
Musician Assistance and Score Distribution (MASD)

Nathan Magnus
University of Regina

3737 Wascana Parkway
Regina, Saskatchewan, Canada

magnus2n@uregina.ca

David Gerhard
University of Regina

3737 Wascana Parkway
Regina, Saskatchewan, Canada

gerhard@cs.uregina.ca

ABSTRACT
The purpose of the Musician Assistance and Score Distri-
bution (MASD) system is to assist novice musicians with
playing in an orchestra, concert band, choir or other musical
ensemble. MASD helps novice musicians in three ways. It
removes the confusion that results from page turns, aides a
musician’s return to the proper location in the music score
after the looking at the conductor and notifies musicians
of conductor instructions. MASD is currently verified by
evaluating the time between sending beats or conductor in-
formation and this information being rendered for the mu-
sician. Future work includes user testing of this system.

There are three major components to the MASD system.
These components are Score Distribution, Score Render-
ing and Information Distribution. Score Distribution passes
score information to clients and is facilitated by the Inter-
net Communication Engine (ICE). Score Rendering uses the
GUIDO Library to display the musical score. Information
Distribution uses ICE and the IceStorm service to pass beat
and instruction information to musicians.

Keywords
score distribution, score-following, score rendering, musi-
cian assistance

1. INTRODUCTION
Orchestras, concert bands and other large groups of musi-
cians often rely upon a conductor to synchronize the group.
The conductor’s formal duties, however, extend beyond sim-
ply synchronizing the musicians. The conductor is also re-
sponsible for listening critically to the music and shaping
it based on a unifying musical interpretation. The conduc-
tor’s modifications are communicated to musicians through
a complex set of visual instructions such as hand gestures,
body movement, breathing and even eye contact [6].

Anecdotal evidence suggests novice musicians face chal-
lenges related to following conductors and reading music.
The diversity of a conductor’s gestures, variations between
conductor styles and methods of conveying instructions may
pose challenges for beginner musicians, making it common
for these individuals to return to an incorrect measure after
looking at the conductor. Furthermore, musicians that are
still learning the score or are not yet skilled sight readers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’12, May 21 – 23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

may completely fail to look at the conductor and thus miss
some of the conductor’s instructions. Learning the right
time to turn pages is also a challenge for novice musicians,
and a missed page turn can lead to missed notes on the
next page. Page flips can be especially challenging for mu-
sicians that play instruments that require two hands. Thus,
assisting with these problems may help beginner musicians
focus more upon the music they are playing and improve
the quality of their performance.

The MASD system was designed to assists musicians with
some of the difficulties that they may encounter as a mem-
ber of an orchestra, concert band, choir or other musical
group. MASD is also intended to reach a broad audience
of all levels of dedication. Thus, the project utilizes com-
mon network infrastructure and computers to synchronize
multiple displays as well as transmit information from con-
ductor to musician. Since live musical performances have
very strict latency requirements due to the importance of
synchronization, latency was the primary evaluation metric
used for this system.

2. BACKGROUND
Researchers have investigated score following methods that
can follow music played with errors as well as allow un-
trained partners to contribute to duets [5]. Some research
has also been put into creating a virtual conductor to lead
a group of musicians [7]. Other relevant research areas ex-
plore generating digital information from conductor signals
and distributed rendering engines.

The problem of digitizing conductor tempo and other vi-
sual cues has been address by Peng [6]. Peng’s system uti-
lizes specialized equipment that extracts beat information
and conductor gestures. This information is then used as
input for a custom application. Similarly, iSymphony [4]
extracts baton information and uses it as input to an ap-
plication. MASD was developed to facilitate score and in-
formation distribution, and these papers demonstrate the
potential for input control.

Some important work relevant to score engraving, con-
ducted by Bellini, Nesi and Spinu [2], created a collabora-
tive score editing and engraving system called Music Object
Oriented Distributed System (MOODS). MOODS allows in-
dividual musicians to create notes about the music that are
visible by other musicians and the conductor. MOODS also
addresses score display and automatic page turning. The
paper indicates that the system works and is practical.

A system know as muse [3] addresses music distribu-
tion and some information distribution. The system also
provides automatic, real time page turning but determines
when to flip pages by analyzing the music that is played.
MASD approaches this problem differently by using the con-
ductor’s gestures to determine when to flip a page, removing
the need for an acoustic analysis component in the system.



3. INTERNET COMMUNICATION
ENGINE (ICE)

The Internet Communication Engine (ICE) [8] is used in
several places within the MASD system. One of the advan-
tages of this framework is the ability to write platform and
language independent code. This is facilitated by an inter-
face definition language, called Slice, and tools that con-
vert Slice into languages such as C++, Java, C#, Python,
Objective-C, Ruby, PHP and ActionScript. However, the
main advantage of ICE is the ease and efficiency with which
it handles communication between two or more machines.
Using the language mapping tools provided with ICE, pro-
grammers can easily create objects that are stored on the
server or on a client and transmitted to another machine
with only a few lines of code.

ZeroC also provides a suite of programs which includes
the IceBox server. IceBox allows developers to run other
ICE services with minimal configuration and effort. For
example, MASD uses IceBox to run the IceStorm service.
IceStorm is a service that can be used by the ICE frame-
work and provides a method of broadcasting information
from one computer (publisher) to multiple other comput-
ers (subscribers). The publisher creates the information it
wants to send and passes this information to the IceStorm
service which distributes it to all subscribers. Subscribers
are responsible for informing the IceStorm service about
what information (topic) they desire to receive.

4. INTERNAL REPRESENTATION
Transfering complete scores between hetrogenous machines
is a challenge. For this reason, an internal representation
was developed which transfers only required information to
each client machine. The rendering is then completed sepa-
rately using this representation. The internal representation
is declared in Slice files and created as part of the automat-
ically generated code made by the slice2java tool which
is provided by ZeroC [8]. This allows information to be
transmitted via ICE between client and server.

4.1 Duration
The Duration class is used to represent any note duration
as a numerator and denominator pair. Originally it was
created with a static common denominator of 128 and a
note’s duration was converted to its appropriate value as
a fraction with a denominator of 128. However, it became
apparent that certain notes, such as triplets, would cause
errors due to rounding of the numerator. This resulted in
the implementation of a static variable denominator and
an instance denominator. This static denominator is cal-
culated from a list of denominators within the score and
will increase whenever a denominator is encountered that
results in a rounding error. As a result, all note durations
can be accurately represented and handled.

4.2 Beat Highlighting
Many beat highlighting systems, such as Garage Band [1],
present a “playhead” metaphor showing the position of time
relating to notes. This method, however, may confuse musi-
cians because they only see the playhead briefly while glanc-
ing between music and conductor. Therefore, we decided to
highlight the current beat without moving a playhead. This
leads to a requirement to select the position of the under-
lying beat relating to the notes on the score.

Beat highlighting information is contained within a sin-
gle record. This record maintains a time signature, as well
as a list of note offsets, a list of note durations and a list
of denominators. Each of these lists is the same size as

the number of beats in a measure. Thus, each entry corre-
sponds to a single beat within a measure. The list values
are used for highlighting the notes within a beat or mea-
sure. The denominator values represent beat units and are
used as the denominator for both note offset as well as note
duration within a measure. Offset is used to indicate the
location within the beat that highlighting should begin, and
duration indicates how much of the score should be high-
lighted. Figure 1 shows an example of how these values are
used. The denominator changes when a note is encountered
that cannot be accurately represented, and all subsequent
values are represented using the new denominator. Offset is
used to avoid overlapping a previously highlighted note by
indicating where in the beat that highlighting must start.

Figure 1: Example Guido Music Notation (GMN)
and associated transcription, offset, duration and
denominator values. (see text for more details)

5. COMPONENTS
The project is composed of three major components. Each
component is designed to be as modular as possible. Such
a design allows individual components to be replaced with
minimal reconfiguration. Thus, when new technologies, li-
braries or APIs are released that improve upon the func-
tionality of the system, components can be partially or com-
pletely modified to take advantage of the improvements.

5.1 Score Distribution
The Score Distribution component parses a musical score
and facilitates the transfer of musical scores to clients. Since
the client’s computer and score server are distinct machines,
communication must occur between two potentially hetero-
geneous computers. This process is facilitated using the In-
ternet Communication Engine (ICE) framework (mentioned
above) and has two sub components.



Conductor scores are challenging to implement effectively.
This is due to the non-linear fashion in which conductors
look through music and the sheer quantity of information
that must be presented. Although MASD does not imple-
ment a conductor interface, one could be implemented by
making use of the internal representation that is already in
place.

5.1.1 Score Distribution Client
The Score Distribution client’s sole purpose is to connect to
the Score Distribution server and obtain a Part object from
the server. This Part object represents a musical score,
such as “first trombone” or “soprano”, and only contains
information relevant to the specific musician requesting the
part. For example, a clarinet Part object only contains
music and relevant cue notes for the clarinet, but will not
contain any information about another instrument’s part
unless required for queueing or reference.

5.1.2 Score Distribution Server
This component is responsible for parsing the Music XML
and creating the internal representation. The parsing pro-
cess separates the musical parts and creates unique sets of
information (described in Section 4) that client machines
can request. After completing the creation of the inter-
nal representation, the Score Distribution Server handles
requests for part or score information. It will continue do-
ing this until it is shut down.

5.2 Score Rendering
Score Rendering is the process of displaying the score to the
musician. This involves drawing the score onto the screen
using a library or external tool to create the images. The
method of displaying this information to the user may vary.
This could allow instrument specific styles, such as guitar
tablature or percussion score, to be displayed on an individ-
ual basis. Thus, performers can view their music in what-
ever format they are most comfortable reading. Addition-
ally, score rendering can be done with different rendering
engines on different computers. In our case, we focus on
one specific score rendering engine.

5.2.1 Page Display
This implementation of Score Rendering displays the score
one page at a time. The number of lines displayed on each
page may vary depending on display requirements for the
music. Using the information received from the conductor,
the Page Display updates the score by changing the color
of the notes to red as the beat is played. This is referred
to as highlighting. Once the note has been highlighted,
it will remain red. There are two modes of score highlight-
ing: Measure Highlighting; and Beat Highlighting. Measure
Highlighting uses the Guido Engine Library (GUIDOLib) to
highlight each new measure as it is reached. When the first
beat of the measure is to be played, every note in the mea-
sure will change color. Beat highlighting, however, is much
more complex and more susceptible to a highlighting bug
in the Guido Engine Library that highlights the stem of a
note but does not highlight the head until the next beat.
The beat highlighting method highlights any note that is
entirely or partially within the duration of a single beat.

Page Display also addresses another important issue. This
issue is automatic page turning. As the note highlighting
progresses, three measures ahead of the current location is
checked to determine what page of the GUIDOLib render-
ing it is located upon. If it is located on the next page, a
small portion of the top of the score is removed and replaced
with the first bit of the next page. The replaced area is not

highlighted since it has not yet been played. This allows the
musician to look ahead in the music when at the bottom of
a page. Once the musician has reached the next page of the
score, the current page is completely replaced with the next
page. This method removes the need to manually flip pages
and will assist novice musicians by allowing them to focus
on more important aspects of the conductor’s gestures and
the performance.

5.3 Information Distribution
The Information Distribution component is responsible for
transmitting beat information and conductor instructions
to each musician’s client computer. The Information Dis-
tribution portion of the project has pieces present on both
a centralized server and musician computers.

5.4 Combining Components
In order to complete the system, the Score Distribution,
Information Distribution and Score Rendering components
are combined to create two applications. These applications
are the Client Application, which is used by musicians, and
the Sever Application, which is configured by the conduc-
tor. Figure 2 shows the high level structure of the MASD
applications and how they interact with each other.

Figure 2: MASD high level structure and interac-
tion.

5.4.1 Client Application
The Client Application’s job is relatively simple. The ap-
plication first determines which servers contain information
about the parts and will be conducting the IceStorm distri-
bution of beats. The application then presents the musician
with a list of parts to choose from. Once the musician has
selected what part he or she wishes to receive, the applica-
tion requests only the relevant information from the Score



Distribution Server and renders the appropriate score. The
application then waits for conductor instructions or beat in-
formation from the Information Distribution system. When
information is received, the application updates what it is
rendering using the buffered next image. The computer
running the Client Application does not need to be partic-
ularly powerful because this program is waiting for updates
throughout the majority of its execution and its responsi-
bilities are relatively undemanding.

5.4.2 Server Application
The Server Application is responsible for creating and up-
dating the Score Distribution and Information Distribution
components of the project. This application allows the con-
ductor to select a score to load and then broadcast incom-
ing beat and instruction information until the application
is closed. Since the digitization of beat information and
conductor instructions is not the focus of MASD, an inde-
pendent system is responsible for detecting this information
and passing it to MASD. The Server Application is used to
manage two heavily used functions and will likely require
a relatively powerful machine to run well. These functions,
however, could be run on two individual machines should
performance become an issue.

6. PERFORMANCE
Latency tests were conducted to determine the efficiency of
the system and speed at which it performs. Tests were per-
formed using 1, 5, 10, 15, 20 and 25 client machines and a
single server. These tests calculated the time between the
server sending information and the client receiving this in-
formation (distribution time) and utilized the system clock
of an independent machine to help reduce synchronization
issues. Testing showed that distribution time increases dra-
matically with the number of clients. On average with 25
clients, beat distribution takes 38ms and instruction distri-
bution takes 3ms. Rendering limitations make the theoreti-
cal limit of MASD approximately six beats per second, how-
ever this corresponding to a theoretical maximum tempo of
360 bpm which is sufficient for most musical applications.

7. CONCLUSIONS
MASD successfully implements page rendering, page turn-
ing and score distribution and can be used to aid novice mu-
sicians when playing from a musical score. The limited hu-
man resources of the project and difficulties accurately mea-
suring transmission time make it difficult to definitively de-
termine the usability and effectiveness of this system. How-
ever, score rendering can achieve approximately 360 bpm
and subjective analysis indicates that the response time of
MASD is acceptable. We believe exploring push distribu-
tion using common infrastructure as a method of synchro-
nizing an orchestra or other musical group most certainly
warrants further research.

7.1 Improvements & Future Research
A potential improvement to MASD is the use of multi-
ple IceStorm servers. This change would allow multiple
IceStorm services to be connected in a hierarchy or tree.
This distributes the load of pushing updates to multiple
servers. However, this distribution method would introduce
additional system latency due to the increased number of
servers that must process the information before reaching
the musician. The ability of MASD to be used as a distri-
bution method for non-traditional orchestras, such as lap-
top orchestras or musical groups with members in different
physical locations, is an area for possible future research.

In order to improve displays, usability tests and different
methods for displaying the music could be considered. For
example, one possible method could be displaying an arbi-
trary number of lines of music on the screen at a time and
replacing a line with the next line to be displayed when a
line is completed. The musician would play a line and then
look to the next line, with the order wrapping around from
the last line on the page to the first line on the next page.
Usability tests of display methods could assist in improving
the interface and identifying improvements for the system.

In order to ensure that the beat and instruction distribu-
tion is prompt, several methods that do not rely on network
protocols and mediums could be implemented. Specialized
hardware, for example, could be created to directly connect
the conductor’s server to musicians. This would allow for
near instantaneous transmission of simple information such
as indicating the next beat has occurred. Infrared or other
broadcast mediums could also be used to simultaneously
send information to all clients. Another radically different
direction that could be explored is predicting the occurrence
of the next beat using previous beat arrival information and
knowledge about the score’s tempo. The musician computer
would then use this information to update its graphical dis-
play and update the next beat prediction when it receives
the notification from the server.

A hybrid method could also be employed, for example,
using specialized hardware or broadcast mediums to com-
municate small amounts of information and a network to
communicate larger pieces of data. This would allow for the
immediacy required for beat synchronization as well as the
transmission of more complex information such as conduc-
tor instructions without too much specialized or expensive
hardware.

8. REFERENCES
[1] Apple Inc. Garage band ‘11, January 2012.

http://www.apple.com/ilife/garageband.

[2] P. Bellini, P. Nesi, and M. B. Spinu. Cooperative visual
manipulation of music notation. ACM Trans.
Comput.-Hum. Interact., 9:194–237, September 2002.

[3] C. Graefe, D. Wahila, J. Maguire, and O. Dasna. muse:
a digital music stand for symphony musicians.
interactions, 3:26–35, May 1996.

[4] E. Lee, H. Kiel, S. Dedenbach, I. Grüll, T. Karrer,
M. Wolf, and J. Borchers. isymphony: an adaptive
interactive orchestral conducting system for digital
audio and video streams. In CHI ’06 extended abstracts
on Human factors in computing systems, CHI EA ’06,
pages 259–262, New York, NY, USA, 2006. ACM.

[5] C. Oshima, K. Nishimoto, and N. Hagita. A piano duo
support system for parents to lead children to practice
musical performances. ACM Trans. Multimedia
Comput. Commun. Appl., 3, May 2007.

[6] L. Peng. A gestural interface in a computer-based
conducting system. Master’s thesis, University of
Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2,
2008.

[7] D. Reidsma, A. Nijholt, and P. Bos. Temporal
interaction between an artificial orchestra conductor
and human musicians. Comput. Entertain.,
6:53:1–53:22, Dec. 2008.

[8] ZeroC, Inc. Ice, January 2012.
http://www.zeroc.com/.


