
The ‘E’ in QWERTY:
Musical Expression with Old Computer Interfaces

Chris Nash
Department of Computer Science and Creative Technologies, UWE Bristol

Frenchay Campus,  Coldharbour Lane, Bristol, BS16 1QY, UK
chris.nash@uwe.ac.uk

ABSTRACT
This paper presents a development of the ubiquitous computer
keyboard to capture velocity and other continuous musical properties,
in order to support more expressive interaction with music software.
Building on existing ‘virtual piano’ utilities, the device is designed to
provide a richer mechanism for note entry within predominantly non-
realtime editing tasks, in applications where keyboard interaction is a
central component of the user experience (score editors, sequencers,
DAWs, trackers, live coding), and in which users draw on virtuosities
in both music and computing.
 In the keyboard, additional hardware combines existing scan code
(key press) data with accelerometer readings to create a secondary
USB device, using the same cable but visible to software as a
separate USB MIDI device aside existing USB HID functionality.
This paper presents and evaluates an initial prototype, developed
using an Arduino board and inexpensive sensors, and discusses
design considerations and test findings in musical applications,
drawing on user studies of keyboard-mediated music interaction.
Without challenging more established (and expensive) performance
devices; significant benefits are demonstrated in notation-mediated
interaction, where the user’s focus rests with software.

Author Keywords
keyboard input, digital music notation, virtuosity, computer music

ACM Classification
• Human-centered computing~Keyboards • Applied computing~
Sound and music computing • Hardware~Sensors and actuators

1. INTRODUCTION
In digital music, computer and musical keyboards support different
aspects of composition and production, which can partition the
creative process, between creativity and productivity phases. [11]
The embodied interaction style supported by instruments (including
MIDI devices) encourages musicians to ideate, compose, and
perform music away from the computer, before capturing (recording)
it in a realtime performance. In the computer, the sequencer/DAW
then draws on keyboard and mouse interaction to edit and refine the
musical data, mediated through a visual medium (UI or notation).
However, generic computer input styles (keyboard, mouse, WIMP,
etc.) are not optimized for fluid and expressive music interaction,
splitting and shifting focus between the software environment
(notation) and a separate hardware input device (instrument).
 The computer keyboard is powerful and precise with respect to
symbolic input, but lacks musical fidelity. Data entry is processed as
enumerated scan codes, triggered by roughly 100 discrete keys,
corresponding to alphanumeric symbols or functions, with modifiers
(Shift, Ctrl, etc.) to expand control to additional layers of symbols or
functions. Both data entry and program control are designed in
sympathy with written language (e.g. mnemonic shortcuts for non-

symbolic actions, such as Ctrl-C for Copy, or Ctrl-O for Open). The
keyboard’s QWERTY layout enables the development of computing
virtuosity, in the form of motor skill and image schemata [12], as
seen in touch typing, and similar to the learning mechanisms that
allow performers more expressive control of musical instruments. [5]
Indeed, the widespread development of such skill among computer
users has engendered a design and layout that is resistant to change,
and thus we can expect the QWERTY keyboard to be a fixture in
studios and workstations for the foreseeable future. However,
there is significant scope for adapting and extending the design
within the constraints of existing interaction styles to improve
expressiveness and control in musical scenarios.
 By comparison, musical (MIDI) keyboards are accurate and
expressive, but optimized for specialist musical, rather than general-
purpose use. Supporting from 25 to 88 discreet, unlabeled, linearly
arranged piano keys; the MIDI keyboard’s design and ergonomics
limit its utility as a computer control device, for tasks other than
simple assignable triggers (though [4] offers a fascinating study of
the piano as a chording keyboard for text-entry). The MIDI keyboard
is designed for expression and creativity rather than efficiency and
productivity, which is notably enabled through sensitivity to velocity
and pressure (MIDI Velocity and Aftertouch) [1], and enhanced by
passive haptic feedback from fully- or semi-weighted keys. In MIDI,
pressure is captured at 7-bit resolution (0 to 127), effectively adding a
‘continuous’ scale of control to the triggering of discrete pitches,
significantly increasing the nuance of expressive input, albeit
conditional on a concomitant increase in virtuosity.
 The goal of this project is to similarly extend the discrete symbolic
control offered by the computer keyboard with support for
continuous scales of musical control, such as pressure and velocity;
increasing the expressiveness of the keyboard without compromising
its existing utility, functionality, or ergonomics. Accordingly, the
envisaged user experience is characterized by fluid mixed-mode
interaction with the device and software: symbolic input and
keyboard shortcuts in computer modes, alternating with expressive
musical input in performance mode. Specifically; rather than
realtime, live musical performance, this research focuses on
supporting richer input modes and interaction styles for “offline”
notation and music editing, such as those in score editing,
sequencing, and DAW software.

Figure 1. A Velocity-sensitive Computer Keyboard.

224

 The following sections discuss the background, applications, and
development of a prototype device that uses an accelerometer to
extend a standard computer keyboard with velocity-sensitivity, as
well as other dimensions and properties of musical input. Findings
from tests and user evaluations are presented, and discussed in the
context of relevant computer music interaction scenarios.

2. BACKGROUND
The virtual piano is a common utility provided in music software, or
available as a standalone virtual MIDI device (e.g. VMPK). A piano
keyboard layout is tacitly overlaid on the computer keyboard,
allowing pitch to be triggered at a fixed velocity. A degree of
polyphony is supported, but due to shared resources in keyboard
construction, some key combinations are not possible (the precise
limitations vary between keyboard models). Mouse interaction is
often also supported, exploiting 2D visualisations to input both pitch
(key) and velocity (vertical offset of key click), but cumbersome and
imprecise for rapid, accurate entry, even in short phrases. Virtual
pianos are thus designed for playing simple melodies, phrases, and
monophonic pitch selection, and are designed for convenience in
simple tasks (without leaving the computer) or where specialist input
hardware is not available (e.g. mobile settings, amateur setups).
 While the mouse is an important tool for novice users and
unavoidable in some GUI designs, its single point of focus limits the
expressive bandwidth and precision of control. In the visual UIs of
most professional music editing packages (sequencers, musical
typesetters, DAWs), expert users migrate to keyboard shortcuts and
bimodal keyboard-and-mouse interaction styles, for more efficient
control of the program and direct manipulation styles of editing (e.g.
drag and drop). Such literacy with keyboard shortcuts represents a
form of computer virtuosity, enabled through repeated practice and
learning, significantly improving efficiency and productivity when
interacting with programs like ProTools and Logic Pro. Nonetheless,
such packages greatly benefit from specialist hardware input devices
for added precision, control, and haptic feedback – MIDI controllers,
control surfaces, mixing desks, music controllers, and instruments.
 Previous research [8-11] has shown that immersive musical
interaction (and creative flow) can be supported in digital creativity,
where software maintains user focus, supports rapid edit-audition
cycles, and facilitates the development of skilled input and control.
This is notably evident in expert use of soundtracking software [8], a
text-based music notation manipulated using the computer keyboard,
which is used for both musical pitch entry (using a virtual piano) and
other properties (via symbolic entry; velocity, volume, and other
musical directions), accelerated by a significant number of keyboard
shortcuts and editing macros. The notation is manipulated in short
editing episodes punctuated by frequent playback of short excerpts,
providing rapid musical feedback on edits, lowering the literacy
requirement, physically immersing the user in sound, and
engendering an iterative, evolutionary approach to crafting music.
The rapid oscillation of edits and targeted auditions is enabled
through keyboard support, with shortcuts that control playback
and efficiently move the cursor focus around the notation. The
development of motor skill, including learnt postures and gestures
(Figure 2; see [8]), supports a form of embodied music interaction
through the standard keyboard. [9]

Figure 2. Postures in Keyboard Interaction (see [8]).

 This virtuosity, often likened to “musical touch-typing”, is widely
evident in videos1 of tracker users (as studied in [8] and [9]),
but nonetheless highlights areas for improved ergonomics and
expressiveness. For example, the keyboard’s lack of velocity control
makes auditioning and entering melodic passages limited and
cumbersome, requiring manual entry of dynamics. While the virtual
piano supports live playback and “key jamming”, the fixed velocity
offers limited expression, yielding a mechanical performance and
hindering the ideation of new musical ideas – consequently,
influencing the aesthetic of users with less musical experience. Since
dynamics can significantly affect timbre, users may also commit to
instrumentations prematurely, not knowing the range of the voice.
 While this paper principally explores velocity for musical
applications, the additional degree of freedom and analogue input
offered by continuous-scale pressure readings have other uses, as
explored in other research. Inspired by music keyboards, Microsoft
Research previously developed a prototype pressure-sensitive typing
keyboard, conceived for use in general-purpose computing [2] –
though applications, in gaming (varying walking speed) and instant
messaging (mapping ‘emotion’ to font size), are only briefly
discussed and, curiously, no consideration is made of musical use.
Their design replaces the standard keyboard’s conductive membrane
with a custom-manufactured carbon ink printed layer that captures
variable pressure, output as modulated voltage (rather than simply
closing a circuit). The paper does not detail how the pressures /
voltages are integrated with symbolic input or exposed in software or
the operating system, nor detail the relative cost and complexity of
components and manufacturing. However, the intricacy of the
design contrasts the relatively simple, low-cost, and accessible
accelerometer augmentation taken in the following section.

3. DESIGN & PROTOTYPING
The keyboard is conceived as a single physical device, presenting
two virtual devices to the OS / software: for musical input (MIDI)
and computer (data) input, respectively. The USB specification
allows both modes to be exposed in software through standard OS
drivers, using USB HID and USB MIDI profiles, obviating the need
to install additional software or drivers. Using an integrated USB
hub, the two devices can be connected using a single USB cable,
such that the physical form factor can be identical to the standard
computer keyboard. Figure 3(a) shows the architecture of the
integrated device, alongside the variation (b) used for testing.

 (a) Integrated System (b) Prototype (for testing)

Figure 3. System Architecture.

1 See https://www.youtube.com/watch?v=SQ5jTaXywuM.

[Accessed: 14/04/2016]

225

Figure 4. ADXL335 Accelerometer in Keyboard Chassis

Figure 5. Arduino USB-MIDI Interface2

Figure 6. Black and White Piano Key Finish

Figure 7. Arduino-based Prototype

2 https://github.com/ddiakopoulos/hiduino

 The device captures location (key / scan code) data using standard
membrane keyboard hardware [2], wherein two plastic layers with
conductive strips are separated by a perforated non-conductive layer,
such that when pressure closes the gap, a circuit is made. Contact
points on each membrane are arranged in a matrix (e.g. one striped
vertically, one horizontally) such that each contact can be localized to
specific rows and columns, identifying individual keys. A layer of
silicon domes is added above the contacts to extend the ‘travel’ of
keys and provide a degree of passive haptic feedback (resistance).
 Finger pressure is detected using an accelerometer, secured to the
interior of the keyboard chassis (Figure 4). While partially decoupled
from the direct impact of individual keys, this arrangement allows a
single sensor to be used, and tests demonstrated a good level of
sensitivity from conducted vibrations. Other sensor types (such
as pressure pads or piezoresistive layers [2]) are also possible,
but the accelerometer was chosen for its low relative cost, ease of
integration and potential for supporting additional degrees of freedom
(e.g. X / Y movement). In the prototype, an Analogue Devices
ADXL335 3-axis accelerometer is affixed to a standard Dell
keyboard exploiting existing space in the chassis. This low-cost (~$1)
sensor has a fixed 10-bit / 3g pressure range, which provided
sufficient sensitivity and noise performance for velocity capture
(when combined with basic DSP: FIR filtering and peak envelope
following), but more sensitive sensors (or averaged multiple sensors,
strategically placed in the housing) could offer improved precision.
 The accelerometer reading alone can be used to support MIDI
Channel Aftertouch functionality, allowing software to respond to
pressure, or integrated with HID keyboard input in software to create
note events with pitch and velocity. To support hardware MIDI Note
On, the USB MIDI component also requires access to the key / scan
code (i.e. pitch / note number). This could be achieved using a
microcontroller unit (MCU) that detects / sniffs the signals from the
keyboard’s hardware to identify pitch, either intercepting the encoded
serial output of the keyboard’s HID chip or scanning the keyboard
matrix directly (without compromising HID functionality).
 For testing, the prototype model uses an Arduino Uno MCU
(Atmel ATmega328P; Figure 4), flashed with USB MIDI firmware
(using HIDUINO), to create a MIDI device that streams Channel
Aftertouch messages, where keyboard HID input is subsequently
used to detect and generate note events in the computer. This requires
additional logic in client software (e.g. the sequencer / DAW) to
support MIDI Note On/Off events from the setup. The code looks for
local maxima in the stream of MIDI Aftertouch messages, which are
married with corresponding key up/down events that the trigger note
events. These events are not synchronous, so data values are buffered
until both pitch and velocity are detected. Moreover, testing showed
that the order of peak pressure and key press events is not guaranteed
– the physical construction of the key mechanism (i.e. haptic
resistance provided by the silicone domes) means certain (e.g. soft)
touches peak in pressure before closing the circuit, whilst other (e.g.
hard) touches peak after. This adds additional complexity to the code,
which is encapsulated in a simple C library extension (single header
file) – but establishes the methods, in portable code, for embedding in
a subsequent integrated hardware device.
 Nonetheless, the prototype’s simplified architecture (Figure 3b) and
software layer means it is not natively supported in existing MIDI
programs. However, this avoids one complication of the dual mode
design, where conventional text entry will generate MIDI notes for
any listening music software (even running in the background). In the
integrated device, this necessitates a toggle for MIDI functionality,
which could be a hardware switch, hardcoded keyboard shortcut, or
one of the existing, seldom-used lock toggles (e.g. Scroll Lock).
Alternatively, to avoid any interference with HID functionality, it
would also be possible to use the accelerometer to detect orientation
or gestures as a method for toggling the mode (or changing other
settings). Nonetheless, in all key functional respects, the prototype
(Figure 7) performs as the final model would.

226

Figure 8. Pressure Sensitivity (top)
and Compensation Map (bottom).

 To emphasize the musical affordances of the device and to help
new users adapt to the virtual piano layout, keys are colour-coded in
white, black, and grey (Figure 8). The prototype model achieves this
by amalgamating interchangeable key caps from two keyboards of
similar model, grey and black, and finishing the piano’s white keys
with gloss enamel spray paint. Grey keys are used for non-musical
input, white and black to mimic the piano. Unpainted, the black keys
retain their original labels, ensuring that visual cues for the less-
familiar top row of symbols and punctuation remain. However, the
gloss finish of the white keys obscures labels for two rows of letters.
In a consumer version, it would likely be necessary to include labels,
though the target user is assumed to have motor skill and knowledge
of basic keyboard layout, enabling a stronger piano aesthetic. The
finished prototype is pictured in Figures 1 and 7.
 With completion of the prototype hardware, the final stage of
development concerned calibrating pressure readings, to account for
the location of the sensor and its relative proximity to key presses
(Figure 8). For keys farther from the sensor, sensitivity is reduced,
requiring an additional scaling factor to normalize the device’s
response to touch across the range of pitches. For such calibration
(and in the absence of a precise method to reproduce exact key
pressures), sample data was collected through a series of structured
manual input sequences (for example, descending musical turns),
wherein multiple readings from different postures, hands, fingering,
and users were averaged to build a generic model of the changing
sensitivity across the keyboard. From this, a map of reciprocal values
was constructed to compensate for the variation in sensitivity.

4. USER EVALUATION
To evaluate interaction and expression using the device, a controlled
ecosystem was developed to support a user study, combining the
prototype hardware with a text-based software pattern sequencer,
designed to provide a minimal music editing UI for testing touch,
expressivity, and performance in mixed-mode (music and computer)
input (see video). Users spent 30-minutes with the device, divided
into four stages: two free play / practice stages to acclimatize subjects
to the technology, respectively with and without velocity-sensitivity;
then two stages of more purposeful composition, creating a short
excerpt of music, similarly with and without velocity-sensitivity. The
software provided a selection of velocity-sensitive, sample-based
voices, including piano, EP, tuned percussion, oboe, flute, cello, and
drum kit. All data input was captured and stored for future analysis.
 Upon completion, subjects completed a survey that quantitatively
probed (using an 11-point Likert scale, scored 0 to 10 or -5 to +5)
their subjective experience of various aspects of using the hardware,
and relevant prior experience of music, computing, and keyboards.
An additional comment section allowed subjects to qualitatively
feedback on their experience. Participants (n=15) were drawn from
the students and staff of UWE’s music technology course, reflecting
a variety of computer music practices and aesthetics. Despite the
relatively small sample size, results (see Figures 9, 10) demonstrated
good consistency, as discussed in the remainder of this section.

Figure 9. Box Plot of User Study Responses (n=15),
including evaluations (left) and comparisons (right).

Figure 10. Dynamic Sensitivity Map
(from user study responses, n=15).

 On scales of 0 to 10, users reported very good precision (x̅=7.33,
σx=.98) in mapping between touch pressure and resulting velocity, as
represented in both the visual notation and audio output. Several
comments highlighted “surprising” and “unexpected” levels of
responsiveness in the keyboard. Consistency (evenness) of touch
across the keyboard similarly scored highly (x̅=8.00, σx=1.46).
 While the sensor is 10-bit (0-1024) and MIDI velocity / aftertouch
encoding 7-bit (0-127), the exact precision – accounting for sensor
and electrical noise – is unknown, but users were able to reliably
capture a minimum of 6 practical dynamics levels (from p to ff) using
the keyboard. This was assessed using a question in which subjects
circled dynamics marks (from ppp to fff), corresponding to those
they felt able to reproduce and distinguish, as shown in Figure 10.
 The results, as well as a number of comments, indicate that very
soft touches were difficult to capture. This is likely due to the
physical key mechanism, where the silicon domes provide sufficient
haptic resistance to create a minimum pressure ‘threshold’ for
triggering a keystroke, combined with the mapping function used in
the code. Through initial testing, a basic 𝑦 = 𝑥 mapping (Figure 11)
was applied to raw sensor readings to open up the range of velocities
produced, enabling more varied and expressive control. While the
results show this non-linear mapping was broadly effective, lower
dynamics map to a very limited range of very low pressures –
notably, also at the extremes of the accelerometer’s stated sensitivity.
To compensate, an alternative mapping is also illustrated in the
figure, integrating a linear section to expand the range yielded by
lower pressures. Initial tests suggests this strategy is effective at
extending response to softer dynamics, but further study is needed to
assess how this impacts the overall feel or ‘touch’ of the keyboard.

Figure 11. Control Mapping Functions,
including original (y) and revised (y’).

227

 Mixed-mode interaction scored reasonable high (x̅=6.07), but with
higher variance (σx=1.98). This category assesses how users are able
to mix musical input (notes) with computer input (symbolic entry,
cursoring, clipboard, playback, program control, etc.). As such, it
depends on computer and keyboard experience, which varied within
the sample. However, comments from more experienced computer
musicians and keyboard users noted benefits when composing via a
single integrated device – that it “focused” or “accelerated” their
interaction. Users also appreciated the facility to easily and quickly
“fine-tune” MIDI-recorded velocities using alphanumeric entry.
 The velocity-sensitive functionality of the device adds significant
musical expressivity to the standard computer keyboard. On a scale
of -5 to +5, comparisons were consistently and overwhelmingly
positive (x̅=+3.67, σx=1.18). Comparisons with specialist music
input devices (MIDI keyboards, controllers, etc.) were less favorable,
though by a narrower margin than expected (x̅=-.64, σx=1.60).
Comments suggest that while the touch and real-time performance
characteristics of the keyboard are inferior, many users recognize a
form of non-realtime, meta-expressive power that arises from the
symbolic and more abstract music editing functionality enabled
through integration with computer functionality (program control,
clipboard use, ad hoc playback) – an “enjoyable”, high-energy,
immersive, and focused way of writing music; rapid and fluid, but
decoupled from ‘live’ musical time (c.f. [10]).
 When asked how easy it might be to integrate the device into their
existing computer music practice, subjects responded positively
(x̅=7.25, σx=1.86). This also translated to a similarly high average
likelihood that subjects would adopt such a device, if available at a
suitable price point ($30-60) (x̅=7.29, σx=2.27). While this project is
not intended as a commercial enterprise, such questions can reveal
factors in the design of new interfaces for musical expression that
facilitate (or inhibit) wider adoption. In this instance, the simple
design adds an affordable and practical level of expressivity to a
generic computer input device, without compromising compatibility
with existing uses. For desktops, it replaces the existing keyboard,
requiring no additional space, and uses driverless USB connectivity
for ‘universal’ compatibility. While less complementary to laptop
setups, survey comments also highlight potential for “portable” use,
similar to existing small form-factor MIDI controllers.
 Finally, a number of comments (as well as verbal feedback) from
participants simply noted how much more “enjoyable” or “fun” the
interaction style was, compared to conventional computer music
methods, such as mouse and keyboard manipulation of sequencers
and DAWS. This correlates with a large number of subjects
continuing to use the system beyond the allotted 30-minute window
of the experiment, and expressions of interest in future development
of the technology.

5. DISCUSSION & FUTURE WORK
The velocity-sensitive computer keyboard described here,
especially in light of user feedback, highlights opportunities for
expressive extensions to ubiquitous computer input devices.
The development of more expressive functionality, benefiting
artistic creativity but using a device optimized for productivity,
demonstrates the potential for new interfaces for expression in
the non-realtime and “offline” modes of notation-mediated
interaction that characterize computer work. To that end, this
paper has explored applications in music editing software, such
as sequencers, trackers, DAWs, and score editors; focusing on
expressive interfaces for composition (plus arrangement and
transcription), rather than live performance – augmented
computer device, rather than augmented instrument. However,
one area of live computer music that may benefit from an
integrated device for both expressive and symbolic control is
live coding: whether the device presented here would help
avoid mode switching between code and controller, or whether
there are more novel applications for pressure-sensitivity (in

code editing itself) is an interesting direction for future work.
Moreover, basic pressure and velocity sensitivity have
applications in many areas of computing and digital creativity,
such as games or expressive text writing [1][2].
 As concerns the device discussed here, testing and user
feedback identify several directions for continued development.
Further improvements in sensitivity, response, and mapping can
be affected through minor refinements of the embedded code
(envelope following, filtering, and other DSP). Accurate testing
could improve calibration, using specialist test equipment to
reproduce precise pressures (available through the university’s
product design department). Other aspects of ‘touch’ relate to
physical characteristics, and alternatives to the basic membrane
/ silicon dome key mechanism can be found in other keyboard
designs that offer softer, quieter keys with a more linear haptic
resistance (e.g. Cherry MX Black mechanical switches, and other
‘quiet key’ keyboards). As previously observed, improved sensor
chips (or combinations) may also offer more sensitivity.
 Using a three-axis accelerometer allows expressivity in two
further dimensions, which can be explored through the existing
prototype hardware. However, while the impact of hitting a key
produced practical readings and resolution (Z-axis), initial tests
of X- and Y-axes showed only minimal fluctuations when a
pressed key was pulled or pushed left/right or up/down. Other
envelope following and signal processing techniques may
improve the utility of these small signals, to add modulation of
other musical properties – and potentially fingering methods
such as those exposed by the SeaBoard [6] or TouchKeys [7]
interfaces. At the same time, an alternative interaction style is
possible, where the user triggers a note via a key with their left
hand and manipulates the entire keyboard with their right,
possibly using the cursor cluster (immediately adjacent to the
sensor) as a grip for lateral and vertical movement. In this way,
the keyboard becomes a form of 2D pitch bend / modulation
wheel. Indeed, this bimanual interaction style fits with postures
observed in computer music interaction (Figure 2), where data
manipulation using alphanumeric keys and navigation using
cursors or mouse are respectively split between the hands.
 The low-cost accelerometer approach is easily adapted to other
keyboard layouts, while alternative form-factors might also be
considered. For performing artists, the laptop is a popular
platform. Laptops with mechanical drives typically feature an
accelerometer (e.g. Apple’s Sudden Motion Sensor) to detect shocks,
used to protect the sensitive hardware. This would enable an elegant
software solution, adding velocity readings to laptop-based music
software without any additional hardware. However, with the advent
of solid-state drives, such sensors are now rare, though an attachable
USB accelerometer could be used; albeit requiring a software layer to
integrate keystrokes and pressure detection, such as that used in the
prototype. Moreover, the presence of accelerometers in most mobile
devices would enable a similar extension of expressivity for input to
touch-based devices, such as tablets and smartphones, which are
increasingly finding new uses in music making and performance.
 Finally, for the next stage of this project; a more challenging
technical milestone will be to realize the integrated hardware device,
using the architecture in Figure 3 (a): offering combined USB HID
and USB MIDI functionality, fully housed within the keyboard
chassis, connected by a single USB cable, and supporting driverless
operation without dependence on client software support. As with the
prototype, existing technologies and cheap components are available
to facilitate such development, but the manufacturing process
becomes significantly more complex and expensive, moving from
prototyping boards to custom PCBs and hardware components. The
currently proposed design combines a Microchip PIC24/PIC32
(16-bit MCU with USB MIDI support and 10-bit ADCs) and
USB2512B (2-Port USB Hub IC). Additional funding (possibly
crowd-sourced) is being sought to continue the project.

228

 One of the principle objectives of this research is to explore
unified interfaces for computer music that help maintain focus
and workflow in software-based composition and production
processes, integrating direct, low-level musical input (live
performance) with more abstract, high-level computer-based
editing (shortcuts, clipboard, ad-hoc playback, arranging, etc.).
Identifying and addressing usability issues in existing packages
(i.e. sequencers and DAWs) such as focus, device, and context-
switching, delayed or deferred edit feedback, and UI or notation
inconsistencies has been a focus of previous research on flow in
computer music [8-11], which it is hoped the development of
hardware input devices might inform. To this end, a larger scale
deployment and extended, longitudinal study of an integrated,
end user-ready edition of the device – following different users,
applications, environments, and workflows over an extended
period – represents a promising direction for future study.

6. SUPPORTING VIDEO
A video presenting expressivity tests and demonstrating mixed-
mode interaction with the device, within a computer music
scenario, is available from: http://revisit.info/nime2016.

7. ACKNOWLEDGEMENTS
This research was funded by UWE’s Department of Computer
Science and Creative Technology. Many thanks also for the
enthusiastic participation and ongoing feedback of students and
staff who took part in the user study.

8. REFERENCES
[1] Buxton, W. Multi-touch systems that I have known and loved.

Microsoft Research. 2014. Available at:
http://www.billbuxton.com/multitouchOverview.html.

[2] P.H. Dietz, B. Eidelson, J. Westhues, and S. Bathiche. A
Practical Pressure Sensitive Computer Keyboard, In
Proceedings of UIST’09, 2009, 55-58.

[3] D C. Dobrian and D. Koppelman. The ’E’ in NIME: Musical
Expression with New Computer Interfaces. In Proceedings of
NIME’06 (Paris, France, June 4-8), 2006.

[4] A. Feit and A. Oulasvirta. PianoText: Redesigning the Piano
Keyboard for Text Entry. In Proc. of the ACM conference on
Designing Interactive Systems 2014 (DIS’14) (Vancouver,
Canada, June 21-25, 2014), ACM Press, New York, NY, 2014.

[5] P.N. Juslin, A. Friberg, E.Schoonderwaldt, and J. Karlsson.
Feedback Learning of Musical Expressivity. In Musical
Excellence (ed. A. Williamon), OUP, 2004, 247-270.

[6] R. Lamb and A. Robertson. Seaboard: a new piano keyboard-
related interface combining discrete and continuous control. In
Proc. of NIME’11 (Oslo, Norway, May 30 - June 1), 2011.

[7] A. McPherson. TouchKeys: capacitive multi-touch sensing on a
physical keyboard. In Proceedings of NIME 2012 (University
of Michigan, Ann Arbor, MI, US, May 21-23.

[8] C. Nash. Supporting Virtuosity and Flow in Computer
Music, PhD Thesis, University of Cambridge, 2011.

[9] C. Nash and A. Blackwell. Tracking Virtuosity and Flow
in Computer Music. Proceedings of ICMC 2011 (Uni. of
Huddersfield, UK, July 21-August 5), 2011, 575–82.

[10] C. Nash and A. Blackwell. Liveness and Flow in Notation
Use. In Proceedings of NIME 2012 (University of
Michigan, Ann Arbor, MI, US, May 21-23), 2012, 28–33.

[11] C. Nash and A. Blackwell. Flow of Creative Interaction with
Digital Notations. In Oxford Handbook of Interactive Audio
(eds. K. Collins, B. Kapralos, and H. Tessler), Oxford
University Press, NY. 2014, 387-404.

[12] M. Smyth, A. Collins, P. Morris, and P. Levy. Cognition in
Action (2nd Edition). Lawrence Erlbaum Associates, 1994.

229

