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ABSTRACT 
Real-time interactive software can be difficult to construct and 
debug. Aura is a software platform to facilitate highly interactive 
systems that combine audio signal processing, sophisticated 
control, sensors, computer animation, video processing, and 
graphical user interfaces. Moreover, Aura is open-ended, allowing 
diverse software components to be interconnected in a real-time 
framework. A recent assessment of Aura has motivated a redesign 
of the communication system to support remote procedure call. In 
addition, the audio signal processing framework has been altered 
to reduce programming errors. The motivation behind these 
changes is discussed, and measurements of run-time performance 
offer some general insights for system designers. 

1. INTRODUCTION 
Aura is a software framework for building real-time interactive 
systems. [12] It has evolved and grown for almost 10 years, and 
has roots in the CMU MIDI Toolkit [5, 9], created almost 20 
years ago. Building on experience gained from using Aura and 
related systems, Aura II is my latest attempt to provide a solid 
foundation for interactive systems. Aura II embraces a number of 
design principles I have found to be effective. The goal of this 
paper is to describe the design philosophy and experience that has 
led to Aura II and to discuss some lessons learned. I will also 
include some performance measurements that may help others to 
make intelligent design choices. 

In the next section, I present the main concepts that form the basis 
of Aura. Section 4 provides an example for further motivation. In 
Section 4, I describe in greater formality the approach to 
scheduling, and Section 5 discusses various aspects of message 
passing in which many systems issues arise. Section 6 describes 
the structure of the audio processing system, and this is followed 
by a summary and conclusions. 

2. ORIGINS OF AURA 
Aura was designed to replace the CMU MIDI Toolkit (CMT), an 
elegant system to help students write interactive MIDI 
applications with a minimal knowledge of programming. CMT 
adds essentially one thing to the C programming language: a 
function, cause, that calls a function at some time in the future. 
E.g., one can write 

cause(0.3, midi_note, chan, pitch, 0) 
to send a note-off message (velocity = 0) after 0.3 seconds. While 
simple in appearance, cause can be used to run multiple 
concurrent processes. Each process is implemented as a procedure 
that performs an action and then “cause’s” itself to resume 
execution in the future. All procedures run to completion, 
eliminating almost any concern over shared variables, reentrant 

code, critical sections, and preemption. (And although CMT 
“processes” are not true processes that can suspend and resume at 
any point, they handle most event-driven programming tasks quite 
well.) 

In the early 90’s it became clear that signal processing was going 
to move from special purpose VLSI and DSP chips to general 
purpose processors. [8] At the same time, real-time video and 
computer graphics was becoming an attractive new performance 
medium. While computer graphics tasks could take tens of 
milliseconds, MIDI and control processing must be much more 
responsive, and audio processing adds a hard real-time processing 
requirement: no task should ever hold up computing and cause a 
buffer overflow or underflow. While the simple non-preemptive 
model of CMT is successful in its domain, it cannot handle the 
wide range of processing tasks and latencies posed by general 
interactive multimedia. 

Also in the 90’s, I worked briefly on constraint-based graphical 
user interface systems [16], and the idea of connecting various 
objects with constraints offered an interesting model for rapid 
prototyping and programming by novices. “Connect the position 
of the slider to the frequency of the oscillator” seems much 
simpler than “subclass the slider object and add a method that 
calls the set_hz method of the oscillator object.” The idea of 
connecting attributes of objects together is something like 
patching an analog synthesizer or wiring a network of MIDI 
synthesizers, which seems quite intuitive. This same idea works 
successfully in MAX [20] and related software. 

Thus, Aura I (originally named “W”) [12] incorporates three main 
ideas: (1) Where possible, use non-preemptive scheduling (as in 
CMT) and cause to support many tasks, (2) Use “real” 
preemptive threads to allow time-critical processing to preempt 
longer-running computations, and (3) Use objects with 
attribute/value interfaces, and use constraint-like connections to 
create applications. In retrospect, (1) and (2) seem to be very good 
ideas, whereas (3) does not. This and other problems have 
motivated Aura II, which is discussed mainly in Sections 5 and 6. 
In what follows, I will use Aura I to refer to Aura using the 
attribute/value object model, and Aura II to refer to the current 
version based on remote procedure call. I will use Aura when 
comments apply to both versions. 

3. AN EXAMPLE APPLICATION:  
THE WATERCOURSE WAY 
To illustrate how Aura is used and why current systems are either 
unsuitable or only partial solutions, I will describe a recent work, 
“The Watercourse Way” [10], an interactive piece for chamber 
orchestra, dancer, and electronics. The main technical focus of 
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this work is a sound synthesizer controlled by water movement. 
The water is sensed by reflecting light onto a screen, creating 
beautiful moving images. The reflected light is captured by a 
video camera, digitized, and further processed to derive time-
varying spectra for three synthesized tones. [11] In addition, the 
video is texture-mapped onto the surfaces of an animation that is 
projected in the concert space. Four channels of audio input 
capture various instrumental combinations and four output 
channels drive a quadraphonic sound system. Figure 1 illustrates 
the entire system, and Figure 2 shows an audience view of the 
dancer and images. 
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Figure 1. System configuration for The Watercourse Way. 

 
Figure 2. Performance of "The Watercourse Way." Light 

(left) reflected from water (bottom right) is used to synthesize 
sound and is also texture-mapped onto animation (upper 

right). The sound and image are modulated when the dancer 
touches the water. Live musicians are not shown here. 

In this system, low-latency audio is required to process live 
instrument sounds. At the same time, the camera input and 
processing runs in lock-step with the 30-frame-per-second video 
input. Clearly, the audio thread must run in a separate thread to 
avoid blocking for up to 1/30 of a second waiting for the next 
video frame. The animation involves a physical simulation of a 
stiff material flexing under applied forces. This, and the OpenGL 
rendering of the model, cannot be easily expressed by combining 

pre-fabricated image operations, so it is important that Aura is 
fully programmable, not only for audio rendering, but for control, 
animation, and graphical user interfaces. While other systems 
offer very powerful interfaces for signal processing or even video 
processing, few systems have the generality, programmability, and 
extensibility offered by Aura. 

In “The Watercourse Way,” as in all Aura applications, objects 
are segregated into different threads, or zones, such that high-
latency objects share one thread and low-latency, time-critical 
threads share another. This approach is described in more detail in 
the next section, and the message passing system used for 
communication between objects is described in Section 5. 

4. LATENCY MONOTONIC SCHEDULING 
Real-time systems for interactive performance must deliver high 
performance and at the same time be easy to create and modify. 
Musicians and composers simply do not have the resources of the 
Mars Rover team to build and debug complex real-time systems. 
A traditional approach to real-time systems is to implement each 
task with its own, schedulable thread, and use synchronization 
primitives (locks and semaphores) to guard access to shared 
variables through which tasks communicate. [1] The problem with 
this approach is that it is easy to make mistakes and hard to find 
them. Forgetting to lock a data structure can cause intermittent 
errors that cannot be reproduced easily and may disappear when 
debugging code is added. The traditional approach also adds 
complexity to the code and is usually best approach with a careful 
system-wide design process that is not conducive to rapid 
prototyping. 

An alternative approach is to use non-preemptive threads as in 
CMT. Here, a task runs to completion or to some point at which 
the code explicitly releases the processor. Since no unexpected 
preemption can take place, no shared variables need to be locked 
or unlocked. However, as mentioned earlier, this approach breaks 
down when there is a mix of long-running computations and low-
latency deadlines. 

Now imagine running a CMT-like non-preemptive program on 
each of several independent computers, where one computer 
computes audio, another manages a graphical user interface and 
renders animation, and yet another handles control and MIDI 
data. If tasks are segregated according to their latency 
requirements, non-preemptive scheduling can be effective. In fact, 
most music processing is time driven, so CMT-like systems 
execute tasks/procedures according to the time at which they are 
scheduled. Assuming that all deadlines can be met, this form of 
scheduling, “earliest deadline first,” is known to be optimal. 

Aura can run in this fashion on multiple computers, but the typical 
system shares one processor among three threads that handle 
graphics, control, and audio, respectively. Each thread is managed 
by an Aura zone, which also provides inter-zone communication, 
memory management, and scheduling. Zones use fixed priority 
scheduling where priority decreases monotonically with the 
zone’s latency requirement. Here, latency, is the maximum 
amount by which a task can fall behind real time. For audio 
computation, latency is the time it would take for the audio buffer 
to underflow. For animation, latency is roughly the frame period. 

Using these concepts, we can make some precise statements about 
the real-time performance of Aura. For the sake of brevity, I will 
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assume that each zone has a maximum latency requirement Li and 
that each latency requirement Li is an integer multiple of the next-
higher priority zone’s latency requirement Li-1. (For example, 
requirements could be 20, 2, and 1 msec for graphics, control, and 
audio zones, respectively.) I also assume that in the worst case, all 
tasks in a zone are scheduled to run simultaneously, but that no 
task is rescheduled in less time than the zone’s latency. Ci is the 
total worst-case total execution time of all tasks in zone i: 

�=
j

iji dC ,
 

where is dij is the worst-case execution time of task j in zone i. 

The latency experienced by a zone is the execution time of the 
tasks in the zone (Ci) plus the execution time of tasks in higher 
priority zones which might preempt this one. Note that zone j can 
preempt zone i exactly Li/Lj times if Lj < Li. Therefore the 
constraints to guarantee that all latency requirements are met are: 
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In actual practice, computation may not be so periodic and 
predictable, so more elaborate analysis may be required to 
establish tighter bounds. Alternatively, performance can be 
measured experimentally. The Aura scheduler can measure the 
actual latency of each zone and also detect when an object fails to 
meet the latency requirement. In summary, tasks are assigned to 
zones according to their latency requirements. Typically, only a 
few zones are needed, so most computation can be run in a 
simple, non-preemptive fashion. 

5. MESSAGE PASSING 
When objects are segregated into zones, and shared memory is not 
allowed, how do objects communicate? In Aura, communication 
is by message passing. Messages are delivered by either setting 
some data within an object or by invoking an object method. In 
the case of method invocation, the method runs to completion and 
returns, after which the next message is delivered. Thus, message 
delivery is performed synchronously with respect to other 
computation within the zone, and no locking or synchronization is 
required. 

Some explanation is now in order pertaining to shared memory in 
Aura. The preceding discussion has made it clear that zones 
operate as if they exist on separate computers in separate address 
spaces. In the implementation, zones actually share a single 
address space, but each zone has its own set of memory locations 
and never accesses the memory of another zone with the 
exception of some FIFO communication buffers. For each pair of 
zones, there is a single-writer, single-reader FIFO buffer through 
which messages can be passed. The advantage of this arrangement 
is that these FIFOs can be implemented safely without locks, 
which would require an operating system call per FIFO operation. 
As measurements will show below, this offers a very efficient 
mechanism for communication. In fact, it is faster to send a 
message in this manner than to lock and unlock a shared variable. 

The Aura approach to low-latency computation can be viewed as 
a generalization of a common implementation practice. Often, 
programmers will devise a standard graphical user interface and 
rely on either timer callbacks or audio system callbacks to perform 
real-time processing. It is common to use FIFOs for 

communication between the main program and the callback. For 
example, this technique is described by Zicarelli [24] and is also 
used in MAX. Aura generalizes this approach by viewing both the 
“user interface” and the “callback thread” as instances of the same 
thing: a zone in which objects exist and execute. The model is 
generalized further by allowing more than two zones. 

5.1 Attribute/Value vs Procedure Call 
To support this generalized view of real-time computation, Aura  I 
introduced a special object model in which objects expose settable 
attributes and received messages of the form “set attribute to 
value.” Unlike traditional object-oriented programming 
“messages”—really a form of procedure call with parameters 
pushed on the run-time stack—Aura messages are “real” data that 
can be copied to another zone or address space for remote 
delivery. 

While the motivation for Aura I’s attribute/value interface was 
convincing at the time, experience has led me to believe that this 
is not a particularly good idea. There are many cases where one 
wants to invoke an operation with multiple parameters in a single 
operation, e.g. “connect input a to channel i of output b.” In Aura, 
this example requires two messages: “set channel to i” followed 
closely by “set a to b.” Splitting what is logically a single 
operation into a protocol consisting of multiple messages is not 
good programming practice. (Originally, Aura supported 
sequences of attribute/value pairs, but it was awkward to construct 
these messages and they fell into disuse.) 

A second observation is that in practice, many messages are 
directed to specific objects. While the original concept was that 
messages would flow out of objects, over connections, and into 
other objects (the behavior resulting from an Aura “send” 
operation), Aura also provides a “send_to” operation where the 
destination object is provided explicitly. This “connection free” 
style of messaging is often preferred because the programmer can 
direct different messages to different objects. Also, this style tends 
to be more readable. Since connections are often set up by one 
part of the program and messages are sent in another, it is difficult 
to keep a mental image of what objects are connected where. On 
the other hand, the “send_to” style always names the receiver at 
the point where the message is sent, making the program easier to 
understand. This is in contrast to visual languages like MAX, 
where the connections are part of the program “syntax” and 
therefore are easier to follow. This is more like OSC, where the 
message sender explicitly specifies a destination. 

The biggest change in Aura II, therefore, is the replacement of 
attribute/value messages with remote procedure calls. Aura II uses 
the same low-level message transport mechanism as Aura, but the 
code to form messages and receive them has been completely 
replaced to support passing multiple parameters to methods. This 
work provides an interesting opportunity to compare the 
performance of the two styles of messages.  

5.2 Type Checking and Naming 
Remote access, whether through an attribute/value mechanism or 
a remote procedure is much easier to debug when types are 
checked automatically. Programmers need help to guarantee that 
when, say, a 32-bit integer value is sent from object A, the bits 
will be interpreted as an integer when they arrive at object B. 
Types can sometimes be checked at compile time, but with 
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flexible message systems, types must often be checked at run time. 
Typically, the message includes some specification of the data 
types as well as the data, and the receiver checks that the 
specification is for the expected types (the receiver can also 
perform different actions according to the type). 

In Aura I, messages do not carry explicit type information. 
Instead, types are associated with attributes themselves. In 
practice, to send an integer value, the sender calls 

set_integer(attribute, value) 
and the set_integer method checks that attribute has 
type integer. Since attributes are global, attribute name conflicts 
can to arise. One object might declare maximum to be an integer, 
and another will try to make it a float. This problem was solved 
using the somewhat ugly but effective practice of appending a 
type character to the name, so maximumi is an integer attribute, 
and maximumd is a (double-precision) float attribute. 

In Aura II, the attribute is replaced by a method name. Internally, 
the system appends type information to the name to form what is 
called the signature. On the sending side, a function is generated 
to send each message, so ordinary compile-time type checking 
insures that the message is well-formed and that the signature 
matches the actual parameter data. On the receiving end, the 
signature is used to locate a message handler. If a handler is 
found, then it is known that the parameters have the correct type 
for the receiving method in the receiving object. So far, no special 
naming scheme is in use, so users could be confused when a 
message is not received due to a type mismatch. The plan is to 
create two classes of messages. The standard message must be 
handled by the receiver, otherwise an error is reported. The 
optional message is intended for broadcasting data to objects that 
may only be interested in certain messages. These messages can 
be dropped without raising errors. 

5.3 Performance Measurements 
Benchmarks were used to measure the time Aura I and II take to 
send messages. Further analysis using execution profiling 
revealed some general information about where time is spent. 
Since sending parameter updates is an important part of any 
interactive system, designers can benefit from a better 
understanding of where the time goes. 

Aura messages can be delivered locally or remotely. In the local 
case (within a zone), a message is formed on the stack and 
delivered immediately to any receivers by calling their receive 
methods. In the remote case (between zones), a message is formed 
on the stack but copied to a FIFO buffer. The buffer is read by the 
receiving zone and delivered to the receiving object. (Calling a 
receiver’s receive method directly would introduce 
synchronization problems as discussed earlier.) 

Both the attribute/value and remote-procedure-call styles of 
messages rely on a hash table to translate either the attribute or the 
procedure name into a descriptor that can be used to access the 
object. Aura I uses a preprocessor to associate small integer 
values with attributes. This saves space (only a 32-bit identifier is 
transmitted rather than the string name) and makes table lookup 
faster (rather than computing a hash function from a string name, 
the hash value is simply the low-order bits of the 32-bit attribute 
identifier). Thus, one implementation decision we can compare is 
whether it is worth the trouble to map names to numbers to make 
lookups run faster. 

Another design difference is that Aura I uses descriptors to 
specify the size and offset of attributes within objects. The 
message handler routine delivers data by copying directly into the 
receiving object, avoiding a method call. In Aura II, the descriptor 
is a function pointer; the message handler calls the function, 
which unpacks the message and then calls an object method. 
Thus, the second implementation choice we can assess is whether 
it is faster to interpret an object description, writing data directly 
into the object, or to call a method to accomplish the same result. 

To measure message passing performance, a simple benchmark 
program sends short messages from a sender object to a receiver 
object. The receiver then sends a single reply, and the cycle 
repeats an arbitrary number of times. By sending many messages 
at once, the context switching time (the time it takes the operating 
system to switch threads and begin executing another zone) is 
amortized over many messages. This is important because the 
context switch time is greater than total time to send and receive a 
message! 

Table 1 shows the CPU time to send one message in Aura I and 
Aura II, to a local object or a remote object. The message 
operation simply sets a 32-bit integer value in an object. These 
tests were conducted with compiler optimization enabled under 
Red Hat Linux on an IBM Thinkpad A21p laptop computer (a 
Pentium III running at 693MHz, slow by current standards). 

Table 1. Message send times for Aura I and Aura II 
implementations. 

Message 
Send Time 

Aura I  
  (attribute/value) 

Aura II 
 (remote procedure call) 

Intra-zone 0.49µs 0.50µs 

Inter-zone 1.02 1.15 

As can be seen in the table, Aura I is about the same speed as 
Aura II in the intra-zone case and slightly faster in the inter-zone 
case. Run-time profiling was used to examine where the execution 
time was spent. It turns out that the technique of attribute 
identifiers (rather than string names) saves a substantial amount of 
time in the Aura I implementation. In contrast, Aura II spends 
approximately 100 cycles computing a simple hash function from 
the method signature.  

On the other hand, decoding a message operation and copying 
data directly to or from an object is significantly slower than 
calling a function to accomplish the same result. Thus, Aura II 
gains some speed by having all object access through function 
pointers and method calls. 

A third implementation difference is simply the size of the 
messages. Whereas Aura I sends a 32-bit attribute identifier, Aura 
II transmits a signature consisting of a signature length (8 bits), 
parameter types (4 bits each), and the method name (8 bits per 
character). Inter-zone message passing requires that messages be 
copied into a FIFO buffer, and in the benchmark study, this buffer 
is much larger than even the level-2 cache, so messages must be 
written to primary memory. It appears that the message length 
makes a significant difference in this case. 

In the Aura I implementation, type-checking was disabled for this 
study because Aura I’s run-time type checking is not implemented 
efficiently. A careful implementation might add 0.05 µsec to 
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either message passing time. Also, note that remote procedure 
calls can deliver multiple values in a single message, so they 
become more efficient as more data is passed. 

This benchmark study gives us some useful information about 
message passing. First, general-purpose inter-thread message 
passing can be very efficient, with an end-to-end, type-checked 
remote procedure call in less than 1000 machine cycles. Secondly, 
one key to efficiency is to compile special-purpose code so that 
message handling is a matter of finding a function pointer and 
calling the function. In Aura, message-handling functions are 
generated by a preprocessor, without which any message passing 
scheme would be very tedious. Third, another optimization is to 
resolve attributes or function signatures into small integers to 
avoid computing hash functions on strings and to make messages 
shorter. The tradeoff, however, is that users must then use a 
preprocessor to assign numbers to names.  

These same issues are relevant in other systems such as OSC  
[21], MAX [20, 23], and SuperCollider [15]. For example, OSC 
performs searching and pattern matching rather than direct 
method lookups, and it uses path names that, as strings, are likely 
to be longer than a compact numbering scheme. These choices 
will have a big impact on performance. I hope that this discussion 
will help other system designers better understand the range of 
possible designs and their performance implications. 

6. AUDIO PROCESSING 
One difficulty in Aura I is creating complex configurations of 
objects (unit generators) for audio processing. Audio processing 
support in Aura has undergone many evolutionary changes. 
Meanwhile, a variety of related systems have been created and are 
worth studying for a more complete understanding of audio 
processing architectures. [2-4, 13, 14, 17, 19, 22] 

Unlike visual programming languages such as MAX-MSP [18], 
where audio “patches” tend to be static, Aura patches can be 
constructed and modified at run-time. While this seemed to be an 
important goal, it turned out to be very difficult for users. In the 
first implementation, forgetting to set the input of an object would 
cause a crash. This problem was solved by initializing all audio 
inputs to a “zero object,” but this usually meant that every input 
was connected twice, first to zero, then to the correct source of 
samples.  

To avoid dangling pointers when objects are deleted, audio 
connections in Aura I are doubly-linked. Deleting an object 
automatically disconnects any connected objects, but this adds a 
lot of overhead. Aura II adopts a simpler approach: all audio 
processing objects are reference counted, and no audio object is 
deleted explicitly. Therefore, there cannot be any “dangling” 
pointers to deleted objects. Furthermore, with remote procedure 
calls, we can now design initialization methods where the caller 
specifies everything necessary to properly create and initialize an 
object. This reminds the user to fully initialize objects and 
eliminates mysterious behavior when an input is left unconnected. 

Another thing we learned using Aura is that programs that patch 
together many unit generators are very difficult to read. Much 
better would be a functional notation in which the structure of the 
code matches the tree structure of the audio computation graph as 
in Nyquist [7] or SuperCollider [15]. This was achieved using a 
scripting language developed for this purpose [6]. However, even 

this approach is not ideal. It takes quite a few messages to patch 
together many unit generators, and since the result is a network of 
separate, anonymous objects, debugging can be difficult. 

After creating several compositions that included audio 
processing, I realized that, while a certain amount of run-time 
configuration of audio is useful, most of the time one wants to 
manipulate a whole collection of unit generators at once. I was 
beginning to build rather complex “instruments” that compiled as 
single Aura objects rather than patching together many simple 
objects at run time. 

 
Figure 3. Aura II instrument editor. Audio inputs are at the 

top, outputs are at the bottom, and scalar control parameters 
are at left. The editor automatically selects optimal unit 

generator implementations based on the input and output 
signal types, which can be audio rate, block rate, or constant. 

To support this style of programming, I developed a graphical 
patch editor (see Figure 3) to help create instrument objects. The 
patch editor chooses efficient implementations of unit generators 
based on whether the inputs and outputs run at the sample rate, 
the control rate (one sample per 32-sample audio block), or are 
constant values settable by messages. After a patch is completed, 
the editor automatically generates a C++ implementation and 
modifies the user’s “makefile”  so that the new instrument will be 
compiled and linked into the current application. (This mixed use 
of graphical programming front-end and C++ compiler back-end 
is also found in Open Sound World. [3]) Future enhancements 
will generate a graphical user interface for the instrument to 
facilitate testing and debugging. 

7. SUMMARY AND CONCLUSIONS 
It is often stated that computers are universal, that any sound or 
image is possible, and that the only limit is our imagination. Most 
will agree that in practice, software tools often lead creators along 
the path of least resistance. Just as there is pianistic music, there is 
csound music, MAX-MSP music, and Sonic Foundary Acid 
music, to name just a few. While this not necessarily a bad thing 
(who would say the piano is a bad idea?), we should strive for a 
balance between generality and power. Generality enables systems 
to address many problems, while power makes them easy to use. 
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 Aura’s design stresses generality. It offers an open-ended 
platform that provides real-time scheduling and communication 
support for a variety of media. Aside from a signal-processing 
sub-system, Aura says very little about how programs are 
structured. The ability to “plug in” new components and control 
them via an efficient messaging system has enabled a variety of 
applications to be written in Aura. I hope that these experiences 
and techniques will encourage and assist others to make software 
that expresses their artistic intentions effectively.  
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