
Mapping Objects with the Surface Editor

Alain Crevoisier
Haute Ecole de Musique de Genève (HEM)

Rue de lʼArquebuse 12, CP 5155
CH-1211 GENEVE 11

alain.crevoisier@hesge.ch

Cécile Picard-Limpens
Haute Ecole de Musique de Genève (HEM)

Rue de lʼArquebuse 12, CP 5155
CH-1211 GENEVE 11
ccl.picard@gmail.com

ABSTRACT
The Surface Editor is a software tool for creating control
interfaces and mapping input actions to OSC or MIDI actions
very easily and intuitively. Originally conceived to be used
with a tactile interface, the Surface Editor has been extended to
support the creation of graspable interfaces as well. This paper
presents a new framework for the generic mapping of user
actions with graspable objects on a surface. We also present a
system for detecting touch on thin objects, allowing for
extended interactive possibilities. The Surface Editor is not
limited to a particular tracking system though, and the generic
mapping approach for objects can have a broader use with
various input interfaces supporting touch and/or objects.

Keywords
NIME, mapping, interaction, user-defined interfaces, tangibles,
graspable interfaces.

1. INTRODUCTION
Projects on tangible interfaces [11] have grown since the last
decade, and a large part of them concerns new ways of
performing music [4]. More recently, the concept of Natural
User Interface (NUI) has been used and refers to “a user
interface that is effectively invisible” [7]. Our work gathers
achievements in the field of graspable interfaces, NUI
technologies and new interfaces for musical expressions. We
extended and adapted our previous research on tactile interfaces
for the use of graspable objects, leading to a concept of
interaction based on combining the manipulation of objects
with touch sensing. Detecting fingers touching the surface of an
object offers the opportunity to intuitively trigger actions by
simply tapping on the object. For our experiments, we have
used a multitouch technology that makes possible to transform
any flat surface into a multitouch device [1] and ReacTIVision,
a well known Computer Vision tool for identifying objects and
tracking their position and orientation using visual markers [3].
However, the framework we have developed for mapping
objects is not relying on a particular technology and any input
interface supporting the TUIO protocol [5] can be used,
although the touch-on-object information may not be available
in all cases.
 Complex mapping structures can be determined with the
Surface Editor thanks to the possibility to assign several actions
for an object and also to set rules for the conditional activation
of an action or a group of actions [6]. This is particularly useful
for exploring new mapping strategies between input gestures
and musical actions. The finality of our study is to propose a

generic mapping tool for setting up and configuring graspable
interfaces adaptable for any use case scenarios.

2. RELATED WORK
A new trend in the field of Human Computer Interaction (HCI)
has been observed this last decade: interfaces are more and
more adapted to our ways of experiencing the world. As an
example, multitouch interaction is gradually supplanting the
use of the traditional computer mouse as control component.
Another example is given by graspable interfaces. As noticed in
1995 by Fitzmaurice et al. [2], a graspable interface exploits not
only our well-developed, everyday haptic-tactile skills for
physical object manipulation, but also our sharp spatial
reasoning capacities. In addition, it enables multi-person,
collaborative use. Playing with objects, combining them in
order to create something new, is a way of showing our
interpretation of the world [13]. Further, the use of objects as
controllers give a persistent representation of what is
manipulated [8]. The idea is not only to handle objects
independently from each other but also putting them into
relation with one another. As outlined by Wanderley et al. [12],
performing computer music with controllers is closely related
to the notion of mapping. Indeed, analyzing the influence of
mapping on the performance of digital musical instruments or
systematically defining mappings to relate controller variables
to synthesis inputs remain crucial.
 Among the many tangible interfaces projects that have been
developed over theses two decades [4], the Reactable [3] is by
far the most remarkable, and the closest to our study. The
Reactable takes its origin from studies on musical performance
and the interest in developing interfaces for the real-time
creation and exploration of music. It uses visual marker
recognition (VMR) for object identification. The specific set-up
of the ReacTable includes a semi-transparent surface with a
camera and projector behind it.
 Our method differs in many ways. First of all, it uses ordinary
tables and surfaces for interaction. Custom made tables can be
visually attractive, but they have the main drawback of not
being suitable for widely use. Second, contrary to the majority
of similar projects that require an image to be projected on the
table, it is only an option in our case. This makes the system
easily transportable everywhere. Already with one of the first
projects on tangible interfaces, Audiopad [9], cumbersome
video projection was seen as a technical limitation. Third, none
of similar projects allows for detecting fingers touching on an
object. In that way, our system gives the opportunity to explore
new interactive possibilities. Finally, as pointed by the
SenseTable project [8], interacting with a large amount of
information with a finite number of physical objects remains
challenging. For this purpose, we propose to leave to the user
the ability to define and adjust the actions in response to his
interaction, so that he can design the mapping that fits his need.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

236

3. OBJECT DEFINITION
An object is defined as any element that can be grasped and put
on a surface. Objects must be identified somehow. Most
systems require a tag to be attached to the objects in order to
facilitate the object recognition and identification. Objects are
defined by their attributes: Object ID (Tag ID), Size, Tag
position, and Type. The last attribute is useful to set families of
objects. It is up to the users to give a meaning and function to
the objects. For instance, one could attribute characteristics
related to sound and music to objects, such as sound sources,
sound modifiers (effects), loop players, volume button, track
selector, or any kind of processing parameter.

4. OBJECT RELATIONS AND DERIVED
PARAMETERS

4.1 No Relation
In this case, the object do not relate with any other object, even
if there might be some others in the neighborhood. The only
parameters are the absolute position and rotation angle of the
object. These may be considered as the intrinsic parameters of
an object, since they exist in all cases, independently of its
relation with other objects.

4.2 Neighborhood
This is the simplest relation between two objects (Figure 1,
left). Beside the intrinsic parameters peculiar to each object,
new parameters are derived from the relative position of the
two objects:

- Delta X - Distance
- Delta Y - Angle

 Except for the angle between the two objects, which is
always calculated from center-to-center, the other parameters
are calculated both from center-to-center and from edge-to-
edge, providing a total of seven derived parameter.

4.3 Object in Object
This relation exists for instance if a thin object is sufficiently
big in size to contain one or more smaller objects (Figure 1,
right). In this case the derived parameters are given by the
relative position of the smaller object inside the bigger one.

4.4 Selective Relations
In most cases, we don’t want an object to relate with all others.
For instance, we may want that an object can relate only with a
particular kind of objects, or only within a certain distance. In
order to consider selective relations, we need to define
conditions under which two or more objects can enter in
relation. For this purpose, we introduce the notion of filters.
Filters can be applied either to the Object ID, the Object Type,
the intrinsic parameters, or the derived parameters. In addition,
several filters can be combined to define more selective
conditions.

5. CHAINS
Chains are created when two or more objects enter in relation.
They can also be seen as sequences of objects ordered in the 2D
space. Figure 2 shows two examples of chains where objects
are close to each other. However, objects do not need to be
close to form a chain and the two configurations in Figure 1 are
also valid examples of chains. A chain exists as long as the
objects are in relation and that the conditions set for the filters
are satisfied. A chain is defining a new entity, which extends
the object’s characteristics. As a consequence, objects
belonging to a chain get new attributes:

- The ID of the chain they belong to (Sequence ID)
- Their position in the chain (Ordering number)
- The number of elements in the chain (Chain length)

 For simplicity, we did not individuated branches in a chain.
For this reason, several objects may get the same ordering
number (see section 5.2 for details on attribution).

5.1 Master/Slave Objects
Let’s imagine a situation where an object would represent a
track and a second object a clip to play in this track. The two
objects do not have the same hierarchical level since it is the
second object that must inherit the Sequence ID from the first
one. For this reason, objects have an additional attribute in
order to determine if they are Master objects or Slave objects.
Master objects will hold a Sequence ID, and slave objects will
inherit this Sequence ID when they enter in relation with the
master object. If a chain is formed only with slave objects, then
they will not get any Sequence ID. Similarly, they will not get
an Ordering number since their position in the chain is
calculated respectively to the master object (Figure 3, top).
Master objects cannot enter in relation, even if their selective
filters would allow it. But it can happen that a slave object
would relate with more than one master object (Figure 3,
bottom). In this case, there are rules of exclusion based either
on the order of occurrence (first master-slave relation will
supersede any further relation), or on a spatial distribution (for
instance, only the leftmost relation will be considered).

Figure 1. Neighborhood relation (left) and
 Object-in-Object relation (right).

.

Figure 2. Two examples of chains.

.

Figure 3. Ordering number attribution (top) and
Multiple Slave-Master relation exclusion (bottom).

.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

237

5.2 Attribution of the Ordering Number
When several objects are in relation in a chain, it is frequent
that closed loops are created. In practice, it is better to avoid
confusing relationships by setting the appropriate filters
between objects. However, we had to find a way to manage any
possible situation. For each slave object, the ordering number
algorithm searches for a path towards the master object with the
shortest distance between neighbors (Figure 3, top). The order
is then the number of steps necessary to reach the master
object. An additional rule imposes that a direct relation with the
master object will supersede any other relation.
 Table 1 is giving a summary of all the attributes for an object
and if they are defined at the design level (by the user) or at the
performance level (by the system).

Table 1. Summary of objects attributes

Attribute Design or Performance Level

Object ID (= tag ID) Design

Object size Design

Type Design

Tag position Design

Master or Slave Design

Sequence ID Design or Performance

Ordering number Performance

Chain length Performance

6. EVENTS
In order to trigger actions when objects are manipulated by
users, for instance to trigger loops or to vary sound processing
parameters, it is necessary to generate triggering events. They
are linked to the input parameters provided by the tracking
system (intrinsic parameters and derived parameters), and occur
when certain conditions are met. In this study, we consider two
families of events, Object Events and Touch Events. We also
make a distinction between discrete events and continuous
events present in both families.

6.1 Connect Event
A Connect event is a discrete event that occurs when an object
enters in relation with another one. The second object may be
either alone or within an already existing chain of objects. The
conditions for a Connect event to occur are specified by the
filters defined in section 4.4. For instance, an object could
generate a Connect event only when it is close enough to the
right side of another object of the same type. This would
require three filters, one setting the type, one setting the
distance, and one setting the range of the valid angle between
the two objects.

6.2 Other Object Events
In addition to the Connect event, other object events include:

- Object Down: the object is placed on the surface.
- Object Up: the object is removed from the surface.
- Object Exists: the object is on the surface (continuous).
- Object Moving: position or angle is changing (cont.).
- Object Moved: position or angle has changed (discrete).

6.3 Touch Events
If the tracking system is capable of detecting when objects are
being touched, then additional events are available for
triggering actions:

- Touch Down: the object is touched.
- Touch Up: the object is stopped being touched.
- Drag Start: a dragging movement starts on the object.
- Drag Stop: the dragging movement stops.
- Touching: lasts while the object is touched (cont.).

 Filters are also available in this case for additional selective
conditions [6].

7. IMPLEMENTATION
The Surface Editor has been considerably extended in order to
support objects management and also to integrate more closely
with Ableton Live. A new class of mapping components have
been added (Objects), a new activator has been created to
handle objects (Object Activator), and two new actions have
been added specifically for Ableton (Live Track and Live
Device). Also, it is now possible to send variables between
objects and controllers in order to change the behavior of an
object or controller from another one. This can be used, for
instance, to change the MIDI channel of an object’s action from
the rotation angle of another object. Finally, controllers and
objects can be used together for additional flexibility.

 The Surface Editor receives the touch and object information
via TUIO provided by two tracking systems running in parallel.
The first one is the Airplane controller developed in previous
projects [1], and the other one is a simple webcam hooked to
ReacTIVision [10]. Thus, two cameras are looking to the scene
(Figure 4, right). A video projector is also used for the optional
projection of visual feedback on the table.
 Since the Airplane controller is detecting touch by watching
fingers crossing a plane of IR light placed a few millimeters
above the surface, objects must be thin enough for not
interfering with the plane (Figure 5). If interacting with touch
gestures is not desired, then thicker objects can be used.

7.1 Linking Controllers to Objects
Controllers rely on a graphical representation, like a fader or
keyboard for instance, and need a visual display in order to be
manipulated. On the other hand, as mentioned before, objects
hold a persistent representation and do not need a display for
visual feedback. However, if projecting an image is not an
issue, it can be desired to combine the two interaction
paradigms. For this reason, several options exist with the
Surface Editor. First, it is possible to arrange controllers on a
page and leave some blank space in order to use objects at the
same time. However, using pages is a rather static approach
compared to the manipulation of objects. In order to bring a
more dynamic dimension to the use of controllers, it is now
possible to link a controller, or group of controllers to an object.
Once linked, the controller(s) will appear dynamically when the

Figure 4. Setup.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

238

corresponding object is placed on the surface (see Figure 5).
Moving the object will also move the controller accordingly.

7.2 Object Activator
The new Object Activator implements the triggering
mechanism described in section 6 and the selective filters
described in section 4.4. The activator is therefore determining
the conditions for an action, or group of actions to occur. Users
first select the triggering event and then add as many filters as
desired (Figure 6). Like with the Touch Activator available so
far with the Surface Editor, several Object Activators can be set
for an object, so that several actions or group or actions can be
triggered according to different conditions.

7.3 Sound Generation
The Surface Editor is now supporting LiveOSC1 in order to
perform bi-directional communication with Ableton Live. This
is simplifying enormously the mapping work compared to
MIDI. The Surface Editor is informed of the clips, volume, and
devices present in a track with all their parameters. Instead of a
double work, setting a MIDI CC on one side and setting the
same on the other side for the parameter one desires to control,
users can map a parameter in Live simply by selecting it in a
dropdown list. Two new actions have been created, one to
handle track related features (clip, volume, mute, etc.), and one
to handle device related features (device parameters).
 The Surface Editor is of course not limited to interact with
Ableton Live. All variables and information events can be sent
through OSC or MIDI to any other sound generation software.

1 http://liine.net/livecontrol/ableton-liveapi/liveosc/

8. FUTURE WORK
Several user evaluations are planned. First, with novice users
using pre-defined scenarios, in order to test the suitability of
this system for music pedagogy. Second, the platform will be
introduced to more advanced users during a three days
workshop that will be held between April 22 and 24 2011, in
the context of the Electron Festival2 in Geneva, Switzerland.

9. ACKNOWLEDGMENTS
The project presented here is supported by the State Secretariat
for Education and Research SER, the Swiss National Funding
Agency, and the University of Applied Sciences Western
Switzerland. Big thanks to Vincent Pezzi for his great work in
developping the Surface Editor. Initial work was realized by
Pierrick Zoss and Greg Kellum.

10. REFERENCES
[1] Crevoisier, A., and Kellum, G. Transforming Ordinary

Surfaces into Multi-touch Controllers. Proc. of
International Conference on New Interfaces for Musical
Expression (NIME), 2008.

[2] Fitzmaurice, G. W., Ishii, H., and Buxton, W. Bricks:
Laying the Foundations for Graspable User Interfaces.
Proc. of Conference on Human in Computing Systems
(CHI’95), 1995.

[3] Jordà, S. and Kaltenbrunner, M. and Geiger, G. and
Bencina, R. The reacTable*. Proc. of ICMC, 2005.

[4] Kaltenbrunner, M. http://ww.iua.upf.emtg/reactable/
?related , Referenced October 20, 2006.

[5] Kaltenbrunner, M., Bovermann, T., Bencina, R. and
Costanza, E. TUIO - A Protocol for Table Based Tangible
User Interfaces. Proc. of the 6th International Workshop
on Gesture in Human-Computer Interaction and
Simulation (GW 2005), Vannes (France).

[6] Kellum, G., and Crevoisier, A. A Flexible Mapping
Editor for Multi-touch Musical Instruments. Proc. of
NIME-09, Pittsburgh, USA, 2009

[7] Natural User Interface:
http://en.wikipedia.org/wiki/Natural_user_interface

[8] Patten, J., Ishii, H., Hines, J., Pangaro, G. Sensetable: A
Wireless Object Tracking Platform for Tangible User
Interfaces. Proc. of CHI’01, ACM Press, pp.253-260,
2001.

[9] Patten, J., Reht, B., and Ishii, H. Audiopad: A Tag-based
Interface for Musical Performance. Proc of NIME-02,
(2002), 24-26.

[10] ReactiVision: http://reactivision.sourceforge.net/
[11] Ullmer, B., and Ishii, H. Emerging frameworks for

tangible user interfaces. IBM Systems Journal 39 (2000),
pp. 915–931.

[12] Wanderley, M., and Depalle, P. Gestural Control of Sound
Synthesis. Proc. of the IEEE, vol. 92, No. 4 (April),
Special Issue on Engineering and Music - Supervisory
Control and Auditory Communication, G. Johannsen, Ed.,
pp. 632-644.

[13] Wolf, M. Soundgarten: A Tangible Interface that Enables
Children to Record, Modify and Arrange Sound Samples
in a Playful Way. Masters thesis, University of Applied
Sciences Cologne, Germany, 2002.

11. ADDITIONAL RESOURCES
More info and videos at: www.future-intruments.net

2 http://www.electronfestival.ch/

Figure 6. Control panel of an Object Activator.

.

Figure 5. Linking Controllers to Objects.

.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

239

