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ABSTRACT
This paper introduces and evaluates a novel methodology
for the estimation of bow pressing force in violin perfor-
mance, aiming at a reduced intrusiveness while maintaining
high accuracy. The technique is based on using a simplified
physical model of the hair ribbon deflection, and feeding this
model solely with position and orientation measurements of
the bow and violin spatial coordinates. The physical model
is both calibrated and evaluated using real force data ac-
quired by means of a load cell.
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1. INTRODUCTION
Violin is regarded as among the most complex musical in-
struments, making different control parameters available for
the performer to freely shape rich timbre characteristics of
produced sound. Within the different bowing control pa-
rameters, only the bow transversal velocity could be consid-
ered as of comparable importance as the bow pressing force
exerted by the player on the string [2]. When approach-
ing the study of violin performance from a computational
perspective, the accurate acquisition of control parameter
signals appears as highly desirable, as it has been demon-
strated by the research effort devoted to such pursuit during
the past few years [1, 12, 7, 3, 5, 8]. In particular, the mea-
surement of bow pressing force not only has received special
attention because of its key role in timbre control, but also
because of a number of measurement-specific issues that ap-
pear as harder to overcome, as it is accuracy, robustness, or
intrusiveness.

An early attempt to pursue the measurement of bow
pressing force from real violin practice dates back to 1986.
Askenfelt [1] used wired strain gages at the frog and the
tip in order to infer the bow pressing force applied on the
string. Although useful for the instrument-modeling pur-
poses of the authors, significant intrusiveness would make
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difficult the use of such a system in a real performance sce-
nario.

Intrusiveness improved significantly by a first wireless ac-
quisition system proposed by Paradiso [8], who attached a
resistive strip to the bow which was driven by an antenna
mounted behind the bridge of the cello. A measurement
relative to the bow pressing force was carried out by using
a force-sensitive resistor below the forefinger. Despite the
reduction on intrusiveness, the obtained measure resulted
rather unrelated to the actual force exerted on the string,
as it happened to Young’s approach [12], who measured
downward and lateral bow pressure with foil strain gages
permanently mounted around the midpoint of the bow stick.

The first effort to relate the strain of the bow hair as
a measure of force was carried out by Rasamimanana [9],
although the technique reached its first state of maturity
(in terms of accuracy) with the technique introduced by
Demoucron [4] and more recently reused and improved by
Guaus [5]: the deflection of the hair ribbon is measured at
the frog (and also at the tip in one of the earlier versions)
by using a strain gage attached to a plate laying against
the hair ribbon which bends when the string is pressed.
This technique, while providing surprisingly good estima-
tions of bow force, suffers from remarkable intrusiveness
and reduced robustness, making difficult its prolonged use
in stage or performance contexts.

In this paper, we present a methodology for the estima-
tion of bow pressing force by using a simplified physical
model of the hair ribbon deflection which makes use of only
position and orientation (6DOF) measurements on the bow
and violin. The motivation is to minimize the intrusiveness
by avoiding the use of additional sensors, and therefore con-
struct a more reliable system that can be used more nat-
urally for longer periods of time. The principal source of
information comes from measuring, as it was already pro-
posed by Maestre [7], the distance between the ideal (no
deflection) segment defined by the ends of the hair ribbon,
and the segment defined by the ends of the string being
played. A physical model of the hair ribbon deflection is
constructed and calibrated from real data measurements us-
ing a load cell, and used later for estimating the bow force
in real performances.

The rest of the paper remains as follows. Section 2 in-
troduces the measurement system and outlines the features
used in our study. In Section 3 we present a simplified
physical model for a single hair thread and then generalize
it to describe the complete hair ribbon. Section 4 describes
a procedure to minimize the deviation between our model
and recorded force data. We conclude with some prelimi-
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Figure 1: Detail of violin and bow placement of
sensors during a performance recording.

nary results along with future directions.

2. MEASUREMENT SYSTEM
To obtain the physical parameters necessary for the esti-
mation of vertical bow force against the violin string, we
utilize the methodology described in [5, 7]. Essentially,
the methodology consists in (i) acquiring instrumental ges-
ture parameters (such as bow transversal position and hair
ribbon-to-violin string distance), and (ii) using a load cell
to measure applied force during calibration and evaluation.

2.1 Acquisition of violin instrumental gesture
parameters

The acquisition of the instrumental gesture parameters is
done in real-time using the Polhemus Liberty system1, a
6DOF tracking system based on electromagnetic field sens-
ing (EMF), and consisting of two wired miniature sensors
and a transmitting source. Each sensor provides three
3DOF for position and 3DOF for orientation, both at 240Hz
sampling rate, with static accuracies of 0.75mm and 0.15
degrees RMS respectively. These sensors are respectively
placed on the bow and the body of the violin, as seen in
Figure 1. From the position and orientation data provided
by these two sensors, and thanks to a calibration procedure
involving a third sensor, we are able to obtain the position
of the ends of the strings, and the (ideal, assuming no der-
formation) position of of the four ends of the hair ribbon
(considered as having finite width), as detailed in [7].

Having obtained the position of the strings as well as the
bow hair ribbon, we can proceed to calculate several param-
eters regarding the position and orientation of the bow with
respect to the violin strings (see Figure 2). Particularly for
this model, the most relevant parameters are:

1. bow transversal position, also referred to as bow
displacement ; this is is computed as the euclidean dis-
tance between SP,H and the measured frog end of the
hair ribbon.

2. bow-string distance, also referred to as pseudo-
force; the modulus of the intersecting line segment
SP , which is perpendicular to the string and to the
hair ribbon. This segment will get longer for higher
deformations due to pressing force. Thus, we compute
a euclidean distance between SP,S and SP,H between
each of the two longitudinal edges (left, right) of the
hair ribbon (tracked as a finite surface instead of as it
is shown in Figure 2 for the sake of simplicity).

1www.polhemus.com

Figure 2: Measured string and hair ribbon seg-
ments, computed from their extracted end points,
versus their actual configuration. Deformations
have been exaggerated in order to illustrate the im-
portance of segment SP .

2.2 Measurement of applied force
In order to both design and evaluate our system, we used a
linear load cell to measure the actual force being applied by
the bow, as suggested by [10] and implemented in [5]. The
cell is fixed to a wooden support, while a thin methacrylate
cylinder is placed over the cell to simulate a virtual string.
By using a similar calibration method described above, we
are able to track the ends of the cylinder and thus acquire a
number of bowing parameters (including bow displacement
and pseudoforce as simultaneously recorded along with the
output of the load cell.

The output of the linear load cell itself is calibrated us-
ing a set of precision weights; the force produced by these
weights on the load cell is derived from Newton’s second law
of motion, F = Mg, with g = 9.8m/s2. The voltage output
of the load cell is post-processed to match the corresponding
unit of Newtons by applying a simple linear transformation
of the form y = qx+ s, where q equals the voltage gain and
s equals the voltage offset.

3. A SIMPLIFIED PHYSICAL MODEL
FOR HAIR RIBBON DEFLECTION

In this section we present a simplified physical model of a
flexible thread or hair as appearing in a violin bow, and
then we extend it to the case of multiple hairs and gener-
alize it to describe the complete hair ribbon. We use such
physical model in order to approximate, given solely infor-
mation extracted from 6DOF sensors, the force exerted on
the string regardless of the displacement or tilting of the
bow. An important simplification was to assume the bow
stick as rigid.

3.1 The thread
The simplest approximation of the bow hair-ribbon is a sin-
gle elastic thread stretched between two points A and B
(see Figure 3). At its rest position the thread has a length
of l, which coincides with the distance between the points
A and B. When a force is applied on a point C, the thread
stretches and is elongated until an internal equilibrium of
the system is reached.

In its rest position, we consider such thread as the limit
of an array of masses connected by springs, presenting a
mass-to-mass distance approaching zero. We parameterize
the thread by a function u : [0, 1]→ R2, and express the
potential energy of the thread as

1

2

T

l

Z 1

0

u′(t)2dt, (1)

where T is the tension of the thread. If u is the parametriza-
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Figure 3: A single elastic thread fixed at two ex-
tremes A and B is stretched by applying a force in
a point C.

tion of the thread of Figure 3 with u(0) = A, u(c) = C, and
u(1) = B where c ∈]0, 1[, the potential energy is given by

1

2

T

l

„
x2 + y2

c
+

(1− x)2 + y2

1− c

«
. (2)

The internal equilibrium, i.e. the minimum potential en-
ergy, is reached for c = ceq, where

ceq =
x2 + y2

x2 + y2 +
p

((l − x)2 + y2) (x2 + y2)
. (3)

In this equilibrium state, the point C is subject to two forces−→
f1 and

−→
f2 in the direction CA and CB respectively. Their

magnitude is the following:

‖
−→
f1‖ = T (l1 − ceql) (4)

‖
−→
f2‖ = T (l2 − (1− ceq) l) (5)

Let’s denote l1 and l2 the length of the AC and CB parts
respectively, α and β the angles CAB and ABC respectively,
and ∆l = l1 + l2 − l the total en-lengthening of the thread.

The total force that the thread exerts on C is
−→
F =

−→
f1 +

−→
f2 .

If we set a coordinate system at the center of the thread
as shown in Figure 4, the point C will be described by its

coordinates (x, y). Now, writing
−→
F = (Fhorz, Fvert) where

Fhorz is the horizontal component of
−→
F and Fvert the verti-

cal component, the vertical component of the force can be
considered as the force applied to the string, and written
(observing that sin(α) = y

l1
and sin(β) = y

l2
) as

Fvert(x, y) = ‖
−→
f1‖

y

l1
+ ‖
−→
f2‖

y

l2
. (6)

3.2 The Hair Ribbon
A more precise approximation of the hair ribbon is to con-
sider it as a a strip of parallel threads, assuming that the
force exerted by the ribbon is the sum of the contributions
of each thread. Considering an homogeneous distribution
of threads determined by a constant ρ and if we define w to
be the width of the strip, we can define the force applied to
the string as

Force = ρ

Z w

0

f(z)dz, (7)

where f(z) is the force density of the thread situated at
position z on the strip.

Let m := y(0) and M := y(w) be respectively the mea-
sured left-hand side and right-hand side bow-string distance
(see Section 2.1). We then have

y = m+
(M −m)

w
z. (8)

Figure 5 schematically depicts the possible relative posi-
tions (displacements) that we considered for the hair ribbon

x

l

y

α β

F vert

0

y

x

f 2

F 

f 1

Figure 4: Schematics of the single thread as in Fig-
ure 3. The chosen coordinate system is shown in the
upper left corner. Note that the y-axis increases
towards the bottom. The reaction forces of the
threads are drawn. The angles α and β have been
exaggerated in the picture so that also the length y
and all the force components could be clearly visi-
ble.

(transversal view) as relative to the string. The displace-
ment of the string with respect to the bow is determined by
the linear relation 8. Only the threads where y is positive
are contributing to the force (as they are in contact with
the string). This happens2 when z > − wm

M−m =: ψ. Having
the diagram of Figure 4 as a reference, we considered the
variable x as constant with respect to z while, depending
on the changes of y, we reduce the problem to three main
cases, defined as

Case I : The y are negative (the ribbon is not touching)
with respect to all z ∈ [0, w], having

f(z) = 0 ∀z; (9)

Case II : y is positive for 0 < z < ψ < w reaches 0 for
z = ψ and is negative for z > ψ, with

f(z) =


0 for z ∈ [0, ψ]

F (x, y(z)) for z ∈ (ψ,w]
; (10)

Case III : y is positive for all z ∈ [0, w], so

f(z) = F (x, y(z)). (11)

Case I is of little significance, since the force is zero. In the
other two cases, applying equation (8) in the equations (10)
and (11), we may completely rewrite equation (7) using the
definition of f and ∆l canceling thus all the indirect depen-
dencies to the variable y. Applying then the substitution
z = w

M−m (y−m) to the integral we can write the results in
term of the function

F̃ (z) :=
1

T

Z z

0

Fvert(x, y)dy, (12)

where we divide by T so that F̃ do not depend on the ten-
sion. We will handle this parameter in the further formulas.

For the fundamental theorem of calculus plus taking into
account the term w

M−m of the substitution, we conclude, for
the three considered cases, as

Case I : The y are negative (the ribbon is not touching)
with respect to all z ∈ [0, w], thus

Force = 0;

2Considering, for the moment, the case where M > m with-
out any loss of generality.
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Figure 5: I. Non touching ribbon. II. Partially
touching. III. Fully touching.

Case II : y is positive for 0 < z < ψ < w reaches 0 for
z = ψ and is negative for z > ψ, having

Force = Tρw
F̃ (max(M,m))− F̃ (0)

|M −m| ; (13)

Case III : y is positive for all z ∈ [0, w], so

Force = Tρw
F̃ (M)− F̃ (m)

M −m . (14)

Finally, we observe that:

1. The final force only depends on the variables x, M
and m plus the constants T , ρ and w.

2. The cases I, II and III can be identified only looking
at M and m. Case I holds when both are negative,
case II when they differ in sign and case III when both
are positive.

3. Considering M > m did not cause a loss of general-
ity. Indeed, for M < m, due to a symmetry of the
problem, we could just switch M with m but this,
thanks to the way equation (13) has been expressed,
does not change the result. Finally we can interpret
the case M = m as a limit case of equation (14) when
(M −m) → 0. The results of the limit is, in fact,
Force = ρwFvert(x,M) corresponding to an equal con-
tribution of all the threads to the final force.

4. OPTIMIZATION PROCEDURE
The described model is parametrized by a single scalar value
given by the product Tρw. Changing this parameter will
affect the whole prediction, scaling it by a factor. Thus, our
initial idea was to infer this factor from an experiment; how-
ever, there are additional conditions in the real case which
are not addressed by the physical model. First, the mo-
tion tracking sensor placed on the bow stick might rotate
by a small angle θ after the calibration has been performed,
causing a rotation of all the data. Secondly, due to the
movement of the sensor, it might be necessary to adjust the
offsets of the bow displacement adding a constant a, and
the offset of the vertical distance with a constant b. Finally,
in order to address the problem of the bending of the stick,
another constant r is added defining a transformation which
will compensate, the effect of the stick bending by dividing
the pseudoforce by a value depending on the bow displace-
ment. The final transformation is given by the following
formula:

8<:
x′ = a+ x
M ′ = Map(x,b,θ,r)(M)
m′ = Map(x,b,θ,r)(m)

, (15)

1

r

θ

b

Figure 6: The function Map applied to a rectangle.
For this example exaggerated parameters used are
r = 0.5, b = 1.5, θ = 0.1rad.

where

Map(x,b,θ,r)(y) :=

(b+ y

 
1 + r

2
+

(−1 + r)
`
− l

2
+ x
´

l

!
Cos[θ] + xSin[θ])

(16)

In Figure 6 it is illustrated how the defined transformation
alters a rectangle with some fixed inflated parameters.

4.1 Description
Suppose we have a training set {(xi,Mi,mi)}i=1,...,n where
xi is the bow displacement, Mi is the pseudo-force of left
side and mi is the pseudo-force of right side at time i. Given
the parameters T , θ, a, b and r we consider the prediction

Forcei(T, θ, a, b, r) =

Force(xi + a,Map(xi,b,θ,r)
(Mi),Map(xi,b,θ,r)

(mi)). (17)

We want to find the better values for the parameters in
order to minimize the absolute error:

J(T, θ, a, b, r) =
1

2

nX
i=1

(Forcei(T, θ, a, b, r)− nidaqi)
2.

(18)
We thus aim at finding:

(T ∗, θ∗, a∗, b∗, r∗) = arg min
(T,θ,a,b,r)

J(T, θ, a, b, r) (19)

We use the Nelder-Mead simplex method [6] in order to find
a local minimum, starting from the identity transformation
parameters: T = r = 1, θ = a = b = 0. In order to re-
duce the computation time, we down-sampled the signal to
8 samples a second. Before the optimization of the param-
eters we also filtered the dataset, to remove noisy data. We
removed the samples where the measurement of the Force
cell was less than 0.2. In fact the sensitivity of the sensor
for small forces is reduced and noisy.

4.2 Results
Using the acquired gesture parameters along with the Force
cell data, we recorded three evaluation datasets. In the
dataset 1, an almost constant force was applied with dif-
ferent bow transversal positions and different tilts. In the
dataset 2, the pseudo-force was changing constantly from
positive to negative while changing tilt and bow transver-
sal position in order to simulate the way violin is normally
played. In the dataset 3, bow transversal positions was kept
fixed while the force and the tilt where changing. This was
done for many different bow transversal positions. Each
recording was around one minutes long. We created an
Joint Dataset, with the samples of the three recordings and
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Figure 7: An excerpt of the recorded force signal
(continuous gray line) along with its prediction (blue
dashed line) after the optimization has been per-
formed.

we performed a 10-fold cross validation, with a performance
going to 13.75 relative error.

Finally, in order to investigate on the best calibration pro-
cedure, we also compared the three different datasets. The
table 1 shows the results of each possible combination of
training-set with test-set. Is clearly shows that even though
the second dataset performs best to predict the rest (with
97.4 mean correlation) the other two datasets give compara-
ble results. So even though trying to replicate the variability
of parameters of a real performance in the calibration lead
to slightly better results, even a short calibration of one
minute, with static bow displacement positions results to
be good for a general purpose force estimation.

5. CONCLUSION
We presented a physical model of the violin bow assuming
a rigid bow stick. We estimated the force of the bow on the
string for each configuration of the hairs considering the
bow transversal position and the bow-string-distance at the
left and right sides of the hair ribbon. We sampled some
datasets from with the Polhemus equipment encountering
systematic parallax-like errors in the data caused by human
error in the calibration procedure or by the sensors. We
defined a transformation to correct those effect dependent
on 4 parameters. We thus used the training datasets to fit
the transformation parameters plus the the tension T of the
hairs.

The bow model gives an estimation of the bowing force
in Newtons with a very high correlation coefficient for the
half of the bow near to the frog. Additionally, by comparing
different datasets corresponding to different types of bow-
ing, we are able to identify the type of data that is sufficient
for obtaining a good prediction. This way we found out a
procedure to calibrate the model in a few seconds.

The main application of this bow physical model is to
complement a sensing system for the acquisition of bowing
gestures by providing accurate measurements of the force
that the bow is exerting on the string while allowing for
less intrusive capturing devices. Additionally, the model
can be used to build or improve data acquisition for sound
controlling interfaces.

Table 1: Relative error and Correlation of the pre-
diction with the true force for each training set and
test set coupling.

Test Set
Dataset 1 Dataset 2 Dataset 3 Joint

T
ra

in
in

g
S
et Dataset 1

corr rel corr rel corr rel corr rel
89.21 16.75 96.18 23.68 98.84 14.67 97.29 17.03

Dataset 2
corr rel corr rel corr rel corr rel
95.03 13.78 97.76 16.75 98.37 20.13 97.4 16.88

Dataset 3
corr rel corr rel corr rel corr rel
84.95 23.61 95.87 22.64 98.88 12.18 96.13 19.82

Joint
corr rel corr rel corr rel corr rel
94.1 13.04 97.3 19.73 98.94 12.19 98.12 13.75

6. FUTURE WORK
A clear potential improvement that will be carried out in
the future is the estimation of the stick bending effect. By
looking at histograms of bow displacement in real playing,
we observed that musicians use the lower part of the bow
(closer to the frog) significantly more often, which reduces
the stick bending effect. When evaluating our model for
extreme cases in which the majority of the frames were
recorded when the performer was playing near the tip, the
performance gets significantly reduced. This could be ex-
plained by the fact that in our model we did not address
explicitly the effect of the stick bending. The effect is, ac-
tually, too big there to be corrected from the mapping in
that region of the bow. A further step will be to include the
deflection of the string in the model. Such a study should
lead to a complete force estimation system for all the parts
of the bow while providing a completed physical model of
the bow. Such a model will, of course, improve obtained
results. However, because of the non-linearity of the model,
the precision of the prediction varies according to the bow
displacement. This has to be considered an intrinsic limi-
tation of any deflection model of the bow and, as suggested
by a reviewer, a thorough study on the propagation of noise
in the formulas should be carried out in the future.

Regarding the parallax error arising from the Polhemus
equipment, it would be interesting to reproduce the exper-
iment with other type of measurement such as IR camera-
based MOCAP (Qualysis) for a comparison of the predic-
tion error.
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