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ABSTRACT
The design of an unusually simple fabric-based touch
location and pressure sensor is introduced. An analysis
of the raw sensor data is shown to have significant non-
linearities and non-uniform noise. Using support vector
machine learning and a state-dependent adaptive filter it
is demonstrated that these problems can be overcome.
The method is evaluated quantitatively using a statistical
estimate of the instantaneous rate of information transfer.
The SVM regression alone is shown to improve the gesture
signal information rate by up to 20% with zero added
latency, and in combination with filtering by 40% subject
to a constant latency bound of 10 milliseconds.
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Figure 1: Clockwise from top left: Prototype fabric
touch and pressure sensing surface. Raw sensor
data. Gesture estimation by SVM. Electronics.
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1. INTRODUCTION
Recent advances in conductive polymers have enabled

a new generation of electronic circuits and sensors using
flexible materials [5]. In this paper a prototype touch
surface sensing a single spatial location and applied pressure
is constructed using piezo-resistive fabric (Figure 1). An
advantage of piezo-resistive fabric over other materials such
as rubber is its fast recovery from compression, enabling
high-temporal resolution as required for intimate control
of an electronic musical instrument. The unusually simple
design shown can be constructed in less than 10 minutes
using basic tools. However, while these malleable materials
enable extremely rapid design and prototyping, the sensing
strategies are still experimental and have difficulties includ-
ing non-linear coupling between measurements and high-
noise gain at the edge of the valid sensing area. These
problems can be solved without significantly increasing
the latency of the sensing by using machine learning
and adaptive filtering. The theory, implementation and
evaluation of this method is described in this paper.

2. THE FABRIC TOUCH SURFACE
The design of a surface for simultaneous sensing of

pressure and touch location can be realized with two
sheets of piezo-resistive fabric separated by a standoff
layer of light-weight plastic mesh. The tools required are:
scissors to cut the materials, soldering iron for wiring to
a microcontroller, and a staple gun to fix the fabric to a
frame. The design is shown in schematic form in Figure 2
and a prototype example is photographed in Figure 1.
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Figure 2: Design schematic for the touch and
pressure sensing surface. Sheet materials are folded
over and stapled to mounting surface.

The design has many variables including the type of
fabric, standoff layer material, size of the surface, and
use of constant current or constant voltage sensing. The
prototype shown here is approximately 20cm2 constructed
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with EeonTex (tm) piezo-resistive ”switch” fabric [3], a
specially coated fabric with low resistance along the surface
of one side and a higher resistance through the z-axis of the
material.

2.1 Equivalent Circuit
An ideal electric circuit for the touch surface is shown in

Figure 3.
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Vd
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Rx' Ry'

Figure 3: Ideal circuit model of touch pressure
sensor

The nodes (Va, Vb, Vc, Vd) are the wires shown in Figure 2,
and are connected directly to the pins of a microcontroller
with bi-directional drive (input or output) and analog
voltage measurement capability. The position of the tap on
resistors Rx and Ry are determined by the (x, y) coordinate
of a single object touching the surface, and the pressure p
applied to Rz gives a variable resistance at the point of
contact. The standoff-layer ensures that p → 0 when no
pressure is applied by physically pushing the layers apart.
The additional terms Rx′ and Ry′ represent unknown
(presumably small) cross-talk components induced by the
radial spread of current around the point of touch.

Provided that the cross-talk components R(x′,y′) are
small and that that the transverse resistance Rx,y is
typically at least one order of magnitude smaller than
the through-resistance Rz/p (e.g., by application of a
surface coating to achieve higher conductivity parallel to the
surface), then the measurements of each parameter will be
nearly-linear and independent (see also Section 3.5.2 in [7]
for more details). In reality this ideal is best approximated
only at the center of the sensing surface.

2.2 Sensor Measurement Method
To obtain a measurement of the parameters (x, y, p), a

program on the microcontroller is used to drive the nodes
in a sequence of four states listed in Table 1 to obtain eight
voltages. At each step, two of the nodes are output states
comprising a source and a sink causing current to flow along
a path through the fabric that is essentially oriented along
the x, y or p direction, while two other nodes are input
states measuring the voltage. The resulting 8 channels of
measurement are sampled at a rate of 1000hz and the skew
between measurements is less than 100 microseconds.

Va Vb Vc Vd

Step 1: x 1 (1 − x) 0
Step 2: 1 y 0 (1 − y)
Step 3: 1 0 (1/p) (1/p)
Step 4: (1/p) (1/p) 1 0

Table 1: Four-step measurement sequence. A state
of 1 or 0 indicates the pin in output mode driven
high or low.

2.3 Parametric Sampling of Raw Sensor Data

Registration marks were drawn on the top of the touch
surface prototype with a pen at 2.5cm intervals yielding an
8x7 grid. A calibration jig was constructed that could be
adjusted to apply a controlled pressure at each grid point
with a spatial distribution approximately the size of a finger
tip. Stimulation of the surface at each point with 5 different
levels of pressure was performed by changing the weight of
the jig on a log2 scale and with p = 0 corresponding to the
smallest weight producing sufficient pressure to overcome
the standoff barrier layer. The eight measurement voltages
were recorded for each of the 8x7x5 = 280 conditions and
labelled with the corresponding (x, y, p). This dataset is
representation by the notation:

D = (X,Y) = {(xi,yi) : i = 1 . . . 280} (1)

Where X ∈ R8×280 is matrix of samples where each column
is one of the eight channels of raw sensor data, and Y ∈
R3×280 is the matrix of the the corresponding parameters
of each sample (xi, yi, pi).

2.4 Evidence of Non-Linearity
Three channels of X corresponding to measurements of

(x, y, p) as described in Section 2.2 were put into a matrix
and compared with a correlation analysis. These columns
will be notated x(x,y,p). The resulting correlation matrix is:

xx xy xp

xx 1. 0.04 0.47
xy 0.04 1. 0.15
xp 0.47 0.15 1.

This demonstrates relatively small correlation between x(x,y)

but a strong correlation between xp and x(x,y).
Given that the sampling of (x, y, p) in Y are linearly

independent, each should account for the total variance
in X in proportions equal to the sampling density (8,7,5).
However, Principal Components Analysis applied to X
found clear evidence that the data does not fit into a 3-
dimensional subspace (Table 2).

Parameters x y p
Number of Samples 8 7 5
Explanation of Variance Expected 40% 35% 25%

Variance in PCA(X)(1,2,3) 36% 30% 27%
Residual Variance PCA(X)(4...8) 5%
Residual Covariance in PCA(X) < 3%

Table 2: Explanation of variance expected in D
versus measured variance assuming linearity

In summary, the raw sensor data is correlated but cannot
be decorrelated using a linear transform.

2.5 Other Issues in Raw Data Quality

2.5.1 Pressure Range Issues
When p → 0 the resistance between layers goes to infinity.

This condition occurs when a touch is released from the
surface or when a touch is very light. As a result the
spatial measurement of (x, y) becomes either impossible or,
at the edge of the sensing range, is very noisy. A pressure-
dependent adaptive filter is introduced later to deal with
the state-dependent variation in noise and to extend the
useful range of measurement.

2.5.2 Material Imperfections
During the process of the systematic acquisition of D we

noticed a significant deviation from the normal range of raw
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data in a particular region of the surface. The abnormal
area was limited to an area of only a couple centimeters
diameter. Later we were informed by the supplier that the
fabric coating may have local irregularities.

3. PARAMETER ESTIMATION BY SVR
The support vector machine (SVM) is an algorithm for

making a predictive model that estimates a relationship
between raw data and a discrete class label or continuous
parameter. SVMs are well-known for their relatively
simple controls, bounded computational cost, and direct
relationship between the trained machine and the source
training data through the retention of a sparse collection of
examples called support vectors [4].

The epsilon-insensitive Support Vector Regression (ε-
SVR) algorithm takes as input a training dataset

{(xi, f(xi)), i = 1 . . . "},x ∈ Rd, f(x) ∈ R (2)

and produces an approximation of the real-valued continu-
ous function f by optimizing the choice of (αi, b) in:

f(x) ≈
!X

i=1

αiK(x,xi) + b (3)

The αi are constrained to lie in the interval [−1, 1]. If αi %= 0
then the corresponding xi is a support vector. If |αi| = 1
then it is a bounded support vector. Since only xi with
non-zero αi are necessary in the reconstruction of f , the
resulting SVM model is a sparse subset of the training data.

The kernel function K is chosen in this work to be the
radial basis type (a typical choice for real-valued data):

K(x,y)(γ,θ) = e−γ
Pd

i=1 θi(xi−yi)
2

(4)

The kernel trick is that K(x,y) =< Φ(x),Φ(y) >, where
Φ(x) : X → F for F a very high (possibly infinite)
dimensional feature space with dot product < ·, · >. SVM
performs linear separation in F using dual-optimization
with the implicit map Φ (Figure 4).

X FH

Figure 4: SVM solves a linear problem by means of
an implicit mapping to F

3.1 SVR Model Optimization
The ε-SVR is controlled by the following variables:

• ε, the interval inside of which there is no penalty for
regression error

• γ, the scaling factor of the radial basis kernel function

• θ = {θi : i = 1 . . . d,
P

wi = d} normalized weight of
each raw feature [2]

Prior to training the SVR, each raw feature is scaled
independently to range over the interval [−1, 1]. The
optimal selection of parameters (ε, γ,θ ) was performed by
multi-resolution grid search minimizing the mean-squared
error of 4-way cross-validation subject to bounds on the
maximum number of support vectors (nSV) and minimum
and maximum number of bounded support vectors (nBSV).

The upper bound on nSV controls computational cost
of the model. The lower and upper bounds on nBSV
control under-fitting and over-fitting, respectively, which
were chosen by manual adjustment to produce a reasonable
result. The optimization objective is:

min
ε,γ,θ

1
"

!X

i

(ε-SVR(ε,γ,θ,D)(x) − f(x))2, (5)

subject to

0 < nSV <
2
3
",

1
12

nSV < nBSV <
1
4
nSV.

Because ε-SVR estimates only a 1-dimensional function,
this process was repeated for each of (fx, fy, fp) resulting in
three models. The geometry of the search space for ε and
γ is shown in Figure 5. The final model results for each
parameter are summarized in Table 3.

x y p

Parameter ε 0.036 0.051 0.14
Parameter γ 0.52 0.58 1.20
nSV 62 56 76
nBSV 37 15 26
Mean Squared Error 0.0018 0.0030 0.021

Table 3: SVR model optimization results

Figure 5: SVR parameter optimization space

3.1.1 Concentration of SV Information
The relationship between αi and the spatial coordinates

(x, y) are shown at each pressure level in Figure 6. As
expected we observe a larger amplitude in α near the corners
where the non-linear behavior of the circuit is largest.

3.1.2 Implementation
The implementation of SVM used was LIBSVM 2.9 [1]

with modifications to support the θ parameter and an
interface to the Mathematica notebook environment, which
was the main tool for performing the multi-resolution grid
optimization and other analyses.

4. STATE-DEPENDENT NOISE FILTERING
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Figure 6: Magnitude of SVR coefficients αi as a function of (x, y, p). Note strong deflections at corners.

4.1 Pressure-Dependent Spatial Noise
The increase in noise as p → 0 has been touched on briefly

in Section 2.5.1. A first approach to this problem is to place
a thresholding on p below which the data is not considered
valid. However this does not compensate for the noise still
present in the valid sensing range. The standard deviation
of this noise is state-dependent and approximately inversely
proportional to p.

To measure the noise present after SVR remapping, a
recording of typical touches at different pressure levels at
each grid point was made, and from this the noise level
with respect to the vector norm of spatial coordinates (x, y)
estimated to be 0.12 at p = 0 and 0.06 at p = 1. Our goal
was to make this noise uniform across all values of p subject
to a bound on the delay incurred by the noise-removal filter.

4.2 Constant-Error Bounded-Delay Filtering
Assuming a normally-distributed Gaussian noise process

with standard deviation σ, the standard error of the sample
mean averaging over n samples is:

σ/
√

n. (6)

For a time-varying signal where the instantaneous stan-
dard deviation is known (for example by measurement),
then it is possible to formulate a filter that has a constant
standard error by dynamically changing the size of the
averaging window n. The total delay of the filter can be
bounded by constraining n to be less than some limit.

Allowing for applications of the touch surface in computer-
based musical instrument control, we choose the latency
bound to be 10 milliseconds. At the sampling rate of 1000hz
this is equivalent to a delay of 10 samples, i.e., the effective
delay of the filter must not exceed n = 10. Given the
maximum standard deviation σ′ (e.g., the noise observed
when p → 0), the effective n to achieve constant standard
error at σ subject to the delay bound is:

σ√
n

=
σ′
√

10
, (7)

n =
10σ2

σ′2 . (8)

Note that σ < σ′ and that n < 10.
Consider the discrete-time order-2 recursive low-pass

filter acting on input f parameterized by ω,

g(f,ω)(t) = (ω)g(f,ω)(t − 1) + (1 − ω)f(t) (9)

The effective delay n of this filter is the integral of its
impulse response,

Z ∞

0

(
1
ω

)−tdt =
1

logω−1
. (10)

Therefore the appropriate selection of ω given a desired n
is

ωn = e−
1
n . (11)

Finally, a pressure-dependent filter for conditioning of
fx(x, t) and fy(x, t) is given by

h(f(x,y)(x),fp(x)(t)) = g(f(x,y)(x),ωnp ) (12)

where ωnp is determined by estimation of the spatial stan-
dard deviation σp as a function of instantaneous pressure
at time t (shown in Figure 7).

Figure 7: Derivation of the adaptive filter

5. EVALUATION

5.1 French Curve Test
Following the example data used in [7] two copies of

a french-curve were drawn on the surface and recordings
made of a finger stroke along the curves. The strokes
were executed with normal dynamics and not controlled
carefully for uniform pressure or velocity. Figure 8 shows
the raw data, hard thresholding on pressure, noise removed
by adaptive filtering, and final resulting data in (x, y, p)
space.

5.2 Measuring Information Gain
From the graphs shown it is obvious that some improve-

ment has been made, but a more quantitative analysis is
needed. In the HCI community there exist task-oriented
standards such as ISO-1941-9 for evaluation of pointing
interfaces [6]. However for a broader applicability indepen-
dent of any task, for example, in musical applications that
are inherently task-free, this type of analysis is not useful.

Rather, we take the concept of the rate of information
transfer, which is the primary determinant in Fitt’s Law,
and formulate an instantaneous version of the metric for a
discretely-sampled stream at rate FS using the log2 ratio
of the absolute-value of the moving average Em of the
derivative dx (i.e., ”effective target distance”) to 3 times the
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Figure 8: Processing french curves from raw to final

moving standard deviation (i.e., ”effective target width”).

Im(x) = log2

|Em(dx)|
3

p
Em((dx − Em(dx))2)

× FS (13)

Calculating Im on the raw french curve data yielded
a rate of information transfer ranging from 50 bits/sec
to 90 bits/sec in the spatial (x, y) measurements. After
estimation of the true parameters (x, y) using the ε-SVR
models the information-rate increased by 10-20% with zero
additional delay. After filtering with the latency-bounded
filter the information-rate increased an additional 10-20%
incurring a maximum delay of 10 milliseconds. Figure
9 shows the information-rate statistics across both french
curves and Figure 10 shows the delay incurred by the
adaptive filter.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 9: Spatial information rates over both curves

The mean and best-case improvement in estimation of
(x, y, p) is shown in Table 4:

Mean Improvement Max Improvement

x 21.4% 43.5%
y 10.1% 20.03%
p -0.2% -2.9%

Table 4: Summary of information gain by
parameter

Interestingly the gain in estimation of p was reduced
compared to the raw data, which is not unsurprising
considering the initial look at the raw data discovered
excessive information coupled into that channel.

1.80 1.85 1.90 1.95 2.00 2.05

80

100

120

140

t

bits/sec

Raw

SVR

SVR+Filter

Filter Effective Delay

Figure 10: Detail of information transfer showing
filter delay

Finally we look at the correlation matrix between pre-
dicted (x, y, p) from the ε-SVR and observe that the non-
linear cross-talk between channels has been reduced to less
than 2%.

fx(x) fy(x) fp(x)

fx(x) 1. 0.00 0.02
fy(x) 0.00 1. 0.01
fp(x) 0.02 0.01 1.

6. CONCLUSION

6.1 Summary of Results
This paper shows that using a simple calibration rig,

the raw data from fabric-based touch-pressure sensors can
be processed to improve accuracy and remove non-linear
cross-talk with a support vector machine learning approach.
In addition the formulation of a constant-error bounded-
delay filter was shown and used to gain information without
compromising reactivity of the sensor as necessary in
latency-sensitive applications such as music performance.

6.2 Future Work

Figure 11: Variants on the basic design with
different dimensions and materials

An interesting application of the method shown here, in
particular the use of the moving rate of information transfer,
can be used to provide quantitative answers to the impact of
design decisions such as the size of the sensing surface and
differences between constant-current and constant-voltage
sensing. A collection of new surfaces was constructed that
include some of these alternative choices, shown in Figure
11.
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