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Application of Generative Autoencoder in de Novo
Molecular Design
Thomas Blaschke,*[a, b] Marcus Olivecrona,[a] Ola Engkvist,[a] Jürgen Bajorath,[b] and Hongming Chen*[a]

Abstract: A major challenge in computational chemistry is
the generation of novel molecular structures with desirable
pharmacological and physiochemical properties. In this
work, we investigate the potential use of autoencoder, a
deep learning methodology, for de novo molecular design.
Various generative autoencoders were used to map mole-
cule structures into a continuous latent space and vice versa
and their performance as structure generator was assessed.

Our results show that the latent space preserves chemical
similarity principle and thus can be used for the generation
of analogue structures. Furthermore, the latent space
created by autoencoders were searched systematically to
generate novel compounds with predicted activity against
dopamine receptor type 2 and compounds similar to known
active compounds not included in the trainings set were
identified.

Keywords: Autoencoder · chemoinformatics · de novo molecular design · deep learning · inverse QSAR

1 Introduction

Over the last decade, deep learning (DL) technology has
been successfully applied in various areas of artificial
intelligence research. DL has evolved from artificial neural
networks and has often shown superior performance
compared to other machine learning algorithms in areas
such as image or voice recognition and natural language
processing. Recently, DL has been successfully applied to
different research areas in drug discovery.

One notable application has been the use of a fully
connected deep neural network (DNN) to build quantitative
structure-activity relationship (QSAR) models that have
outperformed some commonly used machine learning
algorithms.[1] Another interesting application of DL is train-
ing various types of neural networks to build generative
models for generating novel structures. Segler et al.[2] and
Yuan et al.[3] applied a recurrent neural network (RNN) to a
large number of chemical structures represented as SMILES
strings to obtain generative models which learn the
probability distribution of characters in a SMILES string. The
resulting models were capable of generating new strings
which correspond to chemically meaningful SMILES.

Jaques et al.[4] combined RNN with a reinforcement
learning method, deep Q-learning, to train models that can
generate molecular structures with desirable property
values for cLogP and quantitative estimate of drug-likeness
(QED).[5] Olivecrona et al.[6] proposed a policy based re-
inforcement learning approach to tune the pretrained RNNs
for generating molecules with user defined properties. The
method has been successfully applied on inverse QSAR
problems, i. e. generating new structures under the con-
straint of a QSAR model. Such generative DL approach
allows addressing the inverse-QSAR problem more directly.
The predominant inverse-QSAR approach consists of three

steps.[7][8] First, a forward QSAR model is built to fit biological
activity with chemical descriptors. Second, given the
forward QSAR function an inverse-mapping function is
defined to map the activity to chemical descriptor values,
so that a set of molecular descriptor values resulting high
activity can be obtained. Third, the obtained molecular
descriptor values are then translated into new compound
structures. How to define an explicit inverse-mapping
function transforming descriptor value to chemical structure
is a major challenge for such inverse-QSAR methods. Miyao
et al. applied Gaussian mixture models to address inverse-
QSAR problem, but their method can only be applied to
linear regression or multiple linear regression QSAR models
for the inverse-mapping.[9] This will largely limit the usage of
the method, since most popular machine learning models
are non-linear.[10] To address this issue, Miyao et al. recently
applied differential evolution to obtain optimized molecular
descriptors for non-linear QSAR models,[11] though, the
identification of novel compounds using virtual screening
remained challenging. In contrast, the generative DL
approach allows to directly generate desirable (determined
by the forward QSAR models) molecules, without the need
of using an explicit inverse-mapping function.
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Autoencoder (AE) is a type of NN for unsupervised
learning. It first encodes an input variable into latent
variables and then decodes the latent variables to repro-
duce the input information. Gómez-Bombarelli et al. pro-
poses a novel method[12] using variational autoencoder
(VAE) to generate chemical structures. After training the VAE
on a large number of compound structures, the resulting
latent space becomes a generative model. Sampling on the
latent vectors results in chemical structures. By navigating
in the latent space one could specifically search for latent
points with desired chemical properties. However, a
targeted search was difficult in the case study of designing
organic light-emitting diodes.[12] Based upon Gómez-Bom-
barelli’s work, Kadurin et al.[13] used VAE as a descriptor
generator and coupled it with a generative adversarial
network (GAN),[14] a special NN architecture, to identify new
structures that were proposed to have desired activities.

In our current study, we have constructed various types
of AE models and compared their performance in structure
generation. Furthermore, Bayesian optimization was used to
search for new compounds in the latent space guided by
user defined target functions. This strategy was used
successfully to generate new structures that were predicted
to be active by a QSAR model.

2 Methods

2.1 Neural Networks

In this study we combined different NN architectures to
generate molecular structures. This section provides some
background information for all relevant architectures used
in this work.

2.1.1 Autoencoder

Autoencoder (AE) is a NN architecture for unsupervised
feature extraction. A basic AE consists of an encoder, a
decoder and a distance function (Figure 1). The encoder is a
NN that maps high-dimensional input data to a lower
dimensional representation (latent space), whereas the
decoder is a NN that reconstructs the original input given

the lower dimensional representation. A distance function
quantifies the information loss derived from the deviation
between the original input and the reconstructed output.
The goal of the training is to minimize the information loss
of the reconstruction. Because target labels for the
reconstruction are generated from the input data, the AE is
regarded as self-supervised.

The input mapping to and from a lower dimensional
space introduces an information bottleneck so that the AE
is forced to extract informative features from the high
dimensional input. The most common dimensionality
reduction technique introducing an information bottleneck
is principal component analysis (PCA).[15] In fact, the basic
AE version is sometimes referred as non-linear PCA.[16] The
dimensionality reduction performance and the usefulness of
the extracted features depend on the input data and the
actual architecture of the encoder and decoder NN. It has
been shown that recurrent and convolutional NNs can
successfully generate text sequences and molecular struc-
tures.[12, 17]

2.1.2 Recurrent Neural Networks

Recurrent NNs (RNNs) are popular architectures with high
potential for natural language processing.[18] The idea
behind RNNs is to apply the same function for each element
of sequential data, with the output being depended on the
result of the previous step. RNN computations can be
rationalized using the concept of a cell. For any given step t,
the cell t is a result of the previous cell t�1 and the current
input x. The content of cell t will determine both the output
of the current step and influence the next cell state. This
enables the network to memorize past events and model
data according to previous inputs. This concept implicitly
assumes that the most recent events are more important
than early events since recent events influence the content
of the cell the most. However, this might not be an
appropriate assumption for all data sequences, therefore,
Hochreiter et al.[19] introduced the Long-Short-Term Memory
cell. Through a more controlled flow of information, this cell
type can decide which previous information to retain and
which to discard. The Gated Recurrent Unit (GRU) is a
simplified implementation of the Long-Short-Term Memory

Figure 1. An autoencoder is a coordinated pair of NNs. The encoder converts a high- dimensional input, e. g. a molecule, into a continuous
numerical representation with fixed dimensionality. The decoder reconstructs the input from the numerical representation.
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architecture and achieves much of the same effect at a
reduced computational cost.[20]

2.1.3 Convolutional Neural Networks

Convolutional NNs (CNNs) are common neural NNs for
pattern recognition in images or feature extraction from
text.[21] A CNN consists of an input and output layer as well
as multiple hidden layers. The hidden layers are convolu-
tional, pooling or fully connected. Details of different layers
in CNN can be found in Simard et al.[22] The key feature of a
CNN is introducing of convolution layers. In each layer, the
same convolution operation is applied on each input data
which is then replaced by a linear combination of its
neighbours. The parameters of the linear combination are
referred as filter or kernel, whereas the number of
considered neighbours is referred as filter size or kernel size.
The output of applying one filter onto the input information
is called a feature map. Applying non-linearity such as
sigmoid or scaled exponential linear units (SELU)[23] on a
feature map allows to model nonlinear data. Furthermore,
applying another CNN on top of a feature map will allow
one to model features of spatially separated inputs. The
pooling layer is used to reduce the size of feature maps.
After passing through multiple convolution and pooling
layers, the feature maps are concatenated into fully
connected layers where every neuron in neighbouring
layers are all connected to give final output value.

2.2 Implementation Details

2.2.1 Variational Autoencoder

The basic AE described in section 2.1.1 maps a molecule X
into a continuous space z and the decoder reconstructs the
molecule from its continuous representation. However,
using this basic definition, the model is not enforced to
learn a generalized numeric representation of the mole-
cules. Due to the large amount of parameters of the NNs
and the comparatively small amount of training data, the
AE will likely learn some explicit mapping of the training set

and thus the decoder will not be able to decode arbitrary
points in the continuous space. To avoid learning an explicit
mapping, we restrict the model to learn a latent variable
from its input data.

The variational autoencoder (VAE)[24] provides a formula-
tion in which the continuous representation z is interpreted
as a latent variable in a probabilistic generative model. Let
p zð Þ be the prior distribution imposed on the continuous
representation, pq Xð jzÞ be a probabilistic decoding distribu-
tion and qf zð jXÞ be n probabilistic encoding distribution
(shown in Figure 2). The parameters of pq Xð jzÞ and qf zð jXÞ
can be inferred during the training of the VAE via back-
propagation. During training, the reconstruction error of the
decoder is reduced by maximizing the log-likelihood
pq Xð jzÞ. Simultaneously, the encoder is regularized to
approximate the latent variable distribution p zð Þ by mini-
mizing the Kullback-Leibler divergence DKL qf

� �
z Xj Þjj p zð Þ). If

the prior p zð Þ has to follow a multivariate Gaussian
distribution with zero mean and unit variance, the loss
function can be formulized as:

L ¼ �DKL qf

� �
z Xj ÞjjNð0; IÞÞ þ E½log pq Xð jzÞ� ð1Þ

Our VAE is implemented using the PyTorch package[25]

and follows Gómez-Bombarelli architecture closely.[12] Like
Gómez-Bombarelli et al. we used three CNN layer followed
by two fully connected neural layers as an encoder. Instead
of using rectified linear units[24] SELU[23] was used as non-
linear activation function allowing a faster convergence of
the model. The output of the last encoder layer is
interpreted as mean and variance of a Gaussian distribution.
A random point is sampled using these parameters and
used as input for the decoder.

The decoder employs a fully connected neural layer
followed by three layers of RNNs, built using GRU cells. The
last GRU layer defines the probability distribution over all
possible outputs at each position in the output sequence.
As shown in Figure 3, in the training mode, the input of the
last layer is a concatenation of the output of the previous
layer and token from the target SMILES (in training set),
while in the generation mode, the input of the last layer is a
concatenation of the output of the previous layer and the
sampled token from the previous GRU cell (Figure 3). This

Figure 2. Encoding and decoding of a molecule using a variational autoencoder. The encoder converts a molecule structure into a Gaussian
distribution deterministically. Given the generated mean and variance, a new point is sampled and fed into the decoder. The decoder then
generates a new molecule from the sampled point.
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method is called teachers forcing[26] and is known to
increase the performance on long text generation tasks.[27]

For comparison, we also trained a VAE model without
teachers forcing, where the input of last GRU layer was not
influenced by any previous token but only depended on
the output of the previous GRU layer in both training and
generation mode.

2.2.2 Adversarial Autoencoder

The VAE assumes a simplistic prior, i. e. a Gaussian
distribution, on the latent representation to keep the
Kullback-Leibler divergence mathematically computable. To

evaluate alternative priors we implemented a modified VAE
architecture known as adversarial autoencoder (AAE).[28] The
major difference between the AAE and VAE is that an
additional discriminator NN is added into the architecture
to force the output of encoder qf zð jXÞ to follow a specific
target distribution, while at the same time the reconstruc-
tion error of decoder is minimized. Figure 4 illustrates the
workflow of the AAE model.

To regularize the encoder posterior qf zð jXÞ to match a
specific prior p zð Þ, a discriminator D was introduced. It
consists of three fully connected NN layers. The first layer
applies only an affine matrix transformation, whereas the
second layer additionally applies SELU as non-linear
activation. The third layer composes an affine matrix trans-

Figure 3. Sequence generation using teachers forcing. The last decoder trained with teachers forcing receives two inputs: the output of the
previous layer and a character from the previous time step. In the training mode, the previous character is equal to the corresponding
character from the input sequence, regardless of the probability output. During the generation mode the decoder samples at each time step
a new character based on the output probability and uses this as input for the next time step.

Figure 4. Learning process of an adversarial autoencoder. The encoder converts a molecule directly into a numerical representation. During
training the output is not only fed into the decoder but also into a discriminator. The discriminator is trained to distinguish between the
output of the encoder and a randomly sampled point from a prior distribution. The encoder is trained to “fool” the discriminator by
mimicking the target prior distribution.
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formation followed by a sigmoid function. The discriminator
D receives the output z of the encoder and randomly
sampled points z0 from the target prior as input. The whole
training process was done in three sequential steps:
1. The encoder and decoder were trained simultaneously

to minimize the reconstruction loss of the decoder:

Lpq
¼ E log pq½ ðX zj Þ� ð2Þ

2. The discriminator NN D was then trained to correctly
distinguish the true input signals z0 generated from
target distribution from the false signals z generated by
the encoder by minimizing the loss function:

LD ¼ �ðlog D z
0� �� �
þ log 1� D zð Þð ÞÞ ð3Þ

3. In the end, the encoder NN was trained to fool the
discriminator by minimizing another loss function:

Lqf
¼ �log Dð ðzÞÞ ð4Þ

The three steps were iteratively run for each batch until
the reconstruction loss function Lpq

was converged. For all
AAE models, teachers forcing scheme was always used for
the decoder NN.

2.2.3 Bayesian Optimization of Molecules

To search for molecules with desired properties in latent space
Bayesian optimization (BO) was implemented using the
GPyOpt package.[29] Here the score estimating the probability
of being active against a specific target was used as the
objective function and it was maximized during the BO.

Gaussian process (GP) models[30] were trained with 100
starting points to predict the score of each molecule from
the latent space. A new point was then selected by
sequentially maximizing the expected improvement acquis-
ition[31] based on the GP model. The new data point was
transformed into a corresponding SMILES strings[32] using
the above mentioned decoder network and scored accord-
ingly. The new latent point was added to the GP model as
an additional point with associated score. The process was
repeated 500 iterations to search for optimal solutions.

2.2.4 Tokenizing SMILES and Generating New SMILES

A SMILES string represents a molecule as a sequence of
characters corresponding to atoms as well as special
characters denoting opening and closure of rings and
branches. The SMILES string is, in most cases, tokenized
based on single characters, except for atom types which
comprises two characters such as ”Cl” and ”Br”, where they
are considered as one token. This method of tokenization
resulted in 35 tokens present in the training data. The

SMILES were canonicalized using RDKit[33] and encoded up
to a maximum length of 120 token. Shorter SMILES were
padded with spaces at the end to the same length. The
sequence of token is converted into a one-hot representa-
tion and used as input for the AE. Figure 5 illustrates the
tokenization and the one-hot encoding.

Once an AE is trained, the decoder is used to generate
new SMILES from arbitrary points of the latent space. Because
the output of last layer of the decoder is a probability
distribution over all possible tokens, the output token at each
step was sampled 500 times. Thereby, we obtained 500
sequences containing 120 tokens for each latent point. The
sequence of tokens was then transformed into a SMILES string
and its validity was checked using RDKit. The most frequently
sampled valid SMILES was assigned as the final output to the
corresponding latent point.

2.2.5 Training of AE Models

Various AE models were trained on structures taken from
ChEMBL version 22.[34] The SMILES were canonicalized using
RDKit and the stereochemistry information was removed for
simplicity. We omitted all structures with less than 10 heavy
atoms and filtered out structures that had more than
120 tokens (see Section 2.2.4). Additionally, all compounds
reported to be active against the dopamine type 2 receptor
(DRD2) were removed from the set. The final set contained
approx. 1.3 million unique compounds, from which we use
used 1.2 million compounds as training set and the
remaining 162422 compounds as a validation set.

Figure 5. Different representations of 4-(bromomethyl)-1H-pyrazole.
Exemplary generation of the one-hot representation derived from
the SMILES. For simplicity only a reduced vocabulary is shown here,
while in practice a larger vocabulary that covers all tokens present
in the training data is used.
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All AE models were trained to map to a 56-dimensional
latent space. Mini-batch size of 500, a learning rate of 3.1 3

10�4 and stochastic gradient optimization method ADAM[35]

were used to train all models until convergence.

2.2.6 DRD2 Activity Model

A crucial objective for de novo molecule design is to
generate molecules having a high probability of being
active against a given biological target. In current study,
DRD2 was chosen as the target, and the same data set and
activity model generated in our previous study[6] were used
here. The data set was extracted from ExCAPE-DB[36] and
contained 7218 actives (pIC50>5) and 343204 inactives
(pIC50<5). A support vector machine (SVM) classification
model with Gaussian kernel was built using Sci-Kit Learn[37]

on the DRD2 training set using the extended connectivity
fingerprint with a diameter of 6 (ECFP6).[38]

3 Results and Discussion

In this work, we tried to address three questions: First, if
compounds can be mapped into a continuous latent space
and subsequently reconstructed by autoencoder NN?
Second, if the latent space preserves chemical similarity
principles? Third, if the latent space encoding chemical
structures can be used to search and optimize structures
with respect to some complex properties such as predicted
biological activity?

In current study we trained and compared four different
AE types: A variational autoencoder which does not use
teachers forcing (named as NoTeacher VAE), a variational
autoencoder which utilize teachers forcing (named as
Teacher VAE) and two adversarial autoencoder where the
encoder was trained to follow either a Gaussian or a
Uniform distribution (named Gauss AAE and Uniform AAE).

3.1 Structure Generation

The encoder and decoder of the AE model were trained
simultaneously on the training set by minimizing the
character reconstruction error of the input SMILES se-

quence. Once the models were trained, the validation set
was first mapped into the latent space via the encoder NN
and the structures were reconstructed through the decoder
(i. e. generation mode). To evaluate the performance of the
autoencoder, the reconstruction accuracy (percentage of
position-to-position correct character) and percentage of
valid SMILES string (according to RDKit SMILES definition) of
whole validation set were examined.

The results are shown in Table 1. All methods yield good
performance on character reconstruction of the SMILES
sequence in the training mode and at least 95 % of all
characters are correct in a reconstructed SMILES string, where-
as all teachers forcing methods display a minor improved
accuracy of about 1–2 % compared to NoTeacher VAE. As to
the generation mode, all teachers forcing based models show
decreased accuracy. This is not surprising since the information
of a wrongly sampled character can propagate through the
remaining sequence generation and influences the next steps.
Both AAE methods achieved higher accuracy than the Teacher
VAE, indicating that the decoder for these method depends
more on the information from the latent space than on the
previously generated character.

Interestingly teacher forcing based models demonstrate
much higher percentage of valid SMILES when compared to
NoTeacher VAE model, although the NoTeacher VAE method
has higher character reconstruction accuracy. It means the
reconstruction errors in NoTeacher VAE model are more
likely to result in invalid SMILES. Browsing these invalid
SMILES reveals that the NoTeacher VAE model is often not
able to generate matching pairs of the branching characters
“(” and “)” or ring symbols like “1” as exemplified in Table 2.
Losing these ring forming and branching information makes
it impossible for the NoTeacher VAE model to adapt its
remaining sequence generation to remedy the errors.

The teacher forcing containing AEs produce a signifi-
cantly higher fraction of valid SMILES. They finish more
often with a syntactically correct SMILES, as the information
about the previously generated character influences the
next generation steps. This allows the model to learn the
syntax of the SMILES and thus have better chance to
generate correct sequence. Their lower reconstruction
accuracy in generation mode, is due to the fact that the
generator must continue to generate a sequence under the
condition of a previously incorrectly sampled character and
thus the error propagates through the remaining sequence

Table 1. Reconstruction accuracy for the different AE models.

Model Average character reconstruction %
in training set
(training mode)

Average character reconstruction %
in validation set
(generation mode)

Valid SMILES %
in validation set
(generation mode)

NoTeacher VAE 96.8 96.3 19.3
Teacher VAE 97.4 86.2 77.6
Gauss AAE 98.2 89.0 77.4
Uniform AAE 98.9 88.5 78.3
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generation process and create additional errors. Both
adversarial models show a slightly higher character recon-
struction of the validation set than the Teacher VAE.

3.2 Does the Latent Space Preserve the Similarity
Principle?

To use generative AE in a de novo molecule design task, the
latent space must preserve the similarity principle, i. e. the
more similar structures are, the closer they must be
positioned in latent space. When the similarity principle is
preserved in latent space, searching for new structures
based on a query structure becomes feasible.

A known drug, Celecoxib, was chosen as an example for
validating the similarity principle in latent space. It was first
mapped into latent spaces generated by various AE models
and then chemical structures were sampled from the latent
vectors. Figure 6 shows the structures generated from the
latent vector of Celecoxib for different AE models. AE

generated many analogues to Celecoxib that often only
differed by a single atom.

To investigate if the similarity principle is also applicable
over a larger area, we gradually increased the distance
between the random latent vectors and Celecoxib from 0 to
8 with a step size of 0.1 steps. At each distance bin we
sampled 10 random points and generated 500 sequences
from each points, resulting in 5000 reconstruction attempts
at each distance bin. The median ECFP6 Tanimoto similarity
of all valid structures and Celecoxib was calculated. The
results are shown in Figure 7a and demonstrate that
compounds with decreasing similarity to Celecoxib gener-
ally have larger distances to Celecoxib in all four different
latent spaces. This clearly indicates that the similarity
principle is reserved in the surrounding area of Celecoxib
making it possible to carry out similarity searches in the
latent space. Figure 7b shows the relationship between the
proportion of valid SMILES and the distance to Celecoxib in
latent spaces. Uniform AAE has higher fraction of valid
SMILES compared to other models. NoTeacher VAE has a
very low fraction of valid SMILES at distance larger than 2.
This may explain its much steeper similarity curve in
Figure 7a compared to other models.

Celecoxib and many of its close analogues are found in
the ChEMBL training set used to derive the AE models. An
interesting question is whether we can maintain the smooth
latent space around Celecoxib when these structures are
excluded from the training set? To investigate this question, all
analogues with a feature class fingerprint of diameter 4
(FCFP4)[38] Tanimoto similarity to Celecoxib larger than 0.5
(1788 molecules in total) are removed from the training set
and new models are trained. The same computational process
is repeated and the results are shown in Figure 8.

Again Celecoxib and close analogues can be successfully
reconstructed for all models at very close distance (less than
1) to Celecoxib in the latent space. In NoTeacher VAE and
the Teacher VAE models, when the distance to Celecoxib is
larger than 4, the fraction of valid SMILES is significantly
lower compared to the Gauss and Uniform AAE models.
Especially for the Uniform AAE model (shown in Figure 8b)
at a Euclidean distance of 4, more than 30 % of the
generated structures are valid SMILES. At distance of 6, the
percentage of valid SMILES for the Teacher VAE is reduced
to 5 % while the Uniform AAE reconstructs ~20 % of valid
SMILES. This highlights that the Uniform AAE generates the
smoothest latent chemical space representation. The high

Table 2. Exemplary sequence reconstruction.

Generated Sequence Valid

Target sequence Cc1ccc2c(c1)sc1c(= O)[nH]c3ccc(C(= O)NCCCN(C)C)cc3c12
NoTeacher VAE Cc1ccc2cnc1)sc1c(= O)[nH]c3ccc(C(= O)NCCCN(C)C)c33c12 No
Teacher VAE Cc1ccc2c(c1)sc1c(= O)[nH]c3ccc(C(= O)NCCN(C)C)cc3c12 Yes
Gauss AAE Cc1ccc2c(c1)sc1c(= O)[nH]c3ccc(C(= O)NCCCN(C)C)cc3c12 Yes
Uniform AAE Cc1ccc2c(c1)sc1c(= O)[nH]c3ccc(C(= O)NCCCN(C)C)cc3c12 Yes

Figure 6. Sampled structures at the latent vector corresponding to
Celecoxib. The structures are sorted by the relative generation
frequencies in descending order from left to right.
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fraction of valid SMILES is useful for searching structures in
latent space since non-decodable points in latent space
make the optimization very difficult.

3.3 Target-Activity Guided Structure Generation

Given the high fraction of valid SMILES and smooth latent
space for the Uniform AAE even in the case where
Celecoxib is excluded from the training set, an interesting
question is if we can search for novel compounds that are
predicted to be active against a specific biological target.
This task can be understood as an inverse-QSAR problem
where one attempts to identify new compound predicted
to be active by a QSAR model. We choose the DRD2 as the
target using the same SVM model as above. The model is

based on the ECFP6 fingerprint and the output of the SVM
classifier is the probability of activity. The score for the
Bayesian optimization is defined as follows:

S zð Þ ¼
average Pactive for all acitve compounds

average Pactive for all inactives if there are no active compounds

8
<

:

Here we classify each compound with Pactive>0.5 as
active.

During the optimization the model tends to generate
structures with large macrocycles with ring sizes larger than
eight atoms. This is consistent with the findings reported by
Gómez-Bombarelli et al.[12] Such large macrocycles generally
have low synthetic feasibility. Thus, we include an explicit

Figure 7. (a) Chemical similarity (Tanimoto, ECFP6) of generated structures to Celecoxib in relation to the distance in the latent space. (b)
Fraction of valid SMILES generated during the reconstruction

Figure 8. Results without Celecoxib in trainings set. (a) Chemical similarity (Tanimoto, ECFP6) of generated structures to Celecoxib in relation
to the distance in the latent space. (b) Fraction of valid SMILES generated during the reconstruction.
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filter to remove all generated structures with ring size larger
than eight.

The BO method is used as the search engine to identify
solutions with maximal scores. The BO search begins at
random starting points and is repeated 80 times to collect
multiple latent points with Pactive larger than 0.5. Similar
results are obtained in each run. The result of a representa-
tive DRD2 search is shown in Figure 9. The BO algorithm
constantly finds structures with high Pactive values. Low score
values correspond to points at which no valid SMILES are
generated or only structures with low activity scores. In
total, 369591 compounds are sampled from BO solutions
with an average Pactive larger than 0.95 and 11.5 % of them
have an ECFP6 Tanimoto similarity to the nearest validated
active of larger than 0.35. Figure 10 shows some exemplary

compounds with a high Pactive value compared to nearest
neighbours of actives. The generated compounds are
predicted to be highly active (Pactive>0.99) and share mostly
the same chemical scaffold with the validated actives.
However, the Uniform AAE model does not fully reproduce
known actives.

The relationship between the probability of finding
active compounds (Pactive>0.5) and score values at the
latent point is shown in Figure 11. At latent points with
higher score, there is a higher probability of finding
compounds predicted to be active by the SVM model. For
example, sampling at random points only yields a proba-
bility of 0.1 % to find active compounds while sampling at
points with a score between 0.9 and 1.0 has a 19 %
probability. This indicates that the BO algorithm can
efficiently search through latent space generated by the
Uniform AAE model to identify novel active compounds
guided by a QSAR model.

4 Conclusion

In our current study, we introduce generative adversarial
autoencoder NN and applied them to inverse QSAR to
generate novel chemical structures. To our knowledge,
adversarial autoencoder has neither been applied to
structure generation nor inverse QSAR. Unlike other inverse
QSAR methods that rely on back-mapping of descriptors to
chemical structures, our method utilizes the latent space
based generative model to construct novel structures under
the guidance of a QSAR model.

Four different AE architectures are explored for structure
generation. The results indicate that sequence generation
performance for novel compounds relies not only on the
decoder architecture but also on the distribution of latent
vectors of the encoder. The fraction of valid structures is

Figure 9. Searching for DRD2 active compounds using the Uniform
AAE. The first 100 iterations are randomly sampled points while the
next 500 iterations are determined by Bayesian optimization.

Figure 10. Generated structures from BO compared to the nearest neighbour from the set of validated actives. The validated actives were
not present in the training set of the autoencoder. The Tanimoto similarity is calculated using the ECFP6 fingerprint.
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significantly improved for architectures using teachers
forcing. The autoencoder model (Uniform AAE) imposing a
uniform distribution onto the latent vectors yields the
largest fraction of valid structures. AE generated latent
space preserves the similarity principle locally in latent
space by investigating the similarity to a query structure
such as Celecoxib. Furthermore, BO is applied to search for
structures predicted to be active against DRD2 by a QSAR
model. Our results shows that novel structures predicted to
be active are identified by the BO search and this indicates
that AE is a useful approach for tackling inverse QSAR
problems.
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