
Music Programming in Minim

John Anderson Mills III
Université de Mons, TCTS

31 Bvd Dolez
Mons, Belgium

nodog@konfuzo.net

Damien Di Fede
∗

Kokoromi
619B W 35th St

Austin, Texas, USA
dcomposer@gmail.com

Nicolas Brix
Université de Mons, TCTS

31 Bvd Dolez
Mons, Belgium

nicolas.brix@gmail.com

ABSTRACT
Our team realized that a need existed for a music program-
ming interface in the Minim audio library of the Processing
programming environment. The audience for this new in-
terface would be the novice programmer interested in using
music as part of the learning experience, though the inter-
face should also be complex enough to benefit experienced
artist-programmers. We collected many ideas from cur-
rently available music programming languages and libraries
to design and create the new capabilities in Minim. The
basic mechanisms include chained unit generators, instru-
ments, and notes. In general, one “patches” unit generators
(for example, oscillators, delays, and envelopes) together in
order to create synthesis algorithms. These algorithms can
then either create continuous sound, or be used in instru-
ments to play notes with specific start time and duration.
We have written a base set of unit generators to enable
a wide variety of synthesis options, and the capabilities of
the unit generators, instruments, and Processing allow for
a wide range of composition techniques.

Keywords
Minim, music programming, audio library, Processing, mu-
sic software

1. INTRODUCTION
Processing[6] is an open-source, textual programming en-

vironment which was originally focussed on both allowing
visual artists easy access to programming as well as provid-
ing quick prototypes for visualizing ideas. It has grown to
be a full development environment and has a large com-
munity of users. One can find much more information
at http://www.processing.org, including tutorials, down-
loads, and forums. Many people have contributed to Pro-
cessing since it began, creating libraries which extend the
capabilities of Processing.

Minim[3] is one such library and is open-source as well.
Minim extends the capabilities of Processing to include au-
dio capabilities and is distributed with the standard instal-
lation of Processing. The previous version of Minim, 2.0.2,

∗Damien Di Fede is the original creator of Minim.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME2010, 15–18th June 2010, Sydney, Australia
Copyright remains with the author(s).

provides many capabilities for adding sound to sketches,
or the individual programs, in Processing, but we felt that
Minim did not provide adequate capabilities for a program-
mer with musical goals.

We decided to add a music programming interface to
Minim. We reviewed several different music programming
languages, including Csound[1], SuperCollider[4], ChucK[9],
JMusic[7], and Beads[2]. We also reviewed the graphical
music prgramming software packages Max/MSP[10], and
PureData[5]. We took a mix of our own ideas and the ideas
from these languages, libraries, and software to try to make
music programming easy for the novice programmer work-
ing within the Processing environment.

Processing is basically a simple Java development envi-
ronment with some extra capabilities, therefore many of
the benefits and drawbacks associated with Java are char-
acteristics of Processing as well. Processing permits one
to quickly develop programs, standalone applications, and
web applets. By adding music programming capabilities to
Minim, we would also be creating a simple way to produce
music programs for download and web publication.

The purpose of this paper is to present the new capa-
bilities of Minim to a techncally knowledgable audience by
describing the design decisions made and some resulting
consequences. This paper is not intended as the user docu-
mentation for the software.

This paper does assume a basic knowledge of electronic
music concepts, Processing, Java, and object-oriented pro-
gramming. For the rest of the paper, Minim will refer to the
newly developed version which includes the music program-
ming interface described here. Programming constructs will
be referred to as follows. Class names will be capitalized.
Objects instantiated from classes will start with a lower-
case letter. Class methods will be followed by parentheses.
Finally, in this paper, by music, we mean all sound art.

The examples presented in this paper are simple. This
choice was made for brevity and clarity. Both simple and
complex examples are provided with the Minim library.

Section 2 describes the design process for Minim’s music
programming interface. Section 2.1 describes the framework
of Minim. Section 2.2 describes the benefits and drawbacks
of working within Processing and Java for this task. Sec-
tion 2.3 describes the unit generators, or UGens, which were
created for Minim. Section 2.4 describes the extra capabil-
ities of Minim which make it easy to use for the novice
programmer. Section 2.5 describes different compositional
techniques facilitated by Minim. Finally section 3 will de-
scribe how Minim performed, availability, and the future
work we intend.

2. MUSIC PROCESSING IN MINIM
Fortunately, version 2.0.2 of Minim is a stable audio li-

brary for the Processing language. This gave us a good basis

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

37

to begin our new work. Minim version 2.0.2 uses buffered
audio and provides audio to the Java Sound API[8], though
Minim version 2.0.2 does have facilities to use other low
level drivers.

On October 13 and 14, 2009, we conducted a workshop in
which we determined the audience and scope of our work.
We decided that the main audience would be sound artists
who are new to programming and want to use Processing
to learn programming. We determined that the music pro-
gramming interface should keep those artist-programmers
interested as their skills grew. We also wanted to provide a
complete music programming environment for visual artists
using Processing wanting to complement their visual art
with sound. Our audience is referred to from this point as
the artist-programmer.

In that same design workshop we decided on the basic
framework which will be described in section 2.1. A decision
was made to calculate audio signals and control signals at
the same rate. This decision is similar to a design decision
made in the ChucK audio programming language. This
decision also indirectly limits the number of simultaneous
sounds Minim can provide in real-time applications and is
discussed further in section 2.2.

Before going into section 2.1 about the choices we made
on the framework for Minim, it is important to describe the
basic structure of a non-trivial Processing sketch. These
sketches are usually built around two methods, setup()

and draw(). setup() is called once at the beginning of the
execution of a sketch and contains initialization code. After
setup() has finished, draw() is called repeatedly during the
execution of a sketch, at a nominal rate of 60 frames/s. It
is the draw() method which allows Processing to present
animation, but the timing of the calls to draw() is not fast
or consistent enough to ensure the sample accuracy often
required by music.

2.1 Music Programming Framework
The first decisions made were that synthesis would be

driven by unit generators, or UGens, which each did a spe-
cific small task and could be connected together. Unit gen-
erators exist in almost every music programming language
in one form or another. Section 2.1.1 describes our design
decisions about UGens and patch()ing in detail.

We also made the design decision that we wanted to be
able to make Instruments and use them to play notes. This
mechanism is not inherently a part of every music program-
ming languages (for example, ChucK and Beads do not have
a strong idea of instruments) though it is a part of many
(for example, Csound and JMusic). Section 2.1.2 describes
our design decision about Instruments and notes in detail.

The Java Sound API imposes that AudioOutputs are ei-
ther stereo or monaural. If one wishes to use more than
two channels of audio concurrently, one must create more
than one AudioOutput and process them as multiple stereo
pairs. With this in mind, we have built our framework with
no more than two channels of control. The audio signal is
actually handled in Minim by an array whose size is de-
termined by the AudioOutput and is therefore not limited
to two channels. The UGens which control audio imaging,
however, never provide for more than stereo sound at this
point.

2.1.1 UGens and Patching
The decision was made to build synthesis up from UGens.

This is a common technique in music programming lan-
guages. These unit generators include sound generators,
like noise and tone generators; effects, like delays and filters;
and other tools, like envelopes. Section 2.3 will describe the

lFO1.patch(sineOsc.frequency);

lFO2.patch(sineOsc.amplitude);

sineOsc.patch(gain).patch(out);

Figure 1: Example code showing the patch()ing of
one Oscil (lFO1) into the frequency input of an-
other Oscil (sineOsc), the patch()ing of another Os-
cil (lFO2) into the amplitude input of the sineOsc
Oscil, and finally the patch()ing of the sineOsc Os-
cil through a Gain UGen (gain) to the AudioOutput
(out).

Figure 2: A graphical representation of the
patch()ing specified in figure 1. The direction of
audio processing by the tick() method and result-
ing cascade direction of the results of uGenerate()

are shown here also.

UGens that have been created thus far.
The method of connecting the UGens together varies con-

siderably from one language to another. For Minim, we
decided that we wanted to be able to patch() the UGens
into one another using a Java method. We quickly real-
ized that this meant that the UGens would need to have
some number of “inputs” beyond audio. For example, an
oscillator UGen would need to have input control for at
least frequency. Figure 1 shows how patch()ing occurs in
Minim, and figure 2 shows a graphical representation of the
patch()ed chain created in figure 1.

AudioOutput is the point in where Minim changes how
audio is generated. The AudioOutput class in Minim pro-
vides buffered audio to the Java Sound API, but the UGens
generate their audio sampleframe by sampleframe. A sam-
pleframe is one sample from each of the signal channels
(monaural or stereo). AudioOutput is the class which asks
the patch()ed chains of UGens to provide single sample-
frames enough times to fill a buffer. The generation of audio
is therefore output (AudioOutput) driven. The mechanism
for doing this generation is the tick() and uGenerate()

methods that exist in every UGen.
To create audio, the AudioOutput tick()s every UGen

connected to it as an input. Every tick()ed UGen then
tick()s all of its inputs up the chain until a UGen is reached
which has no inputs. That UGen then uses its uGenerate()
method to generate a single sampleframe of values, and re-
turns that sampleframe to the UGen which tick()ed it.
Once the tick() method in a particular UGen has collected
sampleframes from all of its inputs, it then returns its own
sampleframe. The AudioOutput collects the final summed
value of sampleframes of all UGens connected to it and
places that sampleframe in the buffer. The AudioOutput
then moves time forward and starts the process again. Once
the buffer is full, AudioOutput gives the buffer to the Java
Sound API. Pseudocode for the tick() and uGenerate()

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

38

tick()

{

for all of my inputs

input.tick()

uGenerate()

}

Figure 3: Pseudocode for the tick() and uGenerate()

method placement.

public void noteOn(float dur)

{

toneEnv.setDampTimeFromDuration(dur);

toneEnv.activate();

noiseADSR.noteOn();

}

public void noteOff()

{

noiseADSR.noteOff();

}

Figure 4: Example code for an Instrument’s
noteOn() and noteOff() methods. In this example,
the damping time of an amplitude envelope is be-
ing set using the duration of the note and then
that amplitude envelope is being activate()ed. The
ADSR envelope for noise is having its noteOn() and
noteOff() methods called from the respective In-
strument methods.

method placement is shown in figure 3. The flow of the the
tick() and uGenerate() calls is shown in figure 2

Multiple outputs for a particular UGen are also permit-
ted. For any UGen which has N connections to its output,
that UGen only uGenerate()s a new sampleframe once ev-
ery N tick()s. This mechanism keeps the generation of
values for sampleframes at the same rate as the AudioOut-
put sampling rate. This mechanism also prevents infinite
loops between a UGen’s input and output.

Using just chains of UGens patch()ed together, an artist-
programmer can create continuous sound using Minim. This
is an acceptable way to use Minim, especially for algorith-
mic and/or interactive composition. Section 2.1.2 describes
the additional mechanism of Instruments which allow the
artist-programmer to control the music as notes.

2.1.2 Instruments and Notes
The sound generating mechanisms described in section

2.1.1 can be thought of as the underlying synthesis algo-
rithms. Many musicians think of music in terms of notes
played on Instruments and combinations of those notes.
The Instrument interface allows the artist-programmer to
create Instruments and use them to play notes given a spe-
cific start delay and duration.

Certainly the concept of instruments is not new in mu-
sic programming and is exhibited by other languages such
as Csound and JMusic. The particular mechanic that we
designed is that the artist-programmer creates their own
Java classes which implement our Instrument interface. Ba-
sically, this means is that the user class must include a
noteOn() and noteOff() method which specify how the
Instrument behaves when it is told to begin and end its
note. Figure 4 shows example code for the noteOn() and
noteOff() methods of an Instrument. The appendix shows
the Processing code for a complete Instrument.

out.playNote(2.0, 2.9, "C3");

Figure 5: Example code for creating a note using
the playNote() method. This creates a note using
the DefaultInstrument with a start time of 2.0 beats
from the time of the method call, a duration of 2.9
beats, and a pitch of C3.

out.pauseNotes();

out.setTempo(90.0);

out.setNoteOffset(2.0);

float vol = 0.33;

out.playNote(0.00, 0.2,

new ToneInstrument("E5", vol, out));

out.playNote(0.25, 0.2,

new ToneInstrument("E5", vol, out));

out.playNote(0.75, 0.2,

new ToneInstrument("E5", vol, out));

out.playNote(1.25, 0.2,

new ToneInstrument("C5", vol, out));

out.playNote(1.50, 0.2,

new ToneInstrument("E5", vol, out));

out.playNote(2.00, 0.2,

new ToneInstrument("G5", vol, out));

out.playNote(2.75, 0.2,

new ToneInstrument("G4", vol, out));

out.resumeNotes();

Figure 6: Example code showing complex
playNote() calls, composition helper methods, and
traditional composition.

noteOn() is actually noteOn(float). It is worth re-
marking that the duration of note is passed to the Instru-
ment. This is useful, for example, as is shown in figure 4 to
set envelopes based on the duration of the note.

The actual calling of the noteOn() and noteOff() meth-
ods are handled by an unseen NoteManager object which
exists by default in the Minim library. One gives the ap-
propriate information to the NoteManager by using the
playNote() method of an AudioOutput as is shown in fig-
ure 5. NoteManager runs in a separate thread in order to
maintain sample accuracy of the sound.

In the most complex case, the appropriate information
includes a start delay, a duration, and the Instrument object
used to play the note. Notes of this type will be seen in
figure 6. The reason we chose a start delay rather than a
start time was because it is more general and is appropriate
when generating music in a real-time application. Start
delay and start time are equivalent if all notes are added at
once.

It is also useful at times to establish communication meth-
ods between Instruments. This is relatively easy to do by
first creating a method, for example changeBehavior(),
which alters the behavior of a ReceivingInstrument and
then giving the a reference to a ReceivingInstrument object
to another Instrument. That reference can be used to call
the changeBehavior() method of the ReceivingInstrument
object, and change its behavior.

In writing the examples to demonstrate compositional
techniques using Minim, we created several helper meth-
ods in order to facilitate composition. setTempo() sets the
actual length of one beat and is 60.0 beats per minute by de-
fault. setNoteOffset() adds an offset to the start delay of

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

39

all notes and is 0.0 beats by default. setDurationFactor()

gives a multiplication factor to the duration of the notes
specified and is 1.0 by default. pauseNotes() pauses the
updating of time in the NoteManager so that all notes
added until the resumeNotes() method is called are guaran-
teed to have accurate relative timing. The pauseNotes()–
resumeNotes() mechanism only guarantees that everything
between these method calls will have accurate timing, and
that the block of notes may not be timed accurately with
any notes outside of it. Examples of these helper methods
can be seen in figure 6.

The two modes of generating sound can be intermixed as
well. For example, Instruments can make a final patch()
to a continually running Summer, a UGen which sums all
of its inputs, instead of an output. This can be thought of
as multiple audio channels running into an effects bus.

2.2 Benefits of Java and Processing
There are several advantages to working with the Java

language. The flexibility of object-oriented programming
does stand out. Being able to create multiple class con-
structors for Instruments facilitates easy-of-use program-
ming, such as default values, and easy inclusion of backward
compatibility in the case of changing the Instrument. The
ability to create loops and new classes which create notes
themselves is a huge benefit to algorithmic composition as
discussed in section 2.5.2.

Several advantages of using the Processing environment
also exist. It is extremely easy to link visual and audio art
together. When one wishes a particular note to be associ-
ated with a particular visual, mouse, or keyboard event, one
simply creates a note (as in figure 5) with a start delay of 0.0
beats in the draw(), mouseMoved(), or keyPressed() Pro-
cessing method respectively. In this situation, the timing
issues are between an event and a sound, unlike the tim-
ing situation described in section 2. Video features can be
changed according to the audio being generated by passing
variable references to Instruments. Processing also facili-
tates the creation of web applets from a sketch, so publish-
ing a sketch as a web applet using Minim is simple.

It should be remarked that when combining the visual
and audio capabilities of Processing and Minim, the la-
tency between what is seen on the screen and what is heard
from the speakers can be perceptible. One can choose the
buffer size used by the Java Sound API to be small (<1024),
although smaller buffers do come at the increased risk of
the program not being able to produce sampleframes fast
enough to fill the buffers in the AudioOutput. This tradeoff
limits the number of UGens which can be active simultane-
ously. When not performing the music in real time, these
issues are not present, for example, when recording to a file.

For our examples on modern computers, the number of si-
multaneously available UGens has been sufficient with one
caveat. Instruments should patch() to the AudioOutput
in their noteOn() method and unpatch() from the Au-
dioOutput in the noteOff(), as demonstrated by the ex-
ample Instrument in the appendix. This patch()ing and
unpatch()ing restricts the calculation of the sampleframes
from the UGens in the Instrument to the time when the
Instrument is actually generating sound. The choice to
do this, however, is left to the artist-programmer, though
highly suggested for complex compositions.

2.3 UGens
This section describes the UGens which have already been

created for Minim as of April 2010. The “controls” listed
under many of the UGens are the parameters that can be
connected to the output of another UGen.

As stated in section 2, control signals and audio signals
are treated equivalently in Minim. Further discussion is
warranted here. Control signals are generally expected to
be monaural and audio signals are expected to be monaural
or stereo. At this point, we do not provide for stereo control
signals, but is a possibility for future work.

2.3.1 Sound Generators
When creating UGens, one of the most important types

is those that actually produce audio signals. The following
UGens are these sound generators.

Noise
generates noise of several different tints: white, pink,
and red/brown.

Oscil
repeats a waveform at a specified frequency and am-
plitude. Oscil can also be used as a low frequency
oscillator for control of other UGens.
controls: amplitude, frequency, phase

LiveInput
passes sampleframes from the audio input of the com-
puter.

FilePlayer
pulls sampleframes from a specified file.

2.3.2 Effects
Many of the UGens can be seen as effects processors.

They receive some sort of incoming signal and change the
nature of it.

Delay
repeats a delayed version of the incoming signal.
controls: delayTime, delayAmplitude

Pan
takes a mono signal and specifies a stereo position for
that signal.
controls: pan

Balance
attenuates the left or right channel of stereo signal.
controls: balance

Gain
attenuates or amplifies the incoming signal.
controls: gain

IIRFilter
filters the spectrum of the incoming signal. This can
be implemented as any one of the following filters:
BandPass, ChebFilter, HighPassSP (single pole), Low-
PassSP (single pole), LowPassFS (four stage), or Notch-
Filter.
controls: cutoff (effectively center frequency for Band-
Pass and NotchFilter)

BitCrush
reduces the bit resolution of the incoming signal.
controls: bitRes

WaveShaper
uses the incoming signal as the index to a Wavetable.
(Wavetables are discussed in section 2.4.) controls:
mapAmplitude, outAmplitude

2.3.3 Envelopes
To turn the audio generated by sound generators into

notes, it is practical to specify an amplitude envelope which
defines the note. These envelopes are not inherently based
at 0, so they can also be used as control for other UGens
for which 0 is not a usual value, such as the frequency of an
Oscil.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

40

Line
produces a line from one point to another over a spec-
ified time.

ADSR
produces an attack-decay-sustain-release envelope.

Damp
produces an attack-decay envelope.

Oscil
can be used as an amplitude envelope if the frequency
is set to a value on the order of 1

P
where P in the

duration of the note.
GranulateSteady

produces steady granular-synthesis grains from the in-
put signal.
controls: grainLen, spaceLen, fadeLen

GranulateRandom
produces random granular-synthesis grains from the
input signal.
controls: grainLenMin, spaceLenMin, fadeLenMin, grain-
LenMax, spaceLenMax, fadeLenMax

2.3.4 Mathematics
Due to our decision to use the patch()ing mechanism

as described in section 2.1.1, it is not simple to use the
arithmetic functions built into Java directly to change the
values of signals. We needed to implement math directly as
UGens.

Constant
generates a constant value as a signal.

Summer
adds (sums) all incoming inputs.

Multiplier
multiplies an incoming signal by amplitude.
controls: amplitude

Reciprocal
generates the reciprocal of the incoming signal.

Midi2Hz
generates the equivalent frequency in Hertz for an in-
coming signal given as a MIDI note number. The
MIDI note number does not need to be an integer.

2.4 Ease of Use
Based on the decisions made in the workshop, we cre-

ated several classes to facilitate ease of use for music pro-
gramming in Minim. One of these, the DefaultInstrument,
was created specifically with the beginning programmer in
mind. The playNote() method will use the DefaultInstru-
ment if the artist-programmer has not specified another In-
strument. Admittedly, there is a step in the learning curve
between using this DefaultInstrument and moving into In-
strument design, but the goal was to make the initial steps
easy, and then instruct with good documentation.

The Frequency class was also made in order to make
converting between different representations of a note’s fre-
quency. Using the Frequency class, the artist-programmer
can specify the frequency in Hertz, MIDI note number, or
pitch name (as a String) and receive the frequency in Hertz
or MIDI note number. The DefaultInstrument, along with
Frequency and a few helper methods in AudioOutput, al-
low the playNote() commands of figure 7 to be valid and,
in fact, equivalent. The Frequency class is shown in the
example Instrument in the Appendix.

The final class which was created specifically for ease of
use was Waves. In order to describe Waves it is first nec-
essary to state that in Minim, oscillators currently repeat
Waveforms. A Waveform is an interface that simply re-
quires that the value over the Waveform can be found by

out.playNote(0.0, 1.0, 261.63);

out.playNote(0.0, 1.0, "C4");

out.playNote(0.0, 261.63);

out.playNote(0.0, "C4");

out.playNote("C4");

out.playNote(261.63);

out.playNote("");

out.playNote();

Figure 7: Example playNote() calls which use the
DefaultInstrument.

an at() method which has a float argument between 0 and
1. The Wavetable class is one implementation of the Wave-
form interface. A Wavetable is effectively an array which
returns an interpolated value based on the index of the at()
method. Waves is a class which includes many ways to build
Waveforms using Wavetables.

With the Waves class, the artist-programmer has access
to a perfect sine, triangle, saw, or square wave in a Wavetable.
The artist-programmer can also create a Wavetable based
on

• a perfect triangle, saw, or square wave with one of the
zero-crossings shifted in time,

• the first N harmonics of a triangle, saw, or square
wave,

• the first N harmonics or N odd harmonics with ran-
dom amplitudes,

• random noise,
• N impulses placed randomly in silence,
• or a weighted combination of these.

Using the WavetableGenerator class, the artist-programmer
can also build Wavetables using function generators similar
to several of those found in Csound.

2.5 Compositional Techniques
With music programming languages, the mechanisms built

into the language affect the artist-programmer’s ability to
create compositions. We wanted to allow as many differ-
ent styles of composition as possible, so as to not limit the
artist-programmer. The ways in which we have thought to
compose are listed here. We are certain that other artist-
programmers will discover new ways as they use Minim.

Minim permits traditional composition techniques (every
note is known beforehand), algorithmic composition tech-
niques (notes are determined by algorithms and can be
aleatoric in nature), and interactive composition. All of
the following compositional techniques can be either gen-
erated in real-time by running the Processing sketch, or
recorded to a file, by running the sketch and using Minim’s
AudioRecorder class.

2.5.1 Traditional Composition
In what we label as traditional composition techniques,

all notes to be played are known before any sound is gen-
erated. Thus far we have created this type of composition
by specifying many calls to the playNote() method in the
setup() method of a Processing sketch. These playNote()

calls are effectively the score for the music. An example of
this can be seen in figure 6. The ToneInstrument shown in
the appendix would be used to play the notes created by
the playNote() calls in figure 6.

2.5.2 Algorithmic Composition
Minim has several different mechanism for facilitating al-

gorithmic composition whether the Instrument interface is

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

41

used or not. Several of these techniques for altering the
compositional material of the music include, but are not
limited to

• adding random variables, and conditional and loop
statements to the traditional composition technique
mentioned in section 2.5.1,

• writing new classes which make calls to playNote(),
or UGen or custom Instrument methods,

• allowing events in Processing’s draw() or other meth-
ods to call playNote(), or UGen or custom Instru-
ment methods,

• using Instrument communication techniques mentioned
in section 2.1.2, and

• using the envelope UGens, specifically GranulateSteady
and GranulateRandom, with grain lengths near note
lengths.

2.5.3 Interactive Composition
Interactive composition can be achieved directly by the

use of the many mechanisms in Processing for interaction,
such as the mouseMoved() and keyPressed() methods, to
control aspects of UGen behavior or Instrument behavior.
If aspects of visual art were being controlled interactively,
those interactions can also create interactive compositions
more indirectly, by calling playNote() or controlling the
behavior of Instruments or UGens. Any composition which
uses the LiveInput UGen will inherently be interactive.

3. CONCLUSION
By combining aspects of many different music program-

ming languages and libraries already in existence and iden-
tifying a need in Minim, our team created a useful tool for
making music using the Processing environment. We hope
that our work facilitates the process for those musicians in-
terested in learning to program, and we look forward to
feedback.

We have worked diligently to provide extensive docu-
mentation and examples of the Minim music programming
framework and UGens. The techniques described in this
paper can be found in the examples available with Minim.
Minim is available for download from the internet at http:
//code.compartmental.net/tools/minim/.

We intend to maintain and expand the Minim library.
Some of the upcoming plans include, but will not be lim-
ited to a score file; exponential lines; and compression, re-
verb, equalizer, sample-hold, pitch-shift, and stereo-control
UGens. Minim is a work in progress and under current
development. Aspects of the library may change, but we
will endeavor to keep the functionality the same until it be-
comes infeasible to do so due to advances in the interface
or technology.

4. ACKNOWLEDGMENTS
John Anderson Mills III is supported by numediart (http:

//www.numediart.org) a long-term research program cen-
tered on Digital Media Arts, funded by Région Wallonne,
Belgium (grant N◦716631). We would like to thank nume-
diart for supporting the workshop in October of 2009 which
allowed this project to commence.

5. REFERENCES
[1] R. Boulanger. The Csound book: perspectives in

software synthesis, sound design, signal processing,
and programming. MIT Press, Cambridge, MA, USA,
2000.

[2] O. Brown. About beads.
http://www.beadsproject.net/, Feb. 2010.

[3] D. Di Fede. Minim.
http://code.compartmental.net/tools/minim/,
Apr. 2010.

[4] J. McCartney. Supercollider: A new real time
synthesis language. In Proc. International Computer
Music Conference (ICMC’96), pages 257–258, 1996.

[5] M. Puckette. Pure data: another integrated computer
music environment. In Proc. the Second Intercollege
Computer Music Concerts, pages 37–41, 1996.

[6] C. Reas and B. Fry. Processing: a learning
environment for creating interactive web graphics. In
SIGGRAPH ’03: ACM SIGGRAPH 2003 Web
Graphics, pages 1–1, New York, NY, USA, 2003.
ACM.

[7] A. Sorensen and A. R. Brown. Introducing jmusic. In
InterFACES: Proceedings of The Australasian
Computer Music Conference. Brisbane: ACMA, pages
68–76, 2000.

[8] Sun Microsystems, Inc. Java sound api. http:
//java.sun.com/products/java-media/sound/, Feb.
2010.

[9] G. Wang and P. R. Cook. Chuck: a concurrent,
on-the-fly audio programming language. In Proc.
ICMC, pages 219–226, 2003.

[10] D. Zicarelli. An extensible real-time signal processing
environment for max. In Proceedings of the 1998
International Computer Music Conference, pages San
Francisco: ICMA—466, Ann Arbor, Michigan, USA,
1998.

APPENDIX
An example of a complete Instrument is presented here.

class ToneInstrument implements Instrument

{

Oscil sineOsc;

ADSR adsr;

AudioOutput out;

ToneInstrument(String note, float amplitude,

AudioOutput output)

{

out = output;

float frequency =

Frequency.ofPitch(note).asHz();

sineOsc = new Oscil(frequency, amplitude,

Waves.TRIANGLE);

adsr = new ADSR(1.0, 0.01, 0.01, 1.0, 0.02);

sineOsc.patch(adsr);

}

void noteOn(float duration)

{

adsr.patch(out);

adsr.noteOn();

}

void noteOff()

{

adsr.noteOff();

adsr.unpatchAfterRelease(out);

}

}

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

42

