
Building Collaborative Graphical interFaces in the Audicle
Ge Wang

Department of Computer Science,
Princeton University

35 Olden St.
Princeton NJ 08540 USA

gewang@cs.princeton.edu

Ananya Misra
Department of Computer Science,

Princeton University
35 Olden St.

Princeton NJ 08540 USA

amisra@cs.princeton.edu

Perry R. Cook
Department of Computer Science

(also Music),
Princeton University

35 Olden St.
Princeton NJ 08540 USA

prc@cs.princeton.edu

Figure 0. Multiple Bouncing Spheres interfaces visualized from a centralized viewpoint. Each human

player manipulates spheres over a portion of the squares. The ensemble is synchronized by computer.

ABSTRACT

Emergence is the formation of complex patterns from simpler

rules or systems. This paper motivates and describes new

graphical interfaces for controlling sound designed for

strongly-timed, collaborative computer music ensembles.

While the interfaces are themselves minimal and often

limiting, the overall collaboration can produce results novel

beyond the simple sum of the components – leveraging the

very uniqueness of an ensemble: its strength in numbers. The

interfaces are human-controlled and machine-synchronized

across a dozen or more computers. Group control, as well as

sound synthesis mapping at each endpoint, can be

programmed quickly and even on-the-fly, providing a second

channel of real-time control. We show examples of these

interfaces as interchangeable plug-ins for the Audicle

environment, and also document how they are used in a laptop

ensemble.

Keywords
Graphical interfaces, collaborative performance, networking,

computer music ensemble, emergence, visualization,

education.

1. INTRODUCTION
Emergence is the formation of complex patterns from simpler

rules or systems. In this paper, we explore minimal, easy-to-

learn graphical interfaces that can, as a group, form sound and

music that is more interesting and complex than that made by

any single component, in a tightly coupled and collaborative

environment.

This was motivated by the desire to provide new interfaces for

new computer music performance ensembles such as PLOrk:

Princeton Laptop Orchestra, currently being developed and

instructed by Dan Trueman, Perry Cook, Scott Smallwood,

and Ge Wang. In addition to more self-contained,

sophisticated instruments, we wished to provide the ensemble

with interfaces that require minimal setup and learning time,

and with which the participants can immediately and directly

influence the overall sound as part of the group. Furthermore,

we wanted the option of tightly synchronizing all participating

interfaces / machines.

Given this motivation, the research goals are defined as

follows.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Nime’06, June 4-8, 2006, Paris, France.

Copyright remains with the author(s).

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

49

The interfaces should be:

• simple enough to pick up and use, yet complex enough
to generate interesting music/sound as a group

• amenable to collaboration in a tightly-timed setting;

for example, a server should be able to synchronize all

interfaces with desired musical timing; collaboration is
the unifying aspect of all the interfaces we present.

• as direct and as immediate as possible

• as precise as possible, even at the cost of resolution

• easily programmable (i.e. mapped to sound/graphics)

To implement the interfaces, we used the Audicle

programming environment [6,7] as the platform, leveraging

its existing framework for blending high-performance

graphics with precise real-time audio. Extending the

Audicle API (in C++), we were able to add and experiment

with new graphical interfaces as new faces of the Audicle.

We also added a mechanism for accessing and controlling

the interfaces directly using ChucK [5], the language for

which Audicle was built. In this way, we can write ChucK

code to control sound synthesis using data from the

graphical interfaces, decoupling the interface from the

sound synthesis. Furthermore, ChucK makes it possible to
change sound synthesis and interface mapping on-the-fly.

Figure 1. A collaborative interface network model.

The interfaces are synchronized over a wireless local-area

network (Figure 1), using Open Sound Control [9]. One or

more mothership host runs any application that broadcasts

messages and synchronization messages to each of the end

points. Our current mothership programs are written in
ChucK.

2. RELATED WORK
The various graphical interfaces developed in this ongoing

investigation derived mainly from three areas: audio/visual

interfaces (Figure 2), such as the Painterly Interfaces created

by Golan Levin [3] and musical video games created by

Toshio Iwai [2,10]; GUI-based frameworks such as the

MIDIGrid [1] and ixi software [4]; mainstream puzzle games,

such as Chu-chu rocket, Lemmings, and Domino Rally
[11,12,13].

Figure 2. Audiovisual interfaces.

All of these works have significantly influenced and inspired

interfaces in this paper – directly (such as in the case of the

MIDIGrid) or aesthestically. The contribution of our work is

placing interfaces similar to these within a tightly-timed

synchronization framework, and finding paradigms to

leverage this new collaborative aspect.

Figure 3. Puzzle games.

3. INTERFACES
Some example interfaces designed for single-server multiple-

client setups are described below. As shown in Figure 1,

humans assert musical control at each client, while the server

centrally synchronizes all the clients.

3.1 Color Squares
In this interface (Figure 4), each client has an N x M grid and

a finite color palette. Every color can be mapped to a separate

event or to silence, with a potentially different mapping for

each client. The user at every client machine selects a color

using the mouse or the keys 1-9 and a-z (0 and es are

reserved for the silent color), and applies it to any number of

squares on the grid.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

50

Figure 4. Color Squares

The server program moves through the grid in any desired

manner, including sequential, random, or in any other fashion,

in any timing pattern as specified in code in the server ChucK

program. The client is aware of when a particular grid element

is activated and what color was last placed on it, and can

respond to this information in any programmatic manner, such

as by playing a sound associated with the color of the

currently activated grid element. Sample ChucK code for the

server and client sides are presented here.

3.2 Spheres
Spheres (Figure 0) is a three-dimensional interface extending

the color squares metaphor. It consists of spheres that bounce

from a height, with or without energy loss, and colored square

covering the "ground". Each time a sphere hits the ground, it

can trigger an event based on the color and mapping of the

square it touches. Multiple views of the space allow the user

to control where a sphere bounces as well as its starting

height. The bouncing location (or square) controls which

event the sphere triggers, while the height translates to how

often it bounces and thus how often the triggered event is

repeated.

3.3 Mouse Mania
The Mouse Mania interface draws from the Chu Chu Rocket

game described earlier. Each client or host has a virtual entity

or "mouse" and a grid that acts as a map for the mouse to

follow. Each grid element can have a user specified color and

shape. As in the Color Squares interface, the color of a grid

element can be mapped to an event that is triggered when a

mouse reaches it. In addition, the grid element's shape can

control the subsequent movement of the mouse, including its

direction, speed, or special dance moves possibly associated

with repetition of the related musical event. A mouse need not

be confined to a single host; another option is for the server to

own many mice that run from host to host, changing the

spatial dynamics of the piece.

3.4 Dominotes
This interface uses the visual metaphor of dominoes to control

events being triggered in rapid succession. Each user

constructs domino rallies and connects sub-rallies to a central

launching station when they are ready to be played. The

launching station, at the discretion of the server, pushes all

adjacent or connected dominoes, triggering a chain reaction.

Each domino toppling, as well as special items such as rockets

in the dominoes' path, can be mapped to any parameters or

events at the discretion of the client. Toppled dominoes can be

made upright automatically or manually by the users'

selecting any subset of their dominoes. Forks in a domino

rally allow each client's musical sequence to follow multiple

paths in parallel.

3.5 SaladTossers
This interface is based on the idea of musical "recipes" and

consists of salad ingredients, dressing, and a mixing bowl for

each client. Ingredients can map to musical events as

specified by the client. The user creates a salad by inserting

desired quantities of each ingredient into the mixing bowl and

tossing it. The tossing causes events to be triggered

repeatedly; events associated with ingredients that make up a

larger portion of the salad are triggered more often and thus

have greater density in the resulting sound. As more

ingredients are added to the salad, events are triggered more

often. Further, a variety of dressings are available for adding

to the mix, each dressing being associated with a different

filter or sound processing effect. Finally, there is a "consume"

option which gradually empties out the contents of the bowl

and thus reduces the overall event density until there is

silence. This interface is expected to be especially useful for

creating textures where one may prefer to closely control the

density of events rather than specifying the exact times at

which events are triggered.

3.6 More
The above are some examples of simple interfaces that can

produce complex music over a network of collaborators. It is

possible to program more such graphical interfaces using the

open-source Audicle framework. In addition, the mapping

suggestions and time-based behavior described above are

optional for each graphical interface and can be easily

modified by changing the ChucK code on the client and

server sides. Thus, these interfaces are flexible on the visual

and auditory levels as well as in the interactions between the

two.

4. CASE STUDIES
The Color Squares interface was used in the debut concert of

PLOrk: Princeton Laptop Orchestra in a piece called “Non-

Specific Gamelan Taiko Fusion Band”. The setup involved

one conductor, one mothership laptop, one inkjet printer

(from which scores were printed during the performance), and

15 laptop stations, each equipped with powered hemispherical

speakers and running Color Squares. The stations were

divided into four groups, each with a different sound synthesis

mapping.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

51

Figure 5. Example score over time.

During the performance (Figure 6), the conductor held up

colored print-outs specifying differing densities and timbres

(colors) to different groups over time. The score (Figure 5)

shows some typical textures and transitions. The study

successful demonstrated that the approach fulfilled its major

goals. The students learned the interface in seconds and were

able to immediately affect change in controllable ways. The

resulting performance can be heard at:

http://plork.cs.princeton.edu/listen/debut/nsgamelan.mp3

Figure 6. PLOrk in action.

5. CONCLUSION AND FUTURE WORK
We have demonstrated a variety of graphical interfaces for

creating music collaboratively. The simplicity of these

interfaces allows new users to grasp the rules quickly and start

making music right away. At the same time, the strong central

synchronization facilitates collaboration, giving rise to more

complex pieces than would be expected from the basic rules

for the clients or server. Thus, these interfaces produce a form

of emergent music. As our investigating continues, we hope

to expand on this beginning exploration into collaborative

graphical interfaces.

6. ACKNOWLEDGMENTS
We would like to thank Dan Trueman, Scott Smallwood, all

the member of PLOrk, Philip Davidson, and Joshua Podolak

for their invaluable help and ideas.

7. REFERENCES
[1] Hunt, A. and R. Kirk. “MidiGrid: Past, Present, and

Future” In Proceedings of the International Conferences
on New Interfaces for Musical Expression. May 2003.

[2] Iwai, T. “Images, Music, and Interactivity - the Trace of

Media Art” Keynote Speech. International Computer
Music Conference. June 2004.

[3] Levin, G. Painterly Interfaces for Audiovisual

Performance. M.S. Thesis, MIT Media Laboratory,
August 2000.

[4] Magnusson, T. “ixi software: The Interface as

Instrument” In Proceedings of International Conference
on New Interfaces for Musical Expression. June 2005.

[5] Misra, A., G. Wang, and P. R. Cook. “SndTools: Real-

time Audio DSP and 3D Visualization” In Proceedings

of the 2005 International Computer Music Conference.
September 2005.

[6] Wang, G. and P. R. Cook. “The Audicle: A Context-

Sensitive, On-the-fly Audio Programming

Environ/mentality” In Proceedings of the International
Computer Music Conference. Novermber 2004.

[7] Wang, G., A. Misra, P. Davidson, and P. R. Cook. “Co-

Audicle: A Collaborative Audio Programming Space” In

Proceedings of the International Computer Music
Conference. September 2005.

[8] Wang, G. and P. R. Cook. “ChucK: A Concurrent and

On-the-fly Audio Programming Language” In

Proceedings of the International Computer Music
Conference. October 2003.

[9] Wright, M. and A. Freed. “Open Sound Control: A New

Protocol for Communicating with Sound Synthesizers”

In Proceedings of the International Computer Music
Conference. September 1997.

[10] http://electroplankton.nintendods.com/

[11] http://www.pressmantoy.com/

[12] http://www.vintage-sierra.com/puzzle/tim.html

[13] http://en.wikipedia.org/wiki/ChuChu_Rocket

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

52

