
Controlling complex virtual instruments – A setup with
note~ for Max and prepared piano sound synthesis

ABSTRACT
This paper describes a setup for embedding complex virtual
instruments such as a physical model of the prepared piano sound
synthesis in the sequencing library note~ for Max. Based on the
requirements of contemporary music and media arts, note~
introduces computer-aided composition techniques and graphical
user interfaces for sequencing and editing into the real time world of
Max/MSP. A piano roll, a microtonal musical score and the
capability to attach floating-point lists of (theoretically) arbitrary
length to a single note-on event, enables artists to play, edit and
record compound sound synthesis with the necessary precision.

Author Keywords
Computer-assisted composition, CAC, notation, rhythm tree, nested
tuplets

ACM Classification
H.5.2 [Information Interfaces and Presentation] User Interfaces–
Graphical user interfaces (GUI), D.2.6 [Software Engineering]
Programming Environments–Graphical Environments, H.5.5
[Information Interfaces and Presentation] Sound and Music
Computing.

1. INTRODUCTION
Containing only pitch, velocity and duration, a MIDI note-on event
passes very limited information about the resulting sound to an
instrument. In order to control more parameters, MIDI control or raw
data has to be sent parallel to, or rather slightly in advance of, the
corresponding note-on event. Microtonal pitches are often realized by
detuning different channels of a MIDI instrument using pitch bend
data, since most available instruments such as VST or Audio Unit
plugins do not understand floating-point pitch information. These
boundaries, introduced by the MIDI standard more than 30 years
ago, not only disrupt the workflow of today’s composers and sound
artists, but often make it impossible to work with the necessary
precision. By using more experimental environments such as
Max/MSP, csound or Open Music, some of the MIDI standard’s
boundaries can be broken. But compared to commercial sequencer
software they either lack the intuitive graphical user interface (GUI)
or real time capabilities, or both.
 The note~ library offers such an interface for Max/MSP. It includes
the main timeline with an arrange view, a piano roll editor and even a
musical score capable of displaying microtonal pitches and very
complex rhythmical structures. The real time capabilities distinguish
it from most other software tools for computer-aided composition.
The workflow described in this article is not limited to the prepared
piano sound synthesis. It can be transferred easily to other
instruments and therefore offers a new and inspiring way for

controlling sound synthesis within Max/MSP. A brief introduction to
note~ has been published by Resch in 2012 [1] but since then, the
library has undergone a major revision. Among many other things,
even the object names and basic functions have been modified.
Therefore a new summary of the note~ library appears to be adequate
although a detailed description outside the functionality used for the
described setup goes beyond the scope of this article.
 The prepared piano sound synthesis algorithm was originally
developed by Bilbao. It was prototyped in Matlab and then ported to
csound by John Fitch. The physical underpinnings, algorithm design,
as well as the csound implementation have been explained in detail in
their paper [2]. The current Max version – the object tr.ppiano – has
been especially adjusted for the note~ library; its most significant
features and implementation details will be described briefly,
followed by the section about the integration of the prepared piano
into the note~ environment.
 For a better understanding of the two sections about
implementation details, a basic knowledge about the Max/MSP
software architecture is required, particularly regarding the difference
between signal level and Max level. Such a distinction is described in
detail at the Cycling’74 webpage [3].

2. RELATED WORK
Several alternatives to note~ for the combination of a timeline with a
graphical interface in Max/MSP exist, each focusing on slightly
different areas. Their functionality varies accordingly. Max/MSP
itself includes the object detonate which was originally developed by
Miller Puckette [4]. It provides a 16-channel sequencer and a piano
roll editor with the ability to assign up to six parameters to one event.
It is easy to use but the functionality is limited. Agostini and Ghisi
started the bach.project around the same time as note~ in 2010. It also
offers a sequencer engine and a score for contemporary music [5]. It
comes with a comprehensive library of objects for many types of
data manipulation. The most significant difference with respect to
note~ is the kind of data representation: note~ uses a completely
linear approach while bach introduces a new data type called llll
(Lisp Like Linked Lists). note~’s approach clearly has the advantage
that its usage and workflow is very similar to common sequencer
software; thus the training period is accordingly short. rs.delos by
Roby Steinmetzer is another piano roll editor for Max [6]. Similar to
note~ it can be synchronized to the internal Max timeline; it lacks a
musical score. Max for Live provides an integration of Max/MSP
into the Ableton Live environment but also does not offer a musical
notation. The MaxScore project incorporates a musical score in
Max/MSP and Max for Live [7]. It is based on the integration of the
Java Music Specification Language (JMSL) into Max/MSP [8] and
therefore requires a JMSL license; it lacks a piano roll editor.
 While there is a lot of work on mapping strategies for playing
instruments in a Max/MSP live setup, research into how to control,
play back and preserve scores with sound synthesis beyond the scope
of standard instrument plugins is rather sparse, at least for Max/MSP.
One rare example is a paper about controlling CATART with the
aforementioned bach.project [9]. For Open Music (OM) [10], the
OMChroma framework provides functionality for this purpose [11].

Thomas Resch
Research and Development

University of Music Basel, FHNW
thomas.resch@fhnw.ch

Stefan Bilbao
Acoustics and Audio Group

University of Edinburgh
sbilbao@staffmail.ed.ac.uk

295

But because of its LISP and PatchWork parentage, OM has a very
different workflow compared to Max/MSP and common sequencers.
Bresson published a paper about the integration of the complex
CHANT Synthesizer in OM [12]. In collaboration with Agon they
also wrote about symbolic control of sound synthesis in OM [13].
PWGL (Patchwork Graphical Language) is another visual
programming language language already integrating a musical score
and functionality for contemporary composing techniques [14]. The
paper by Laurson, Norilo and Penttinen deals with a PWGL
extension for real time control of sound synthesis [15]. As with Open
Music, PWGL is based on PatchWork and LISP and therefore in
many aspects similar to OM. Therefore a comparison with Max/MSP
and the note~ library would not yield particularly useful insights.

3. THE NOTE~ LIBRARY
The library introduces a real time sequencer, a microtonal score, a
piano roll editor and computer-aided composition techniques into the
comfort zone of the Max/MSP environment.
 All necessary objects and functions for the setup are described in
this section. For a deeper insight, especially into note~’s scripting
capabilities and the remaining objects, the reader is referred to the
project website [16]. It provides the current version of note~
including tutorials, the tr.ppiano~ object and the patcher described in
this article. note~ is currently available for OS X; a version for
Windows is under development. The musical score requires the
accidental font from Mathew Hinson which is available from his
website [17].

3.1 The backend objects
3.1.1 note.seq~
The note.seq~ object represents the data backend and the playback
engine of the note~ library. All of the library’s other objects are
useless without a note.seq~ object to connect to; its only (optional)
argument is its name. It should be set to a unique identifier.
Otherwise it is set automatically to defaultnoteobject. If the embed
attribute is enabled, note.seq~ saves all data together with the patcher.
Playback is controlled by sending “1” for start and “0” for stop to the
object.

3.1.2 note.region
An object within note~’s timeline containing the event data is called a
region. Regions can be generated by sending the message newregion
[regionname] [track] [timestamp] [duration] to the note.seq~ object
as shown below:

newregion myfirstregion 1 1. 16.

The object note.region is the Max representation of a note~ region.
The first argument is the name of the note.seq~ mother object. The
second (optional) argument is the name of an already existing region.
Without the second argument, note.region connects automatically to
the last created or touched region. The message newevent [optional
eventtype] [timestamp] [pitch] [duration] [optional additional
parameters] [optional eventtext] generates a new event as in the
following example message:

newevent 0 1. 60. 1. 0.53 100. 0.25 “Some event text”

The eventtype can be viewed as the MIDI channel. The duration
must be passed in MIDI format, where a “1.” denotes a quarter note.
In addition to eventtype, timestamp, pitch and duration, three more
parameters plus text are generated with this message. Figure 1. shows
a patcher containing the most simple note~ setup containing only the
two backend objects and the messages explained above.

Figure 1. Minimal setup in Max/MSP

3.2 The note~ editor objects
3.2.1 note.regioneditor and note.eventeditor
The note.regioneditor provides the user with the main timeline and an
interface for creating and editing regions.
 The note.eventeditor enables creating and editing events within a
region. It resembles the piano roll view of common sequencers. The
most significant difference is the adjustable pitch resolution, which is
not limited to semitones but can be set to any value by using the
attribute pitchresolution.

Figure 2. note.regioneditor (left) and note.eventeditor (right)

A minimal setup containing the two backend and the two editor
objects is shown in Figure 2. Both regioneditor and eventeditor
provide access to most functions through context menus.

3.3 The note.score
The note.score object is a musical score for standard western
notation. Deviations from equal tempered pitches are displayed in
cents. Nested tuplets up to six levels deep can be created by either
choosing the splitevent option from the event context menu (which
appears on right-click on a note) or by sending a newevent message
to note.region with an extra rhythm-tree argument after the duration
as shown below.

newevent 0 1. 60. 1. “3 (1 3 5)” 0.53 100. 0.25

This message generates several notes with a total length of a quarter
note: the first number after the quotation mark divides the quarter
note into three triplets. The second triplet is split again into three
notes, the third into five. This rhythmical structure is shown in the
first staff of Figure 3.
 Since the score is merely a frontend, most rendering attributes must
be set either in the note.seq~ or the note.region object. By default,
redrawing occurs only on loading a patcher or on interactions with
the other editors; it can be forced be sending a bang message to its
inlet. Enabling the attribute scoreredrawonmessage forces the score
to re-render also on messages. The user should be aware that this
might freeze Max for some time if, for example, a very large number
of events is generated algorithmically.

296

Figure 3. The note.score object

3.4 Implementation Details
The communication between note~ objects is realized with the
observer design-pattern provided by the Max/MSP SDK. After
setting the mother attribute of any note~ object to the name of an
existing note.seq~ object, it attaches itself as an observer to the
mother, the (main) publisher. In any kind of user interaction, the
corresponding object sends a notification to the mother which itself
then notifies all attached clients. Depending on the included message
they can then determine whether they have to redraw or send data to
an outlet. The signal processing for an MSP object is done within the
perform method, called for every signal vector. However, Max/MSP
does not permit sending Max messages on signal level to a non-
signal outlet (or to be precise, Cycling’74 does not recommend it).
Therefore note.seq~ simply calculates the progressing time on signal
level. The sequencing is done on Max level with an extra clock
running inside the Max main thread; this limits the maximal
precision for playback to 1 ms. note.seq~ sends its clock to its left
outlet for synchronizing purposes. It also accepts a signal as an
external clock.
 In memory, the data is represented as a linked list of regions, each
containing a sorted linked list of events. While this is efficient for
playback, it makes the rendering of the musical notation a difficult
task. For lack of a better algorithm a lot of backtracking is necessary
in order to detect the beginnings and endings of beams and tuplet
brackets. To gain as much speed as possible, note~ formats the score
only once on loading. From this point onward, only the altered
sections are analyzed and reformatted. The data can be exported as a
text file or saved internally together with the patcher. A note script is
merely a list of note~ attribute settings, newregion and newevent
function calls.

4. THE PREPARED PIANO
The prepared piano was ported to Max 4 in 2006 by Resch, but at
that time the maximum number of simultaneously playable voices on
an ordinary computer was somewhere between one and six for single
precision, depending on the frequency of the strings (and of course
on the CPU). Almost ten years later, a mid range laptop is fast
enough to play this instrument in a polyphonic setup with 16 voices
in double precision in real time.

4.1 Implementation Details
The implementation of string, preparations and hammer is more or
less the same as described by Bilbao and Fitch [2]. In order to
improve usability – finding parameters for string and preparations is
already enough work – the number of preparations has been limited
to two of each kind and every parameter is individually accessible
through Max attributes. As an alternative to the hammer strike, a
method for plucking has been added. It is realized by setting the
string to a given velocity at the plucking position; the event duration
has been taken into account through a simple (very fast) fade-out at
the listening points after the given amount of time, or a note-off
event.
 The prepared piano is implemented as a finite difference model;
hence the whole string must be calculated for each sample of every

vector. Although this is much more CPU intensive than a waveguide
model, it is a very flexible approach: Theoretically, any number of
listening points, piano hammers and preparations can be attached and
moved along the string during playback without causing any audible
artifacts.

4.2 Usage
The first release of the prepared piano object for Max 4 was very
flexible, but rather difficult to use. Attributes did not exist at that time
for Max objects; parameters were set with messages containing long
lists of floating-point numbers. Though the configuration is still
possible with messages, the newly implemented attributes provide
direct access to the values and are more or less self-explanatory: For
example, rattle1fundamentalfreq sets the fundamental frequency of
the first rattle preparation, the hammerposition attribute sets the
position of the hammer.
 On instantiation, two arguments need to be passed to the object:
The number of listening points and the number of strings. The first –
at least in most cases – will usually reflect the number of audio
channels. The number-of-strings argument considers the fact that a
piano has two (respectively three) strings for each note in the middle
(respectively high) registers.
 A simple list of floating-point or integer values triggers a hammer
strike; it must contain at least pitch and velocity. The pitch can be
passed either in Hz or as a MIDI floating-point pitch, depending on
whether the attribute pitchasmidi is enabled. If the attribute
noteonwithduration is enabled, the duration is expected as the third
argument. While this makes no sense for live setups, it is a practical
bonus for sequencing applications because sending separate note-off
events is not necessary. The hammer position is expected as the
fourth parameter, the detuning as the fifth, and the string decay as the
sixth.

Figure 4. tr.ppiano in Max with attributes

If desired, all parameters can be set for every hammer strike by
appending them to a note-on message list, either in the required order
(which can be found in the tr.ppiano help file), or by prepending the
name of the corresponding parameter. A note-on hammer strike
message setting only pitch, velocity and string stiffness would look as
in the following example:

62. 80. stringstiffness 4.1

5. EMBEDDING THE INSTRUMENT
The tr.ppiano~ is a purely monophonic instrument. Polyphony is
achieved by putting the object inside a Max poly~ object which is
capable of handling the voice allocation. With the aim of simulating a
real piano accurately (and also saving some CPU resources), the Max
patcher contains three poly~ objects, each of them holding a different
instance of tr.ppiano~: One with seven voices and three strings for
the descant, the bass with three voices and one string and the middle
registers with five voices and two strings. Therefore the detuning
parameter has no effect on the lower pitches. On playback, a simple
subpatcher sorts the event lists by pitch and sends them to the
corresponding poly~ object. The subpatcher inside poly~ merely
measures the magnitude of the corresponding voice. If it falls under a
certain threshhold, the instance is released and can be reallocated by
the next incoming note. For all poly~ instances, parallel processing

297

and voice stealing should be enabled. If all voices are busy, the
incoming note-on event steals the longest occupied.
 The region that holds the events must be configured to include three
additional values by setting the attribute numberofparameters to
seven. When creating events in the editor, these are attached to every
newly created note and initialized with zero. The default value can be
changed with the note.region message defaultparametervalue
[parameter number/name] [default parameter value]. Normally the
eventeditor renders the pitch in a piano roll view. For the purpose of
getting instant access to velocity, hammer position, detuning and
string decay, at least one eventeditor should be configured with the
attribute parametersoverride as shown in Figure 4. This changes the
interface into a multislider-like view. For good order’s sake also the
parametername and the vscaling should be set for every parameter
individually.

Figure 5. note.eventeditor in multislider mode

6. RESULTS
The proposed setup is very easy to handle; the patcher merely
consists of objects of the note~ library, several attrui objects, the
poly~ instances and a few messages.
 The note.eventeditor provides an immediate visual feedback and
makes it possible to access every value of every event. The musical
score renders the data in common western music notation and
denotes the deviation from equal tempered pitches in cents. These are
necessary requirements for many composers, which are not
integrated in Max/MSP. All data for the resulting sound of every note
is bound to a single event instead of being subdivided into a note-on
event and control data. In the case of rearranging events in time,
either by using the interface objects or algorithmically, all data is
moved together with every newly arranged note.
 The prepared piano provides the user with a rich variety of sounds.
The new release makes it very easy to explore these and use them
afterwards with this setup. Altogether, 15 instances of the tr.ppiano
object are created within the poly~ objects; the number of simulated
strings is 34. The performance has been measured with two simple
test cases: A worst-case scenario composed of a 15-voice cluster,
which contains the (more or less) lowest frequencies possible for
every poly~ instance and an algorithmically generated score. In both
scenarios one rubber and one rattle is attached to all voices. On an
Intel Core i7 with 3.1GHz, a vector size of 256 samples and a sample
rate of 44.1 kHz, the CPU load for the cluster varies between 55%
and 60%; the random score comes a little cheaper at 45% to 50%
CPU load. The limited maximum accuracy of the event scheduler to
1 ms is not notable.

7. CONCLUSION
The large number of packages besides note~ (bach.project, rs.delos,
MaxScore, Max for Live), which provide a timeline with a GUI for
Max/MSP, proves that there is a definite need for this kind of
application. note~ differs from these tools in that it enables access to
CAC techniques while at the same time staying as close as possible
to most well-know sequencers in its look and feel. The time it takes
to learn new functionality is accordingly short.
 The depicted Max patcher – built almost exclusively with objects
from the note~ library – integrates the prepared piano sound
synthesis perfectly. It enables the user to record, edit and play back

the instrument in a very precise manner and does not even require
very good skills in Max/MSP. Only three additional parameters are
controlled additionally to the standard MIDI values: the hammer
position, the detuning, and the decay. Nevertheless, this is already
one parameter more than the internal Max object detonate could
handle, and note~ would be able to control and change all 24
parameters of the tr.ppiano~ object individually for every single
hammer strike. This accurate control of every value is a feature
difficult to find in any comparable software.
 Here, the arrangement is played with an especially adjusted
instrument. But it can be considered as a proof of concept. Hundreds
of third party instrument objects already exist for Max/MSP. Among
them, all kinds of sound synthesis can be found. VST or Audio Unit
instruments could also be used, even in a very similar manner. For
this scenario, the subpatcher for the poly~ object would hold an
audiounit~ object instead of the tr.ppiano~. The floating-point part of
the pitch information could be extracted and sent to the
corresponding poly~ instance before the note-on event as pitchbend
data; additional parameters could be mapped to the corresponding
MIDI controller values before the note-on event occurs.
 Several projects have already been realized with note~, for
example, Opium [18] by Philippe Olivier and the LEAP engine [19]
by Duffield and Hopkins. The latter one is a good example of a non-
audio system controlled by note~ – it is used as a laser pattern
sequencer/level editor – and demonstrates that beyond its usefulness
in music, note~ can be utilized for a broad range of applications.

8. ACKNOWLEDGMENTS
Thanks to Dr. Michael Kunkel and to the Electronic Studio Basel for
their support. S. Bilbao is supported by the European Research
Council, under grant number ERC-StG-2011-279068-NESS.

9. REFERENCES
[1] T. Resch (2013): “note~ for Max – An extension for media arts

& music”. In: Proceedings of the international conference on
new interfaces for musical expression, Daejeon, Republic of
Korea, pp. 210-212

[2] S. Bilbao, J Fitch (2006): “Prepared Piano Sound Synthesis”.
In: Proceedings of the 9 th International Digital Audio Effects
Conference, Montreal, Canada, pp. 77-82

[3] Cycling’74 (n.y): “Max/MSP” [online]. URL:
https://cycling74.com [accessed January 31st 2016]

[4] M. Puckette (1990): “EXPLODE: a user interface for
sequencing and score following”. In: Proceedings of the
International Computer Music Conference, Glasgow, Scotland,
pp. 259-261

[5] A. Agostini, D Ghisi (2012): “Bach: an environment for
computer-aided composition in Max”. In: Proceedings of the
International Computer Music Conference, Ljubljana, Slovenia,
p. 373–378

[6] R. Steinmetzer (n.y): “R. Steinmetzer” [online] URL:
http://arts.lu/roby/index.php/site/maxmsp/rs_delos [accessed
January 31st 2016]

[7] N. Didkovsky, G. Hajdu (2008): “MaxScore: music notation in
Max/MSP”. In: Proceedings of the International Computer
Music Conference, Belfast, N. Ireland

[8] Didkovsky, N. and L. Crawford (2007): "Java Music
Specification Language and Max/MSP”. In: Proceedings of the
International Computer Music Conference, Copenhagen,
Denmark, pp. 620-623

[9] A. Einbond, C. Trapani, A. Agostini, D. Ghisi, D. Schwarz
(2014): “Fine-tuned Control of Concatenative Synthesis with
Catart Using the Bach Library for Max”. In: Proceedings of the
International Computer Music Conference, Athens, Greece, pp.
1037-1042

298

[10] J. Bresson, C. Agon, G. Assayag (2011): “OpenMusic: visual
programming environment for music composition, analysis and
research”. In: Proceedings of the 19th ACM international
conference on Mulitmedia, New York, USA, pp. 743-746

[11] C. Agon, J. Bresson, M. Stroppa (2011): “OMChroma:
Compositional Control of Sound Synthesis”. In: Computer
Music Journal, Summer 2011, Vol. 35, No. 2, pp. 67-83, MIT
Press Cambridge, MA, USA

[12] J. Bresson and M. Stroppa (2011): “The Control of the Chant
Synthesizer in OpenMusic: Modelling Continuous Aspects in
Sound Synthesis”. In: Proceedings of the International
Computer Music Conference, Huddersfield, United Kingdom

[13] J. J. Bresson, M. Stroppa, and C. Agon (2005), “Symbolic
control of sound synthesis in computer assisted composition”.
In: Proc. Int. Comp. Music Conf. (ICMC’05), Barcelona, Spain,
pp. 303–306

[14] M. Laurson, M. Kuuskankare, V. Norilo (2009): “An Overview
of PWGL, a Visual Programming Environment for Music”. In:

“Computer Music Journal, Spring 2009, Vol. 33, No. 2, pp. 19–
31”, MIT Press Cambridge, MA, USA

[15] M. Laurson, M. Kuuskankare, V. Norilo (2005): “PWGLSynth:
A Visual Synthesis Language for Virual Instrument Dsign and
Control”. In: “Computer Music Journal, September 2005, Vol.
29, No. 2, pp. 29–41, MIT Press Cambridge, MA, USA

[16] T. Resch (n.y.): “note~ for Max” [online]. URL:
http://www.noteformax.net [accessed January 31st 2016]

[17] M. Hindson (n.y.): “Mathew Hinson” [online]. URL:
http://hindson.com.au/info/ [accessed January 31st 2016]

[18] Philippe Ollivier (2012): ”Opium” [online]. URL:
http://www.logellou.com/opium/ [accessed January 31st 2016]

[19] D. Hopkins, K. Duffield (2014): “Documentation of the leap
engine” [online]. URL:
http://hopkinsduffield.com/2015/02/13/documentation-of-the-
leap-engine/ [accessed January 31st 2016]

299

