C5), 2006.

[8] M. P. A. Page. Modelling the perception of musical
sequences with self-organizing neural networks.
Connection Science, 6(2 & 3):223–246, 1994.

[9] M. Schedel and R. Fiebrink. A demonstration of bow
articulation recognition with wekinator and k-bow. In
Proc. International Computer Music Conference,
2011.

[10] B. Smith and G. Garnett. The self-supervising
machine. In Proc. of New Interfaces for Musical
Expression, 2011.

[11] B. Smith and G. Garnett. Machine listening: Acoustic
interface with art. In Proc. of SIGCHI Intelligent
User Interfaces, 2012.

[12] B. Smith and G. Garnett. Reinforcement learning and
the creative, automated music improviser. In Proc. of
EVOMUSART, 2012.


