
Aura II: Making Real-Time Systems Safe for Music
Roger B. Dannenberg
Carnegie Mellon University

School of Computer Science
Pittsburgh, PA 15213 USA

+1-412-268-3827

rbd@cs.cmu.edu

ABSTRACT
Real-time interactive software can be difficult to construct and
debug. Aura is a software platform to facilitate highly interactive
systems that combine audio signal processing, sophisticated
control, sensors, computer animation, video processing, and
graphical user interfaces. Moreover, Aura is open-ended, allowing
diverse software components to be interconnected in a real-time
framework. A recent assessment of Aura has motivated a redesign
of the communication system to support remote procedure call. In
addition, the audio signal processing framework has been altered
to reduce programming errors. The motivation behind these
changes is discussed, and measurements of run-time performance
offer some general insights for system designers.

1. INTRODUCTION
Aura is a software framework for building real-time interactive
systems. [12] It has evolved and grown for almost 10 years, and
has roots in the CMU MIDI Toolkit [5, 9], created almost 20
years ago. Building on experience gained from using Aura and
related systems, Aura II is my latest attempt to provide a solid
foundation for interactive systems. Aura II embraces a number of
design principles I have found to be effective. The goal of this
paper is to describe the design philosophy and experience that has
led to Aura II and to discuss some lessons learned. I will also
include some performance measurements that may help others to
make intelligent design choices.

In the next section, I present the main concepts that form the basis
of Aura. Section 4 provides an example for further motivation. In
Section 4, I describe in greater formality the approach to
scheduling, and Section 5 discusses various aspects of message
passing in which many systems issues arise. Section 6 describes
the structure of the audio processing system, and this is followed
by a summary and conclusions.

2. ORIGINS OF AURA
Aura was designed to replace the CMU MIDI Toolkit (CMT), an
elegant system to help students write interactive MIDI
applications with a minimal knowledge of programming. CMT
adds essentially one thing to the C programming language: a
function, cause, that calls a function at some time in the future.
E.g., one can write

cause(0.3, midi_note, chan, pitch, 0)
to send a note-off message (velocity = 0) after 0.3 seconds. While
simple in appearance, cause can be used to run multiple
concurrent processes. Each process is implemented as a procedure
that performs an action and then “cause’s” itself to resume
execution in the future. All procedures run to completion,
eliminating almost any concern over shared variables, reentrant

code, critical sections, and preemption. (And although CMT
“processes” are not true processes that can suspend and resume at
any point, they handle most event-driven programming tasks quite
well.)

In the early 90’s it became clear that signal processing was going
to move from special purpose VLSI and DSP chips to general
purpose processors. [8] At the same time, real-time video and
computer graphics was becoming an attractive new performance
medium. While computer graphics tasks could take tens of
milliseconds, MIDI and control processing must be much more
responsive, and audio processing adds a hard real-time processing
requirement: no task should ever hold up computing and cause a
buffer overflow or underflow. While the simple non-preemptive
model of CMT is successful in its domain, it cannot handle the
wide range of processing tasks and latencies posed by general
interactive multimedia.

Also in the 90’s, I worked briefly on constraint-based graphical
user interface systems [16], and the idea of connecting various
objects with constraints offered an interesting model for rapid
prototyping and programming by novices. “Connect the position
of the slider to the frequency of the oscillator” seems much
simpler than “subclass the slider object and add a method that
calls the set_hz method of the oscillator object.” The idea of
connecting attributes of objects together is something like
patching an analog synthesizer or wiring a network of MIDI
synthesizers, which seems quite intuitive. This same idea works
successfully in MAX [20] and related software.

Thus, Aura I (originally named “W”) [12] incorporates three main
ideas: (1) Where possible, use non-preemptive scheduling (as in
CMT) and cause to support many tasks, (2) Use “real”
preemptive threads to allow time-critical processing to preempt
longer-running computations, and (3) Use objects with
attribute/value interfaces, and use constraint-like connections to
create applications. In retrospect, (1) and (2) seem to be very good
ideas, whereas (3) does not. This and other problems have
motivated Aura II, which is discussed mainly in Sections 5 and 6.
In what follows, I will use Aura I to refer to Aura using the
attribute/value object model, and Aura II to refer to the current
version based on remote procedure call. I will use Aura when
comments apply to both versions.

3. AN EXAMPLE APPLICATION:
THE WATERCOURSE WAY
To illustrate how Aura is used and why current systems are either
unsuitable or only partial solutions, I will describe a recent work,
“The Watercourse Way” [10], an interactive piece for chamber
orchestra, dancer, and electronics. The main technical focus of

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 132

this work is a sound synthesizer controlled by water movement.
The water is sensed by reflecting light onto a screen, creating
beautiful moving images. The reflected light is captured by a
video camera, digitized, and further processed to derive time-
varying spectra for three synthesized tones. [11] In addition, the
video is texture-mapped onto the surfaces of an animation that is
projected in the concert space. Four channels of audio input
capture various instrumental combinations and four output
channels drive a quadraphonic sound system. Figure 1 illustrates
the entire system, and Figure 2 shows an audience view of the
dancer and images.

Audio
Thread

GUI/Ani-
mation
Thread

Control
Thread

Aura

Camera
Input

MIDI
Fader Box

Audio
Input

Audio
Output

GUI

Animation

Figure 1. System configuration for The Watercourse Way.

Figure 2. Performance of "The Watercourse Way." Light

(left) reflected from water (bottom right) is used to synthesize
sound and is also texture-mapped onto animation (upper

right). The sound and image are modulated when the dancer
touches the water. Live musicians are not shown here.

In this system, low-latency audio is required to process live
instrument sounds. At the same time, the camera input and
processing runs in lock-step with the 30-frame-per-second video
input. Clearly, the audio thread must run in a separate thread to
avoid blocking for up to 1/30 of a second waiting for the next
video frame. The animation involves a physical simulation of a
stiff material flexing under applied forces. This, and the OpenGL
rendering of the model, cannot be easily expressed by combining

pre-fabricated image operations, so it is important that Aura is
fully programmable, not only for audio rendering, but for control,
animation, and graphical user interfaces. While other systems
offer very powerful interfaces for signal processing or even video
processing, few systems have the generality, programmability, and
extensibility offered by Aura.

In “The Watercourse Way,” as in all Aura applications, objects
are segregated into different threads, or zones, such that high-
latency objects share one thread and low-latency, time-critical
threads share another. This approach is described in more detail in
the next section, and the message passing system used for
communication between objects is described in Section 5.

4. LATENCY MONOTONIC SCHEDULING
Real-time systems for interactive performance must deliver high
performance and at the same time be easy to create and modify.
Musicians and composers simply do not have the resources of the
Mars Rover team to build and debug complex real-time systems.
A traditional approach to real-time systems is to implement each
task with its own, schedulable thread, and use synchronization
primitives (locks and semaphores) to guard access to shared
variables through which tasks communicate. [1] The problem with
this approach is that it is easy to make mistakes and hard to find
them. Forgetting to lock a data structure can cause intermittent
errors that cannot be reproduced easily and may disappear when
debugging code is added. The traditional approach also adds
complexity to the code and is usually best approach with a careful
system-wide design process that is not conducive to rapid
prototyping.

An alternative approach is to use non-preemptive threads as in
CMT. Here, a task runs to completion or to some point at which
the code explicitly releases the processor. Since no unexpected
preemption can take place, no shared variables need to be locked
or unlocked. However, as mentioned earlier, this approach breaks
down when there is a mix of long-running computations and low-
latency deadlines.

Now imagine running a CMT-like non-preemptive program on
each of several independent computers, where one computer
computes audio, another manages a graphical user interface and
renders animation, and yet another handles control and MIDI
data. If tasks are segregated according to their latency
requirements, non-preemptive scheduling can be effective. In fact,
most music processing is time driven, so CMT-like systems
execute tasks/procedures according to the time at which they are
scheduled. Assuming that all deadlines can be met, this form of
scheduling, “earliest deadline first,” is known to be optimal.

Aura can run in this fashion on multiple computers, but the typical
system shares one processor among three threads that handle
graphics, control, and audio, respectively. Each thread is managed
by an Aura zone, which also provides inter-zone communication,
memory management, and scheduling. Zones use fixed priority
scheduling where priority decreases monotonically with the
zone’s latency requirement. Here, latency, is the maximum
amount by which a task can fall behind real time. For audio
computation, latency is the time it would take for the audio buffer
to underflow. For animation, latency is roughly the frame period.

Using these concepts, we can make some precise statements about
the real-time performance of Aura. For the sake of brevity, I will

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 133

assume that each zone has a maximum latency requirement Li and
that each latency requirement Li is an integer multiple of the next-
higher priority zone’s latency requirement Li-1. (For example,
requirements could be 20, 2, and 1 msec for graphics, control, and
audio zones, respectively.) I also assume that in the worst case, all
tasks in a zone are scheduled to run simultaneously, but that no
task is rescheduled in less time than the zone’s latency. Ci is the
total worst-case total execution time of all tasks in zone i:

�=
j

iji dC ,

where is dij is the worst-case execution time of task j in zone i.

The latency experienced by a zone is the execution time of the
tasks in the zone (Ci) plus the execution time of tasks in higher
priority zones which might preempt this one. Note that zone j can
preempt zone i exactly Li/Lj times if Lj < Li. Therefore the
constraints to guarantee that all latency requirements are met are:

1for ,1 >>� = iC
L
L

L j
i
j

j

i
i

In actual practice, computation may not be so periodic and
predictable, so more elaborate analysis may be required to
establish tighter bounds. Alternatively, performance can be
measured experimentally. The Aura scheduler can measure the
actual latency of each zone and also detect when an object fails to
meet the latency requirement. In summary, tasks are assigned to
zones according to their latency requirements. Typically, only a
few zones are needed, so most computation can be run in a
simple, non-preemptive fashion.

5. MESSAGE PASSING
When objects are segregated into zones, and shared memory is not
allowed, how do objects communicate? In Aura, communication
is by message passing. Messages are delivered by either setting
some data within an object or by invoking an object method. In
the case of method invocation, the method runs to completion and
returns, after which the next message is delivered. Thus, message
delivery is performed synchronously with respect to other
computation within the zone, and no locking or synchronization is
required.

Some explanation is now in order pertaining to shared memory in
Aura. The preceding discussion has made it clear that zones
operate as if they exist on separate computers in separate address
spaces. In the implementation, zones actually share a single
address space, but each zone has its own set of memory locations
and never accesses the memory of another zone with the
exception of some FIFO communication buffers. For each pair of
zones, there is a single-writer, single-reader FIFO buffer through
which messages can be passed. The advantage of this arrangement
is that these FIFOs can be implemented safely without locks,
which would require an operating system call per FIFO operation.
As measurements will show below, this offers a very efficient
mechanism for communication. In fact, it is faster to send a
message in this manner than to lock and unlock a shared variable.

The Aura approach to low-latency computation can be viewed as
a generalization of a common implementation practice. Often,
programmers will devise a standard graphical user interface and
rely on either timer callbacks or audio system callbacks to perform
real-time processing. It is common to use FIFOs for

communication between the main program and the callback. For
example, this technique is described by Zicarelli [24] and is also
used in MAX. Aura generalizes this approach by viewing both the
“user interface” and the “callback thread” as instances of the same
thing: a zone in which objects exist and execute. The model is
generalized further by allowing more than two zones.

5.1 Attribute/Value vs Procedure Call
To support this generalized view of real-time computation, Aura I
introduced a special object model in which objects expose settable
attributes and received messages of the form “set attribute to
value.” Unlike traditional object-oriented programming
“messages”—really a form of procedure call with parameters
pushed on the run-time stack—Aura messages are “real” data that
can be copied to another zone or address space for remote
delivery.

While the motivation for Aura I’s attribute/value interface was
convincing at the time, experience has led me to believe that this
is not a particularly good idea. There are many cases where one
wants to invoke an operation with multiple parameters in a single
operation, e.g. “connect input a to channel i of output b.” In Aura,
this example requires two messages: “set channel to i” followed
closely by “set a to b.” Splitting what is logically a single
operation into a protocol consisting of multiple messages is not
good programming practice. (Originally, Aura supported
sequences of attribute/value pairs, but it was awkward to construct
these messages and they fell into disuse.)

A second observation is that in practice, many messages are
directed to specific objects. While the original concept was that
messages would flow out of objects, over connections, and into
other objects (the behavior resulting from an Aura “send”
operation), Aura also provides a “send_to” operation where the
destination object is provided explicitly. This “connection free”
style of messaging is often preferred because the programmer can
direct different messages to different objects. Also, this style tends
to be more readable. Since connections are often set up by one
part of the program and messages are sent in another, it is difficult
to keep a mental image of what objects are connected where. On
the other hand, the “send_to” style always names the receiver at
the point where the message is sent, making the program easier to
understand. This is in contrast to visual languages like MAX,
where the connections are part of the program “syntax” and
therefore are easier to follow. This is more like OSC, where the
message sender explicitly specifies a destination.

The biggest change in Aura II, therefore, is the replacement of
attribute/value messages with remote procedure calls. Aura II uses
the same low-level message transport mechanism as Aura, but the
code to form messages and receive them has been completely
replaced to support passing multiple parameters to methods. This
work provides an interesting opportunity to compare the
performance of the two styles of messages.

5.2 Type Checking and Naming
Remote access, whether through an attribute/value mechanism or
a remote procedure is much easier to debug when types are
checked automatically. Programmers need help to guarantee that
when, say, a 32-bit integer value is sent from object A, the bits
will be interpreted as an integer when they arrive at object B.
Types can sometimes be checked at compile time, but with

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 134

flexible message systems, types must often be checked at run time.
Typically, the message includes some specification of the data
types as well as the data, and the receiver checks that the
specification is for the expected types (the receiver can also
perform different actions according to the type).

In Aura I, messages do not carry explicit type information.
Instead, types are associated with attributes themselves. In
practice, to send an integer value, the sender calls

set_integer(attribute, value)
and the set_integer method checks that attribute has
type integer. Since attributes are global, attribute name conflicts
can to arise. One object might declare maximum to be an integer,
and another will try to make it a float. This problem was solved
using the somewhat ugly but effective practice of appending a
type character to the name, so maximumi is an integer attribute,
and maximumd is a (double-precision) float attribute.

In Aura II, the attribute is replaced by a method name. Internally,
the system appends type information to the name to form what is
called the signature. On the sending side, a function is generated
to send each message, so ordinary compile-time type checking
insures that the message is well-formed and that the signature
matches the actual parameter data. On the receiving end, the
signature is used to locate a message handler. If a handler is
found, then it is known that the parameters have the correct type
for the receiving method in the receiving object. So far, no special
naming scheme is in use, so users could be confused when a
message is not received due to a type mismatch. The plan is to
create two classes of messages. The standard message must be
handled by the receiver, otherwise an error is reported. The
optional message is intended for broadcasting data to objects that
may only be interested in certain messages. These messages can
be dropped without raising errors.

5.3 Performance Measurements
Benchmarks were used to measure the time Aura I and II take to
send messages. Further analysis using execution profiling
revealed some general information about where time is spent.
Since sending parameter updates is an important part of any
interactive system, designers can benefit from a better
understanding of where the time goes.

Aura messages can be delivered locally or remotely. In the local
case (within a zone), a message is formed on the stack and
delivered immediately to any receivers by calling their receive
methods. In the remote case (between zones), a message is formed
on the stack but copied to a FIFO buffer. The buffer is read by the
receiving zone and delivered to the receiving object. (Calling a
receiver’s receive method directly would introduce
synchronization problems as discussed earlier.)

Both the attribute/value and remote-procedure-call styles of
messages rely on a hash table to translate either the attribute or the
procedure name into a descriptor that can be used to access the
object. Aura I uses a preprocessor to associate small integer
values with attributes. This saves space (only a 32-bit identifier is
transmitted rather than the string name) and makes table lookup
faster (rather than computing a hash function from a string name,
the hash value is simply the low-order bits of the 32-bit attribute
identifier). Thus, one implementation decision we can compare is
whether it is worth the trouble to map names to numbers to make
lookups run faster.

Another design difference is that Aura I uses descriptors to
specify the size and offset of attributes within objects. The
message handler routine delivers data by copying directly into the
receiving object, avoiding a method call. In Aura II, the descriptor
is a function pointer; the message handler calls the function,
which unpacks the message and then calls an object method.
Thus, the second implementation choice we can assess is whether
it is faster to interpret an object description, writing data directly
into the object, or to call a method to accomplish the same result.

To measure message passing performance, a simple benchmark
program sends short messages from a sender object to a receiver
object. The receiver then sends a single reply, and the cycle
repeats an arbitrary number of times. By sending many messages
at once, the context switching time (the time it takes the operating
system to switch threads and begin executing another zone) is
amortized over many messages. This is important because the
context switch time is greater than total time to send and receive a
message!

Table 1 shows the CPU time to send one message in Aura I and
Aura II, to a local object or a remote object. The message
operation simply sets a 32-bit integer value in an object. These
tests were conducted with compiler optimization enabled under
Red Hat Linux on an IBM Thinkpad A21p laptop computer (a
Pentium III running at 693MHz, slow by current standards).

Table 1. Message send times for Aura I and Aura II
implementations.

Message
Send Time

Aura I
 (attribute/value)

Aura II
 (remote procedure call)

Intra-zone 0.49µs 0.50µs

Inter-zone 1.02 1.15

As can be seen in the table, Aura I is about the same speed as
Aura II in the intra-zone case and slightly faster in the inter-zone
case. Run-time profiling was used to examine where the execution
time was spent. It turns out that the technique of attribute
identifiers (rather than string names) saves a substantial amount of
time in the Aura I implementation. In contrast, Aura II spends
approximately 100 cycles computing a simple hash function from
the method signature.

On the other hand, decoding a message operation and copying
data directly to or from an object is significantly slower than
calling a function to accomplish the same result. Thus, Aura II
gains some speed by having all object access through function
pointers and method calls.

A third implementation difference is simply the size of the
messages. Whereas Aura I sends a 32-bit attribute identifier, Aura
II transmits a signature consisting of a signature length (8 bits),
parameter types (4 bits each), and the method name (8 bits per
character). Inter-zone message passing requires that messages be
copied into a FIFO buffer, and in the benchmark study, this buffer
is much larger than even the level-2 cache, so messages must be
written to primary memory. It appears that the message length
makes a significant difference in this case.

In the Aura I implementation, type-checking was disabled for this
study because Aura I’s run-time type checking is not implemented
efficiently. A careful implementation might add 0.05 µsec to

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 135

either message passing time. Also, note that remote procedure
calls can deliver multiple values in a single message, so they
become more efficient as more data is passed.

This benchmark study gives us some useful information about
message passing. First, general-purpose inter-thread message
passing can be very efficient, with an end-to-end, type-checked
remote procedure call in less than 1000 machine cycles. Secondly,
one key to efficiency is to compile special-purpose code so that
message handling is a matter of finding a function pointer and
calling the function. In Aura, message-handling functions are
generated by a preprocessor, without which any message passing
scheme would be very tedious. Third, another optimization is to
resolve attributes or function signatures into small integers to
avoid computing hash functions on strings and to make messages
shorter. The tradeoff, however, is that users must then use a
preprocessor to assign numbers to names.

These same issues are relevant in other systems such as OSC
[21], MAX [20, 23], and SuperCollider [15]. For example, OSC
performs searching and pattern matching rather than direct
method lookups, and it uses path names that, as strings, are likely
to be longer than a compact numbering scheme. These choices
will have a big impact on performance. I hope that this discussion
will help other system designers better understand the range of
possible designs and their performance implications.

6. AUDIO PROCESSING
One difficulty in Aura I is creating complex configurations of
objects (unit generators) for audio processing. Audio processing
support in Aura has undergone many evolutionary changes.
Meanwhile, a variety of related systems have been created and are
worth studying for a more complete understanding of audio
processing architectures. [2-4, 13, 14, 17, 19, 22]

Unlike visual programming languages such as MAX-MSP [18],
where audio “patches” tend to be static, Aura patches can be
constructed and modified at run-time. While this seemed to be an
important goal, it turned out to be very difficult for users. In the
first implementation, forgetting to set the input of an object would
cause a crash. This problem was solved by initializing all audio
inputs to a “zero object,” but this usually meant that every input
was connected twice, first to zero, then to the correct source of
samples.

To avoid dangling pointers when objects are deleted, audio
connections in Aura I are doubly-linked. Deleting an object
automatically disconnects any connected objects, but this adds a
lot of overhead. Aura II adopts a simpler approach: all audio
processing objects are reference counted, and no audio object is
deleted explicitly. Therefore, there cannot be any “dangling”
pointers to deleted objects. Furthermore, with remote procedure
calls, we can now design initialization methods where the caller
specifies everything necessary to properly create and initialize an
object. This reminds the user to fully initialize objects and
eliminates mysterious behavior when an input is left unconnected.

Another thing we learned using Aura is that programs that patch
together many unit generators are very difficult to read. Much
better would be a functional notation in which the structure of the
code matches the tree structure of the audio computation graph as
in Nyquist [7] or SuperCollider [15]. This was achieved using a
scripting language developed for this purpose [6]. However, even

this approach is not ideal. It takes quite a few messages to patch
together many unit generators, and since the result is a network of
separate, anonymous objects, debugging can be difficult.

After creating several compositions that included audio
processing, I realized that, while a certain amount of run-time
configuration of audio is useful, most of the time one wants to
manipulate a whole collection of unit generators at once. I was
beginning to build rather complex “instruments” that compiled as
single Aura objects rather than patching together many simple
objects at run time.

Figure 3. Aura II instrument editor. Audio inputs are at the

top, outputs are at the bottom, and scalar control parameters
are at left. The editor automatically selects optimal unit

generator implementations based on the input and output
signal types, which can be audio rate, block rate, or constant.

To support this style of programming, I developed a graphical
patch editor (see Figure 3) to help create instrument objects. The
patch editor chooses efficient implementations of unit generators
based on whether the inputs and outputs run at the sample rate,
the control rate (one sample per 32-sample audio block), or are
constant values settable by messages. After a patch is completed,
the editor automatically generates a C++ implementation and
modifies the user’s “makefile” so that the new instrument will be
compiled and linked into the current application. (This mixed use
of graphical programming front-end and C++ compiler back-end
is also found in Open Sound World. [3]) Future enhancements
will generate a graphical user interface for the instrument to
facilitate testing and debugging.

7. SUMMARY AND CONCLUSIONS
It is often stated that computers are universal, that any sound or
image is possible, and that the only limit is our imagination. Most
will agree that in practice, software tools often lead creators along
the path of least resistance. Just as there is pianistic music, there is
csound music, MAX-MSP music, and Sonic Foundary Acid
music, to name just a few. While this not necessarily a bad thing
(who would say the piano is a bad idea?), we should strive for a
balance between generality and power. Generality enables systems
to address many problems, while power makes them easy to use.

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 136

 Aura’s design stresses generality. It offers an open-ended
platform that provides real-time scheduling and communication
support for a variety of media. Aside from a signal-processing
sub-system, Aura says very little about how programs are
structured. The ability to “plug in” new components and control
them via an efficient messaging system has enabled a variety of
applications to be written in Aura. I hope that these experiences
and techniques will encourage and assist others to make software
that expresses their artistic intentions effectively.

8. ACKNOWLEDGMENTS
This article summarizes lessons learned over many years, often
working with students and colleagues who contributed their own
experience and programming skills. In particular, Dean Rubine
played a key role in defining Aura, and Eli Brandt built the first
audio sub-system, which, aside from some high-level
reorganization, is remarkably similar to its original form.
Although this particular work is solely that of the author, systems
on which this work is based received support from many sources,
particularly the National Science Foundation, IBM, and Intel.

9. REFERENCES
[1] Bennett, S. Real-Time Computer Control, An Introduction.

Prentice Hall, New York, 1994.

[2] Burk, P. JSyn - A Real-Time Synthesis API for Java. In
Proceedings of the 1998 International Computer Music
Conference, (Ann Arbor, Michigan, 1998). ICMA, San
Francisco, 1998, 252-255.

[3] Chaudhary, A., Freed, A. and Wright, M. An Open
Architecture for Real-Time Music Software. In Proceedings
of the 2000 International Computer Music Conference,
(Berlin, 2000). ICMA, San Francisco, 2000, 492-495.

[4] Cook, P.R. and Scavone, G. The Synthesis Toolkit (STK).
In Proceedings of the 1999 International Computer Music
Conference, (Beijing, China, 1999). International Computer
Music Association, San Francisco, 1999, 164-166.

[5] Dannenberg, R.B. The CMU MIDI Toolkit. In Proceedings
of the 1986 International Computer Music Conference,
(The Hague, The Netherlands, 1986). International
Computer Music Association, San Francisco, 1986, 53-56.

[6] Dannenberg, R.B. A Language for Interactive Audio
Applications. In Proceedings of the 2002 International
Computer Music Conference, (Goteborg, Sweden, 2002).
ICMA, San Francisco, 2002, 509-515.

[7] Dannenberg, R.B. Machine Tongues XIX: Nyquist, a
Language for Composition and Sound Synthesis. Computer
Music Journal, 21, 3 (Fall, 1997), 50-60.

[8] Dannenberg, R.B. Real-Time Software Synthesis on
Superscalar Architectures. In Proceedings of the 1992
International Computer Music Conference, (San Jose, CA,
1992). ICMA, San Francisco, 1992, 174-177.

[9] Dannenberg, R.B. Software Design for Interactive
Multimedia Performance. Interface - Journal of New Music
Research, 22, 3 (August, 1993), 213-228.

[10] Dannenberg, R.B., Bernstein, B., Zeglin, G. and
Neuendorffer, T. Sound Synthesis from Video, Wearable
Lights, and 'The Watercourse Way'. In Proceedings: The

Ninth Biennial Symposium on Arts and Technology, (New
London, Connecticut, 2003). Connecticut College, 2003,
38-44.

[11] Dannenberg, R.B. and Neuendorffer, T. Sound Synthesis
from Real-Time Video Images. In Proceedings of the 2003
International Computer Music Conference, (Singapore,
2003). ICMA, San Francisco, 2003, 385-388.

[12] Dannenberg, R.B. and Rubine, D. Toward Modular,
Portable, Real-Time Software. In Proceedings of the 1995
International Computer Music Conference, (Banff, Canada,
1995). ICMA, San Francisco, 1995, 65-72.

[13] Dechelle, F., Borghesi, R., Ceccco, M.D., Maggi, E.,
Rovan, B. and Schnell, N. jMax: a new JAVA-based editing
and control system for real-time musical applications.
Computer Music Journal, 23, 3 (Fall, 1998), 50-58.

[14] McCartney, J. A New, Flexible Framework for Audio and
Image Synthesis. In Proceedings of the 2000 International
Computer Music Conference, (Berlin, 2000). ICMA, San
Francisco, 2000, 258-261.

[15] McCartney, J. SuperCollider: A New Real Time Synthesis
Language. In Proceedings of the 1996 International
Computer Music Conference, (Hong Kong, 1996). ICMA,
San Francisco, 1996, 257-258.

[16] Myers, B., Giuse, D., Dannenberg, R., Zanden, B.V.,
Kosbie, D., Pervin, E., Mickish, A. and Marchal, P. Garnet:
Comprehensive Support for Graphical, Highly Interactive
User Interfaces. IEEE Computer, 23, 11 (November, 1990),
71-85.

[17] Pope, S.T. Siren: Software for Music Composition and
Performance in Squeak. In Proceedings of the 1997
International Computer Music Conference, (Thessaloniki,
Greece, 1997). ICMA, 1997.

[18] Puckette, M. Combining Event and Signal Processing in the
MAX Graphical Programming Environment. Computer
Music Journal, 15, 3 (Fall, 1991), 68-77.

[19] Puckette, M. Using Pd as a score language. In Proceedings
of the 2002 International Computer Music Conference,
(Goteborg, Sweden, 2002). International Computer Music
Association, San Francisco, 2002, 184-187.

[20] Puckette, M. and Zicarelli, D. MAX Development Package.
Opcode Systems, Inc., 1991.

[21] Wright, M. and Freed, A. Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers. In
Proceedings of the 1997 International Computer Music
Conference, (Thessaloniki, Greece, 1997). ICMA, San
Francisco, 1997, 101-104.

[22] Wyse, L. A Sound Modeling and Synthesis System
Designed for Maximum Usability. In Proceedings of the
2003 International Computer Music Conference,
(Singapore, 2003). ICMA, San Francisco, 2003, 447-451.

[23] Zicarelli, D. An Extensible Real-Time Signal Processing
Environment for Max. In Proceedings of the 1998
International Computer Music Conference, (Ann Arbor,
MI, 1998). ICMA, 1998, 463-466.

[24] Zicarelli, D. M and Jam Factory. Computer Music Journal,
11, 4 (Winter, 1987), 13-23.

nagasm
Proceedings of the 2004 Conference on New Interfaces for Musical Expression (NIME04), Hamamatsu, Japan

nagasm
NIME04 - 137

