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ABSTRACT 
In this paper, we describe an implementation of a real-time 
sound synthesizer using Finite Difference-based simulation of a 
two-dimensional membrane. Finite Difference (FD) methods 
can be the basis for physics-based music instrument models that 
generate realistic audio output. However, such methods are 
compute-intensive; large simulations cannot run in real time on 
current CPUs. Many current systems now include powerful 
Graphics Processing Units (GPUs), which are a good fit for FD 
methods. We demonstrate that it is possible to use this method 
to create a usable real-time audio synthesizer. 
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1. INTRODUCTION 
Most affordable desktop and laptop systems now include 
powerful Graphics Processing Units (GPUs).  Recent GPUs 
from companies such as Nvidia (http://www.nvidia.com) have 
adopted more flexible architectures to support general purpose 
computing. Software support for non-graphics computing on 
GPUs has also improved significantly in the last few years, 
with environments such as Nvidia's Compute Unified Device 
Architecture (CUDA) [8] and OpenCL [9]. As a result, there 
has been much development of general computing on GPUs. In 
particular, we are interested in the use of GPUs for real-time 
sound synthesis.  
 In previous work, we have shown [12] that it was possible to 
use the computationally expensive finite difference method to 
generate sound in real-time.  We have subsequently been 
working to create a usable synthesizer package, Finite 
Difference Synthesizer (FDS), based on the finite difference 
method, to generate real-time sound.  
 Our implementation uses a finite difference-based simulation 
for a two-dimensional membrane  [1, 7] which runs in real time 
on the GPU; the architecture of the GPU is particularly well 
suited for this type of algorithm.  Finite difference methods are 
well known as an effective approach for sound synthesis; see 
for example [3, 7].  Such methods can be a framework for 
constructing a number of complex software percussion 
instruments; sound examples generated using the synthesis 
package will be available at 
http://userwww.sfsu.edu/~whsu/FDGPU. Finite difference-
based sound synthesis for large or fine-grained membranes and 

plates is too expensive to run in real time on CPUs. Previous 
studies on audio processing using earlier generation GPUs and 
software have been mixed (see for example [14, 5]). Our earlier 
results [12] show that it is feasible to implement such compute-
intensive real-time sound synthesis algorithms on GPUs.  We 
have since re-designed our software framework to improve the 
system’s use in a real-time performance setting. This paper will 
focus on software details of our real-time finite difference-
based synthesizer for percussion instruments. 
 Our paper is organized as follows. Section 2 is an overview 
of related work on high-performance audio computing. In 
Section 3 we describe the finite difference synthesis algorithm 
we worked with.  In section 4 we discuss details of our software 
implementation. We present experimental setup in section 5, 
results and measurements in Section 6.  Conclusions are drawn 
in Section 7.  Section 8 outlines possible future directions for 
the FDS. 

2. RELATED WORK 
The website http://gpgpu.org is a major clearinghouse for 
information on general purpose computing on GPUs. Relatively 
few audio-related projects are documented on the site. [14] 
implemented seven audio DSP algorithms on a GPU. [11] 
studied waveguide-based room acoustics simulations using 
GPUs. 
 GPUs have been used in the real-time rendering of complex 
auditory scenes with multiple sources. In [4], the GPU is used 
primarily for computing particle collisions to drive audio 
events. [16] uses the GPU for calculating modal synthesis-
based audio for large numbers of sounding objects. [13] 
proposed a method for efficient filter implementation on GPUs, 
and applied it to synthesis of large numbers of sound sources in 
virtual environments. 
 Faust [10] is a framework for parallelizing audio applications 
and plug-ins; it does not currently support GPU computing. 
 Bilbao has studied extensively the use of finite differencing 
for sound synthesis; see for example [3]. Since large models 
based on finite difference methods are too expensive for real-
time performance on CPUs, work has been done for example 
on FPGA-based implementations [7]. Our approach leverages 
GPUs that are already common on commodity systems, and 
does not require custom hardware. Preliminary results and 
measurements were reported in [12]; this paper focuses on 
details of the current software implementation. 

3. FINITE DIFFERENCE AGORITHM 
We use the finite difference (FD) method of approximation of 
the wave equation with dissipation to simulate a membrane in 
two dimensions as derived by Adib [1]. A square membrane is 
modeled with a horizontal x-y grid of points. The continuous 
function u (x, y, t) is defined on the spatial x and y, and time t; u 
is the vertical displacement at the point (x, y) at time t.   
 The derivation of the approximation we used can be found in 
[3, 6, 12] and is given as: 
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such that v is velocity of the wave in the medium and η is the 
viscosity coefficient.  For our experiments, we treat η and ρ as 
constants, and used known stable values from Land [6], but 
allow these to be changed using Open Sound Control (OSC) 
methods in the synthesis package. 
 We implemented u as three 2-D matrices of single-precision 
(4-byte) floating point numbers so as to maintain compatibility 
with Nvidia devices of compute capability 1.2 or lower [8].  We 
use the leap-frog algorithm to calculate the values at ui, j

n+1  given 

the values of ui, j
n!1 and ui, j

n  [1].  Boundary conditions are 
maintained at each iteration by testing the values of i and j and 
adjusting ui, j

n  appropriately.  A scalar gain value is used to 
either clamp the edge (boundary gain = 0) or allow motion 
dependent on the adjacent internal grid point times the 
boundary gain (boundary gain < 1) [5].  Corners are given no 
special consideration.  To obtain different sounds, the values of 
n (grid size), η, ρ, and boundary gain are manipulated. For 
example, values of η=2x10-4,  ρ=0.5, n = 6, and a boundary 
gain of 0.75 produces a bell-like tone; values of η=2x10-4,  
ρ=0.5, n = 16, and a boundary gain of 0 produces a drum like 
tone.  Further examples of this can be found at 
http://userwww.sfsu.edu/~whsu/FDGPU.  
 To obtain audio output, the membrane must be excited in 
some fashion, roughly analogous to striking or plucking the 
membrane.  We use a simple Gaussian impulse to 
initialize/excite the membrane. ui, j

n!1  is set to 0, and ui, j
n  to a 

Gaussian impulse, as suggested in [3, 6]. To obtain audio 
output, a point on the membrane is chosen, and the value for 
ui, j
n is sampled and scaled at each iteration.  For the FDS, the 

center point of the grid is chosen as the output point. 
 We used Nvidia’s Compute Unified Device Architecture 
(CUDA) extension to C to implement our parallel 
implementation of the finite difference simulation for the GPU. 
Nvidia’s GPU hardware is a SIMT (single instruction multiple 
threads) architecture using scalable arrays of multithreaded 
streaming multiprocessors [8]. CUDA divides system hardware 
into host and device, where the host is the system (PC desktop 
or laptop) in which the Nvidia device (or GPU) resides, and the 
device is the Nvidia GPU on which the parallel program, or 
kernel, executes.  The host system first prepares the device and 
then hands off execution of the kernels to the device.  Each 
kernel is executed on the device in a thread, and threads are 
combined into one, two, or three dimensional thread blocks.  In 
a kernel, a thread can obtain its unique x, y, z position in the 
thread block, which is what we use to determine the thread’s 
position when calculating u.  All threads in a thread block 
execute simultaneously, but can be synchronized [8]. 
 Memory between the host and device can be independent or 
integrated with system memory, but in either case are addressed 
separately on the host and device.  On some systems page-
locked host memory (called pinned memory) can be mapped to 
the device [8].  Pinned memory simplifies and reduces the 
overhead of asynchronously transferring results from the device 
to the host.  
 In our parallel implementation of the FD simulation, a single 
thread is mapped to and calculates each FD grid point.  A 
thread determines its position in the grid by finding its 2-D 
location in the thread block [8].  At each time-step, each thread 

calculates one update of the ui, j
n+1  array. Each thread checks to 

see if its grid-point is at a boundary; if so, it applies the 
boundary condition to that point.  The thread that corresponds 
to the output grid-point also updates the output buffer with its  
vertical displacement over multiple time steps.  In order to 
maintain coherence over time, the threads are synchronized at 
critical points.  
 To execute each kernel, the host hands off execution to the 
GPU device. The simulation runs for several time-steps, and the 
output buffer is filled with the computation results, after which 
execution on the GPU device stops.  

4. IMPLEMENTATION 
Our software implementation of the finite difference membrane 
simulation is written in C++ using Nvidia CUDA (The package 
will be available for download at 
http://userwww.sfsu.edu/~whsu/FDGPU). The FDS system 
uses PortAudio (http://www.portaudio.com) (PA) for real-time 
audio I/O, liblo (http://liblo.sourceforge.net) for the Open 
Sound Control (OSC) interface.  
 In order to minimize data transfer latency, both the simulation 
data as well as the buffered audio data are stored in GPU 
memory.   Four grids are kept in GPU memory:  FD simulation 
grids for the current and two past time steps, as well as a 
Gaussian impulse that is used to excite the membrane. When an 
excitation command is received, a separate kernel positions, 
scales and copies the Gaussian impulse grid into the FD 
simulation grids. 
 Overall, an FDS-based system acts as an OSC server, waiting 
for OSC packets to be received, and reacting appropriately to 
controller input. 

4.1 Multithreading 
During execution, there are three simultaneous threads running 
on the host system (Figure 1):  a primary foreground thread 
handling control, a Port Audio callback thread [2] for system 
audio output, and a thread performing the finite difference 
simulation producing audio data.  Communication between the 
audio data producer (FD Engine) and consumer (PA Callback) 
is achieved using the PA thread-safe ring buffer.   

4.1.1 Primary foreground thread  
In addition to initializing and shutting down the system, the 
primary foreground thread handles OSC signals and sends user 
interface commands to the other threads through appropriate 
semaphores. 

4.1.2 Finite Difference Thread 
The finite difference simulation is contained in its own thread, 
and communication with the GPU occurs exclusively in this 
thread.  As mentioned above, control of the simulator such as 
excitation of the membrane is triggered from the primary 
thread.  After initialization, the finite difference simulation runs 
continuously, filling the ring buffer with data as space permits. 
To generate sound, the FD membrane must be excited 
(perturbed) in some fashion.  An arbitrary point on the 
simulation membrane is used to generate audio output; for the 
current version of FDS, this is the center of the grid. The value 
of the vertical displacement of this point at each time step is 
placed in the audio buffer.  The FD kernel (Figure 2) updates 
the vertical displacement of the grid for a fixed number of 
timesteps. The displacement of the center point at each timestep 
is stored into a temporary buffer in GPU memory. The 
temporary GPU buffer is then copied to the ring buffer in 
system memory. 
 Initially all points on the membrane are stationary and have 
zero vertical displacement. Upon receipt of an excitation 
command via OSC (e.g. a hit), the primary foreground thread  
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Figure 1.  Thread configuration during execution. 

sends a command to the FD thread to excite the membrane. In 
the FD thread, upon receipt of this command an excitation 
kernel is called (Figure 2). The excitation kernel copies the 
Gaussian curve stored in GPU memory to the FD membrane 
history buffer; this impulse induces vibration in the FD 
membrane.  The excitation kernel can reposition the center of 
the Gaussian curve to approximate striking (plucking) the 
membrane at different locations on the surface.  The Gaussian 
curve can also be scaled to simulate harder or softer strikes.  

4.1.3 PA Callback Thread 
The PA callback thread is a standard audio callback.  The 
callback reads available data in the ring buffer and copies the 
necessary samples to the Portaudio audio output buffer. 
 

 
Figure 2. Main FD Thread Loop 

4.2 OSC Methods  
OSC methods [15] for exciting the membrane using fixed and 
variable positions, as well as varying amplitude, are available. 
In addition, FD simulation parameters can be changed using 
OSC methods, to simulate membranes with different material 
properties  
 As discussed in Section 3, for the FD simulation to generate 
different sounds, the values of n (grid size), η, ρ, and boundary 
gain are manipulated.  For real-time performance, only some of 
these can be changed in real-time. 
 For the current implementation of the FDS, after 
initialization, grid size (n) remains constant.  Allocation of both 
system and GPU memory takes too long to enable 
reconfiguration in real-time.  Once the grid size has been set for 
a particular sound, it cannot be changed in real-time.  The FD 
simulation parameters η, ρ, and boundary gain (see above) can 
be changed in real-time; OSC methods are provided for each of 
these parameters. 

 An OSC controller for the iPhone was developed for use in 
testing (Figure 3) using TouchOSC (http://hexler.net/).  
Touching the X-Y pad results in an excitation to the 
corresponding location on the FD membrane, while the Amp 
slider linearly scales this Gaussian excitation impulse.  Pulse  
 

 
Figure 3. OSC controller interface used in testing. 

and Damp are momentary pushbuttons; Pulse sends a full-
amplitude Gaussian impulse to the center of the FD membrane, 
and Damp stops all FD membrane vibration. Eta, Rho and 
Boundary sliders modulate the parameters described in Section 
3. 

5. EXPERIMENTAL SETUP  
5.1 System Configurations 
We tested our system on a MacBook Pro with a 2.66 GHz Intel 
Core i7, 4 GB 1067 MHz DDR3 RAM, and a GeForce GT 
330M GPU running OS 10.6.6. 
 Timings were taken for two setups.  For setup I we held 
constant a grid size of 21x21 points, and used kernel output 
buffer sizes of 8, 512, and 4096 entries.  For setup II we held 
the kernel output buffer constant at 4096 entries, and used FD 
grid sizes of 15x15, 18x18, and 21x21.  These values were 
chosen to correspond to previous tests performed in [12].  In all 
cases, the ring buffer was guaranteed to have enough space to 
accept the full contents of the kernel output buffer.  

5.2 Testing 
For each timing measurement (i.e. each buffer size in setup I 
and each grid size in setup II), we repeated the following 
sequence 500 times: run the excitation kernel, check ring buffer 
space, perform the FD simulation, and copy the FD simulation 
output to the ring buffer.  Timing measurements were averaged 
over these 500 runs.  The built-in CUDA timer routines were 
used to time memory transfer, excitation, and FD membrane 
kernel execution times. 
 A separate test was run with each of the above buffer and grid 
configurations to ensure that the audio quality was adequate.  
For this test, the membrane was excited and allowed to play for 
one second.  This was repeated five times.  Any audio output 
buffer underruns were counted; buffer underruns would 
indicate poor audio quality. 
 Qualitative testing of the FDS was performed using the OSC 
controller in Figure 3, changing parameters in real-time. 

6. EXPERIMENTAL RESULTS 
The results for the timing tests are summarized in Table 1 and 
Table 2.  Total time is the sum of excitation time, finite 
difference time, and memory transfer time.  Buffer sizes of 8, 
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512, and 4096 samples correspond to audio output of durations 
0.181 ms, 11.6 ms and 92.8 ms at a sampling rate of 44,100 Hz. 
 For the audio quality test, all kernel output buffer and grid 
configurations produced no audio output buffer underruns. 
 Satisfactory percussive sounds were produced using the OSC 
controller interface in qualitative testing.  It was found that the 
FDS’s output was sensitive to changes in the FD parameters, 
especially η and ρ. Recording of some of these tests will be 
available at http://userwww.sfsu.edu/~whsu/FDGPU.  

7. CONCLUSIONS 
We have successfully implemented a usable real-time audio 
synthesizer based on computationally expensive FD 
simulations.  The results of the audio quality tests show that 
with carefully chosen parameters the FD membrane scheme can 
generate audio data sufficiently fast to support real-time 
synthesis.  As expected, the majority of the processing time is 
spent performing the finite difference simulation. 

Table 1. Setup I: Results for fixed 21 x 21 grid and varying 
output buffer size. Timings are averaged over 500 runs. 

Buffer  
Size 

(samples) 

Excitation 
Time  
(ms) 

Finite 
Difference  

Time 
(ms) 

Memory 
Transfer 

Time 
(ms) 

Total  
Time 
(ms) 

8 0.04 0.56 0.02 0.62 
512 0.03 6.78 0.01 6.82 

4096 0.03 34.31 0.03 34.37 
 
 Table 1 shows that as the buffer size increases, the efficiency 
increases.  Time to calculate one sample (time per sample, 
where 1 sample = 0.026 ms of audio at a sampling rate of 
44,100 Hz) for an 8 sample buffer is 0.078 ms, but for a 512 
sample buffer it is 0.013 ms, and for a 4096 sample buffer it is  

Table 2.   Setup II:  Results for a fixed buffer size of 4096 
samples, and varying grid size.  Timings are averaged over 

500 runs. 

Grid  
Size 

(points) 

Excitation 
Time  
(ms) 

Finite 
Difference  

Time 
(ms) 

Memory 
Transfer 

Time 
(ms) 

Total  
Time 
(ms) 

15x15 0.03 30.26 0.03 30.32 
18x18 0.03 31.81 0.03 31.87 
21x21 0.03 34.73 0.03 34.37 

0.008 ms. This decreasing execution time makes sense as the 
overhead of starting and stopping the simulation and 
transferring the data is leveraged over a larger buffer size.  But 
this also shows that buffer parameters must be carefully tuned 
in order to assure adequate real-time performance. 
 Table 2 shows that with an increasing grid size, the 
simulation efficiency increases.  The time to calculate each grid 
point is 0.13 ms for a 15x15 grid, 0.10 ms for an 18x18 grid, 
and 0.08 ms for a 21x21 grid.   

8. FUTURE WORK 
As the majority of execution time is spent in the FD simulation, 
improvements to this kernel would result in improvements to 
the overall system.   
 Other computationally expensive simulations may provide 
interesting audio results.  These simulations would be 
particularly suited to this synthesis package if the simulation 
can be efficiently calculated in parallel using GPUs. 

 To leverage multiple processor environments, current plans 
include porting the GPU code to the industry-standard OpenCL 
language [9] and testing it across heterogeneous compute 
platforms 
 

9. REFERENCES 
[1] Adib, A.  Study Notes on Numerical Solutions of the 

Wave Equation with the Finite Difference Method.  
arXiv:physics/0009068v2 [physics.comp-ph].  4 October 
2000.   Downloaded from 
http://arxiv.org/abs/physics/0009068v2 on April 15, 2010. 

[2] Bencina, R., and Burk, P. PortAudio – an Open Source 
Cross Platform Audio API.  Proceedings of the ICMC, 
2001. 

[3] Bilbao, S.  A finite difference scheme for plate synthesis. 
Proceedings of the International Computer Music 
Conference, pp. 119-122, 2005. 

[4] van den Doel, K., Knott, D., and Pai, D.  Interactive 
Simulation of Complex Audio-Visual Scenes.  Presence: 
Teleoperators and Virtual Environments, Vol. 13, No. 1, 
pp. 99-111, 2004. 

[5] Gallo, E., and Tsingos, N.  Efficient 3D Audio Processing 
on the GPU.  In Proceedings of the ACM Workshop on 
General Purpose Computing on Graphics Processors, 
August 2004. 

[6] Land, B.  Finite difference drum/chime.  From   
http://instruct1.cit.cornell.edu/courses/ece576/LABS/f200
9/lab4.html, 4/15/2010. 

[7] Motuk, E., Woods, R., Bilbao, S., and McAllister, J.  
Design Methodology for Real-Time FPGA-Based Sound 
Synthesis.  IEEE Transactions on Signal Processing, Vol. 
55, No. 12, pp. 5833 – 5845, 2007. 

[8] Nvidia CUDA Programming Guide, version 2.3.1.  
8/26/2009.  Downloaded 4/21/2010 from 
http://developer.download.nvidia.com/compute/cuda/2_3/t
oolkit/docs/Nvidia_CUDA_Programming_Guide_2.3.pdf. 

[9] Nvidia OpenCL Programming Guide, version 2.3.  
8/27/2009.  Downloaded 4/21/2010 from 
http://www.nvidia.com/content/cudazone/download/Open
CL/Nvidia_OpenCL_ProgrammingGuide.pdf 

[10] Orlarey, Y., Fober, D., and Letz, S.  Parallelization of 
Audio Applications with Faust.  In Proceedings of the 
SMC 2009 - 6th Sound and Music Computing Conference, 
pp. 23-25, 2009. 

[11] N. Rober, N., Kaminski, U., and Masuch, M.  Ray 
Acoustics using Computer Graphics Technology.  In  
Proceedings of DAFx, 2007. 

[12] Sosnick, M., and Hsu, W.  Efficient Finite Difference-
Based Sound Synthesis Using GPUs. In Proceedings of 
SMC Conference 2010, Barcelona.  

[13] Trebien, F., and Oliveira, M.  Realistic real-time sound re-
synthesis and processing for interactive virtual worlds.  
The Visual Computer, Vol. 25, No. 5-7, 2009. 

[14] Whalen, S.  Audio and the Graphics Processing Unit.  
Technical Report, Downloaded 4/21/2010 from 
http://www.node99.org/papers/gpuaudio.pdf. 

[15] Wright, M. The Open Sound Control 1.0 Specification 
Version 1.0, March 26 2002.  From 
http://opensoundcontrol.org/spec-1_0 

[16] Zhang, Q., and Ye, L.  Physically-Based Sound Synthesis 
on GPUs.  In Entertainment Computing - ICEC 2005, 
Lecture Notes in Computer Science, Vol. 3711/2005.

 
 

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

267




