
Deploying ImageFactory
Automating the build of upload of VM
images to OpenStack

August 2014

Author:
Parin Porecha

Supervisor:
Luis Fernandez Alvarez

CERN openlab Summer Student Report 2014

1

Abstract

The common practice between OpenStack users is to manually install a base operating system,
boot it up, install packages, add necessary configuration and then snapshot it for later use. Much
of this can be automated using kickstart files, Puppet, etc. but it’s still a tedious process.

That’s where Image Factory comes into play. It allows you to describe your virtual image (the
operating system, architecture, installed packages, etc.) and have it uploaded to various cloud
providers (such as EC2, oVirt or OpenStack). This could be useful to the OpenStack users
even without all the cross-cloud features.[1]

2

Table of Contents

 Abstract………………………………………………………………………….…….....2

1 Introduction .…………..…………………………………………….……………..….....4

1.2 OpenStack ……………………………………………………………..........4

1.2 Puppet …………………………………………………………….................4

1.3 ImageFactory ………………………………………….…………………....4

1.4 Horizon………………………………………….…………………....4

2 Current Setup …….…….….....…………………..5

 2.1 Working ………………………………….…..………………………...........5

 2.2 Drawbacks ………………………………….…..……………………….......5

 2.3 Proposal ………………………………….…..………………………...........6

 3 Deploying ImageFactory ……...………………………………………………..…....7

 4 Multiple ways of interaction ………………………………………………...……...10

 5 Conclusion…………………………………………………………………...……..11

 6 Future Work…………….…………………..………………………………............12

 7 Bibliography …………………………………...……………………………….….12

3

1 Introduction

The main technologies used in this project were – OpenStack, Puppet, ImageFactory, Horizon.

Here is a brief description of each one -

1.1 OpenStack
OpenStack is a free and open-source software cloud computing platform. It is primarily deployed
as an infrastructure as a service (IaaS) solution. The technology consists of a series of interrelated
projects that control pools of processing, storage, and networking resources throughout a data
center, able to be managed or provisioned through a web-based dashboard, command-line tools,
or a RESTful API.[2]

The OpenStack team at CERN uses IceHouse release as of August 2014, and Puppet for configu-
ration management.

1.2 Puppet
Puppet is a tool designed to manage the configuration of Unix-like and Microsoft Windows
systems declaratively. The user describes system resources and their state, either using Puppet's
declarative language or a Ruby DSL (domain-specific language). This information is stored in
files called "Puppet manifests". Puppet discovers the system information via a utility called
Facter, and compiles the Puppet manifests into a system-specific catalog containing resources and
resource dependency, which are applied against the target systems. Any actions taken by Puppet
are then reported.[3]

1.3 ImageFactory
ImageFactory is a open-source tool by RedHat which is used to automate the process of
building images from a markup file, customizing them according to the target clouds and
finally uploading them. Apart from a linux executable, ImageFactory also provides a REST
API which can be accessed with appropriate credentials.

1.4 Horizon
Horizon is the canonical implementation of OpenStack's Dashboard, which provides a web
based user interface to OpenStack services including Nova, Swift, Keystone, etc. Horizon
ships with three central dashboards, a “User Dashboard”, a “System Dashboard”, and a
“Settings” dashboard. Between these three they cover the core OpenStack applications and
deliver on Core Support.[4]

4

2. Current Setup

The above flow diagram shows the process of building an image to uploading it.

2.1 Working

• A specification file written in XML markup called a TDL is the main input for oz-install. An optional
Kickstart file can also be given containing shell commands for installing base packages, post-install
hooks etc.

• oz-install takes the markup and creates a base image. This base image is then de-contextualized (i.e. -
all the specific information related to that image is removed (example – hostname), the image is made
as generic as possible so that clones can be made from it.

• The next step involves compressing and converting the image to QCOW2 (a format which OpenStack
uses) or other formats depending on the cloud it has to be uploaded to.

• The QCOW2 image is then given to glance which uploads it to OpenStack.

2.2 Drawbacks

• The process is tedious. It requires human intervention to run the commands necessary

• Automation is possible but that requires shell scripting. Shell scripts are hard to maintain, and
whenever an image needs to be updated, the relevant portion in the script needs to be changed.

5

• The only way to build an image is by logging in to the server through SSH, and calling the
commands/script. Not everyone is comfortable using the command-line, so image building is not
possible for them.

2.3 Proposal

To overcome the drawbacks listed above, it was proposed to replace the whole setup by a single tool which -

• performs almost all of the tasks

• provides multiple ways of building an image

• is easy to maintain.

ImageFactory is a python tool which has solved such problems in the past, so it was decided to deploy it on
CERN's image builder machines.

6

3. Deploying ImageFactory

How ImageFactory replaces all the independent parts with one single layer.

There are 3 inputs along with a provider definition file – a TDL, a Kickstart and
credentials.

A TDL file is a XML markup having information regarding the image to be built, such as
the URL of the .iso, architecture, version information etc. Here's an example TDL file -

<template>
 <name>SLC6 Server - x86_64</name>
 <description>SLC6 Server - x86_64</description>
 <os>
 <name>SLC-6</name>
 <version>5</version>
 <arch>x86_64</arch>
 <install type='iso'>
 <iso>http://linuxsoft.cern.ch/cern/slc65/iso/SLC_6.5_x86_64_dvd.iso
</iso>
 </install>
 </os>
 <packages>
 <package name='virt-what'/>
 <package name='tuned'/>
 </packages>
 <commands>
 <command name='grub'>
exec >>/root/customize.log 2>&1
Make sure the boot sequence is verbose
[-f /boot/grub/grub.conf] && /usr/bin/perl -ni -e "s/ rhgb//;s/
quiet//;print" /boot/grub/grub.conf || :

7

[-f /boot/grub2/grub.cfg] && /usr/bin/perl -ni -e "s/ rhgb//;s/
quiet//;print" /boot/grub2/grub.cfg || :
 </command>
 <command name='tuned'>
exec >>/root/customize.log 2>&1
/usr/bin/tuned-adm profile virtual-guest || :
 </command>
 <command name='de-contextualize'>
exec >>/root/customize.log 2>&1

cloud-* rpms
/usr/bin/yum install cloud-init -y --enablerepo=slc6-rhcommon

if [-e /etc/cloud/cloud.cfg]; then
 /bin/sed -i 's|cloud-user|root|' /etc/cloud/cloud.cfg
 /bin/sed -i 's|^disable_root: 1|disable_root: 0|' /etc/cloud/cloud.cfg

XXXX cloud.cfg is missing the "growpart" module, which has been
added in
XXXX the "cloud_init_modules" section in cloud-init-0.7.2-5
XXXX https://bugzilla.redhat.com/show_bug.cgi?id=966888

fi

/usr/bin/yum install cloud-utils dracut-modules-growroot -y

clean YUM repo's
/usr/bin/yum clean all --enablerepo=*

remove and lock root password
/usr/bin/passwd -d root || :
/usr/bin/passwd -l root || :
:
 </command>
 </commands>
</template>

A Kickstart file contains the pre-install, post-install hooks along with other configuration
code such the drivers and packages to install, configuring the network interface etc.
Here's a part of a Kickstart file -

install

installation path, additional repositories
url --url http://linuxsoft.cern.ch/cern/slc65/x86_64/

repo --name="EPEL" --baseurl
http://linuxsoft.cern.ch/epel/6/x86_64
repo --name="SLC6 - updates" --baseurl
http://linuxsoft.cern.ch/cern/slc6X/x86_64/yum/updates/
repo --name="SLC6 - extras" --baseurl

8

http://linuxsoft.cern.ch/cern/slc6X/x86_64/yum/extras/
repo --name="SLC6 - cernonly" --baseurl
http://linuxsoft.cern.ch/onlycern/slc6X/x86_64/yum/cernonly/

text
key --skip
keyboard us
lang en_US.UTF-8
skipx
network --bootproto dhcp
rootpw --iscrypted NOT-A-ROOT-PASSWORD

reboot

###
#
Packages
#
###
%packages
@ Server Platform
-fprintd
%end

###
#
post installation part of the KickStart configuration file
#
###
%post --log=/root/anaconda-post.log

/usr/bin/logger "Starting anaconda postinstall"

set -x

#
Update the machine
#
/usr/bin/yum update -y --skip-broken || :
%end

Apart from the TDL and Kickstart, the user needs to supply his credentials, and a provider
definition file containing information required to upload the image via
python-glanceclient module.

For credentials, the user can give the path to his openrc.sh file which can be downloaded
from OpenStack's Horizon dashboard. A provider definition file should be in JSON
format and can also contain custom properties if any. Here's an example -

9

{
 "glance-host": "openstack",
 "glance-port": 9292,
 "name": "Parin SLC6 ImageFactory",
 "min_ram": 2048,
 "properties": {
 "hypervisor_type": "kvm",
 "os": "LINUX"
 }
}

4. Multiple ways of interaction
There are 3 ways by which the user can use ImageFactory to build an image -

1. SSH to the Image building machine and call the executable. Right now, ImageFactory is
deployed on lxbst0518@cern.ch . No root permissions are needed, the below
command can be run directly -

imagefactory provider_image openstack-kvm <<path to provider
definition file>> <<path to openrc.sh>> --template <<path to TDL
file>> --parameter install_script <<Absolute path to Kickstart file>>

Here's an example -

imagefactory --debug provider_image openstack-kvm
./provider_definition ./openrc.sh --template ./slc6-server-x86_64.tdl
--parameter install_script
/afs/cern.ch/user/p/pporecha/slc6-server-x86_64.ks

Please note - Giving the Kickstart file as a parameter is a little tricky. Since while
installing the image, the script is called in a separate sandbox, the absolute path is
required.

2. To remove the need to SSH to the server, I have written a client script which connects to
the library via its REST API. Developers may prefer the SSH way, but this option is
recommended for users. Here's how you can use the client -

1. Download the script from the github repo -
https://github.com/parinporecha/CERN-ImageFactory-Client

2. The parameters are the same, and the README has all the execution details.

Please note - since the URL of the image builder has been hardcoded in the script, you'll
need to change it if the imagefactory builder changes in future.

10

https://github.com/parinporecha/CERN-ImageFactory-Client
mailto:lxbst0518@cern.ch

3. For users who prefer to use a standard GUI instead of SSH or command-line, I have
added the functionality to OpenStack Horizon. Right now, it has been deployed in testing
mode. When it goes into production, a one-click solution will be available for building
images -

This is the most simplest way. A user will just need to copy-paste the contents of the
TDL, optional Kickstart file and glance custom properties in JSON format.

5. Conclusion

Through this project we achieved -

• A fully automated procedure which could not have been possible by continuing the
reliance on Bash scripts.

• Since ImageFactory is maintained by a RedHat, CERN developers do not need to develop
their own tool, and thus there is much less code to maintain.

• Users who are not comfortable with using Linux/command-line can also build images
once the Horizon feature goes into production.

• Support for new distributions and releases can be added to ImageFactory by just adding
their name to supported distros list in the OpenStack plugin.

11

6. Future work

This project can be extended in several ways -

• Use Kerberos – Right now, ImageFactory requires the user to provide the credentials file
if called via the executable or through the client script. This requirement can be removed
if Kerberos authentication is used instead. Python-kerberos module exists which can be
utilized to fetch the login credentials of the user.

• Integrate with Jenkins – Since we are using a customized version of ImageFactory and
not the standard RPM, the code should be integrated with Jenkins for continuous
integration.

• Move Image Building to the cloud itself – ImageFactory builds images on the machine
it is deployed and then uploads them to the cloud. There is an open-source tool – Nova
Image builder (https://github.com/redhat-imaging/novaimagebuilder) which directly
builds images on the cloud and saves them there. This tool can be used in the future when
ImageFactory has proved itself to be stable.

• Add support for Windows images – Currently, ImageFactory supports Fedora 7-19,
RHEL 5.x and 6.x, and other Linux distributions. Support for Windows images can be
added in the future. This may require using VB scripts to install packages instead of the
Kickstart file.

7. Bibliography

1. http://blog.aeolusproject.org/building-openstack-images-with-image-factory/

2. http://en.wikipedia.org/wiki/OpenStack

3. http://en.wikipedia.org/wiki/Puppet_(software)

4. http://docs.openstack.org/developer/horizon/intro.html

12

https://github.com/redhat-imaging/novaimagebuilder
http://en.wikipedia.org/wiki/Puppet_(software
http://en.wikipedia.org/wiki/OpenStack

	4. Multiple ways of interaction
	5. Conclusion
	7. Bibliography

