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Abstract—Aircraft trajectory prediction (TP) is a challenging 

and inherently data-driven time-series modeling problem. 

Adding annotation parameters further increases the complexity 

of the search space, especially when ‘blind’ optimization 

algorithms are employed. In this paper, flight plans, localized 

weather and aircraft properties are introduced as trajectory 

annotations (or semantics), which enable modeling in a space 

higher than the typical 4-D spatio-temporal domain. A two-phase 

hybrid approach is employed for the core TP task: (a) clustering 

using properly designed semantic-aware similarity functions as 

distance metrics; and (b) a hidden Markov model (HMM) for 

each cluster, using non-uniform graph-based spatial grid and 

exploiting flight plans as constraints for a parametric 

probabilistic model for the emissions. The proposed method is 

applied in real radar tracks and weather data for a one-month 

dataset of flights in Spanish airspace. Using parametric 

Gaussians as the base for the emissions model and confidence 

interval estimations for the associated errors, the proposed 

method exhibits exceptionally low HMM complexity and per-

waypoint prediction accuracy of a few hundred meters compared 

with submitted flight plans. 

I. INTRODUCTION 

The increasing use of portable devices, such as navigation 

systems, and the wide range of location-aware applications 

has led to a huge amount of mobility data being produced 

daily. As a result, a plethora of research issues has emerged in 

order to manage or analyze such data. One of the most 

challenging data analytics tasks is to transform data to 

actionable knowledge by means of exploiting historical 

mobility patterns in order to gauge what the moving entities 

may do in the future [1] [2] [3]. 
The problem of predictive analytics over mobility data in 

the aviation domain involves applications where aircrafts are 

traced in real-time in order to compute e.g. short- or long-term 

predictions. Short-term prediction, which is time-critical and 

asks for immediate response, facilitates the efficient planning, 

management, and control procedures, while assessing traffic 

conditions in the air transportation field. The latter is 

extremely important as safety, credibility and cost are critical 

and a decision should be taken by considering adversarial to 

the environment conditions in order to act immediately. On 

the other hand, long-term prediction enhances current plans to 

achieve cost efficiency or, when contextual information is 

provided (e.g., weather conditions), to ensure public safety. In 
the future of the Air Traffic Management (ATM), trajectories 

will be used as the core component of many procedures [4]. 

Recently, there has been plenty of work on location and 

trajectory prediction in the mobility, and especially in the 

aviation domain. Swierstra and Green [5] provide a system 

engineering approach for investigating important design issues 

and tradeoffs, such as the balance between TP accuracy and 

computational speed. Regarding en route climb TP, one of the 

major aspects of ATM decision support tools, Coppenbarger 

[6] discusses the exploitation of real-time aircraft data, such as 

aircraft state, aircraft performance, pilot intent and 
atmospheric data for improving ground-based TP. The 

problem of climb TP is also discussed in Thipphavong et al. 

[7], as it constitutes a very important challenge in ATM. In 

that work, an algorithm that dynamically adjusts modeled 

aircraft weights is developed, exploiting the observed track 

data to improve the accuracy of TP for climbing flights. Real-

time evaluation with actual air traffic data shows a significant 

improvement on the prediction of the trajectory altitude, as 

well as the time to reach the top-of-climb.  

Instead of following the typical approach operating on the 

raw data collected from various sensors, in this work we make 
use of semantically enhanced data, which are inferred by some 

enrichment and/or annotation method. This way, raw 

trajectory data is transformed into multidimensional sequences 

(semantic trajectory data) that form a more realistic 

representation model of the complex every-day life; mobility 

of aircrafts belongs to this broad class. 

More specifically, in this paper we define the semantic-

aware variation of the TP problem: in the so-called Future 

Semantic Trajectory Prediction (FSTP) problem, starting from 

a base point, we aim to predict various intermediate 

semantically interesting positions, until a target point or 

region is reached. For instance, given the flight plan submitted 
by an airline for a specific flight, we make a prediction of the 



4-D spatio-temporal flight trajectory from departure to 

destination airport, including its important intermediate 

semantics: ‘top-of-climb’, ‘top-of-descent’, etc. 

Our methodology exploits on clustering and HMM tasks. In 

particular, the merits and contributions of our work are 

summarized as follows: 

 we define the FSTP problem and propose a novel 

clustering and model-based methodology to effectively 

tackle it; 

 we devise a novel HMM-based representation for 

semantic trajectories, for indexing purposes in order to 

effectively and efficiently perform k-NN search in the 

semantic trajectory database; 

 we provide an extensive empirical study over real 

aircraft-related data (radar tracks, flight plans, weather, 

etc.). 

The rest of the paper is organized as follows: Section II 
presents the related work and Section III provides the FSTP 

problem formulation; Section IV presents our framework for 

FSTP purposes; Section V presents our experimental study; 

Section VI provides additional analysis and discussion on the 

results; finally, section VII concludes the paper and points out 

some interesting research directions for future work. 

II. RELATED WORK 

During the last few years, there is a mainstream trend of 

using stochastic models for retrieval, with HMM approach 

being the most popular [8] as it has proved its efficiency in 

modeling a wide range of sequences of observations. In 

general terms, a system is assumed to have the Markovian 
property if its future situations depend only on its current 

situation and not on the old ones. Exhibiting high accuracy in 

modeling sequential data, Markovian assumption has given 

rise to a wide range of extensions of Markov chains. The 

HMM approach models the evolution of a system by a set of 

states and transitions between them, each one accompanied by 

a probability that is typically extracted by analyzing historic 

data. HMMs have been successfully applied in various 

domains, such as speech recognition, music retrieval, human 

activity recognition, consumer pattern recognition and in 

many other domains. Consequently, it is a clear opportunity to 
apply them in the domain of mobility data analysis. 

In the context of trajectory prediction, the flight route and 

all the associated information (weather, semantic data, etc), 

are encoded into discrete values that constitute the HMM 

states; then, the trajectory itself is treated as an evolution of 

transitions between these states, using the raw trajectory data 

of a large set of flights for training, plus spatio-temporal 

constraints (locality) to reduce the dimensionality of the 

problem. Ayhan and Samet [9] introduce a novel stochastic 

approach to aircraft trajectory prediction problem, which 

exploits aircraft trajectories modelled in space and time by 

using a set of spatio-temporal data cubes. They represent 
airspace in 4-D joint data cubes consisting of aircraft’s motion 

parameters (i.e., latitude, longitude, altitude, and time) 

enriched by weather conditions. They use Viterbi algorithm 

[10] to compute the most likely sequence of states derived by 

a HMM, which has been trained over historical surveillance 

and weather conditions data. The algorithm computes the 

maximal probability of the optimal state sequence, which is 

best aligned with the observation sequence of the aircraft 

trajectory. In their experimental study, they demonstrate that 

their methodology efficiently predicts aircraft trajectories by 
comparing the prediction results with the ground truth aligned 

trajectories, with the error being reasonably low for one-hour 

flights (it resides within the boundaries of the highest spatial 

resolution, 8-13 km). In another work by Ayhan and Samet 

[11], the authors investigate the applicability of the HMM for 

TP on only one phase of a flight, specifically the climb after 

takeoff. A stochastic approach such as the HMM can address 

the TP problem by taking environmental uncertainties into 

account and training a model using historical trajectory data 

along with weather observations. In that work, a time series 

clustering algorithm is employed to generate an optimal 

sequence of weather observations, employing k-Nearest 
Neighbors (k-NN) search using Dynamic Time Warping 

(DTW) Euclidean distance. The results show robust 

performance and high TP accuracy, proving that HMM can be 

applied equally well for single-phase prediction, as well as 

complete-flight prediction. 

III. PROBLEM FORMULATION & OVERVIEW 

In this section, we provide preliminary definitions and 

formulate the problem in hand. A list of symbols used in the 

current as well as the sections that follow appears in Table I.  

The (raw) trajectory T of an aircraft is defined as a 4-D 

polyline consisting of a sequence of |T| pairs (pi, ti), i = 0, …, 
|T|–1, where pi is a 3-D point (xi, yi, zi) in the 3-D space and ti 

is a timestamp, assuming linear interpolation between two 

consecutive pairs (pi, ti) and (pi+1, ti+1). T can be partitioned 

into a sequence of (raw) sub-trajectories; formally, a (raw) 

sub-trajectory T’ of a (raw) trajectory T valid in the interval [ti, 

tj], t0  ti < tj  t|T|–1, is defined as the portion of T between 
timestamps ti and tj. Having the above definitions in hand, we 

define their semantic-aware variants. 

Definition 1 (Enriched Point): An enriched point ri 

corresponds to a (raw) pair (pi, ti), and is defined as a triple 

<pi, ti, vi>, where vi is a multi-dimensional vector consisting 

of categorical and/or numerical variables that annotate the 

raw point with associated context data. 

Examples of vi attribute values could be any user-defined 

tag or annotation valid regarding the specific application (e.g. 

consider annotations made by an event recognition module 

that detects the ‘top-of-climb’ or ‘top-of-descent’, etc) or any 

numerical variable that can be attached to pi, such as weather 

information (e.g. temperature, wind speed, humidity, etc). 

Definition 2 (Semantic Trajectory): A semantically 

enriched trajectory R corresponds to a (raw) trajectory T of a 

moving object, which is defined as the sequence of the 

enriched points of T. 
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Given the previous definitions and assuming a historic 

semantic trajectory database (STD), we define the FSTP 

problem as follows. 

Problem 1 (Future Semantic Trajectory Prediction - 

FSTP): Given (i) a STD consisting of semantic trajectories R, 

(ii) a distance function dist() that quantifies the dissimilarity 
between two semantic trajectories, (iii) a –incomplete– 

semantic trajectory <(p0, t0, v0), (p1, t1, v1), …, (pi-1, ti-1, vi-1)> 

of a moving object o, recorded at past i time instances, (iv) a 

(enriched) flight plan F, and (v) a target region G, predict the 

semantic trajectory RF: <(p*
i, ti, v

*
i), (p

*
i+1, ti+1, v

*
i+1), …, (p*, 

t*, v*)>, where p* is located in G, i.e., o’s anticipated 

sequence of enriched points until it reaches G, where RF  
STD and satisfies the following property: 

                                      (1) 

 

TABLE I 

TERMS AND DEFINITIONS 

Term Definition 

(pi, ti) a 3-D point pi = (xi, yi, zi) along with its timestamp ti 

T (T’) a raw trajectory (sub-trajectory, resp.) consisting of a 
set of pairs (pi, ti) 

ri an enriched point corresponding to a (raw) 
timestamped point (pi, ti) 

RF a semantic trajectory consisting of a set of enriched 
points ri 

STD a semantic trajectory database consisting of a set of 
semantic trajectories 

N number of available flight plans & actual routes 
(dataset size)  

FPi flight plan of flight {i}, as a sequence of waypoints 

RTi actual route of flight {i}, as a sequence of waypoints 

SWi semantics of flight {i}, as a sequence of waypoints 

g(.,.) semantic-aware similarity function for comparing two 
enriched trajectories 

dn,m semantic-aware distance between trajectories n and m 
based on g(.,.) 

K number of trajectory clusters 

Ck set of trajectories assigned to cluster k 

Rk medoid, i.e., representative “mean” trajectory for 
cluster k  

Lk length of trajectories in cluster k, i.e., number of 

waypoints in Rk 

θk HMM for cluster k designed based on Rk 

Skt state {t} of θk , i.e., for waypoint {t} of Rk  

Ekt emission {t} of θk, i.e., for waypoint {t} o f Rk 

Ok maximum-likelihood flight plan associated with 
medoid Rk 

μkt mean values of the per-cluster, per-waypoint FP/RT 
deviations  

σkt standard deviations of the per-cluster, per-waypoint 
FP/RT deviations 

errkt half-width of confidence interval for μkt 

qX query flight plan, i.e., input for the query stage  

Hb maximum-likelihood actual route for qX based on of 
θb and Rkb where b is the best-matched cluster (X←b). 

Note that a flight plan announced by an airline is a low-

resolution raw trajectory that consists of the waypoints and 

times that the aircraft is constrained to pass through. Thus, in 

order for a semantic trajectory R to be comparable with a 

flight plan F, the latter should be enriched / annotated, so as to 

encapsulate the same information as the semantic trajectories 
(e.g. weather information should be attached to the 

corresponding waypoints). The annotation of the flight plan is 

performed with exactly the same method as the one followed 

in order for raw aircraft trajectories to be enriched. 

In the following and in order to simplify the presentation, 

we assume that i = 1, in other words we only have 

knowledge of the starting position of the aircraft. Thus, our 

problem is informally described as the task to predict the 

semantic trajectory of a flight between the departure and the 

destination airport, given a corresponding historic database 

of semantic trajectories and a flight plan. Nevertheless, our 

approach is applicable to i > 1 as well. 

IV. THE PROPOSED FSTP FRAMEWORK 

Our approach for addressing the FSTP problem is as 

follows (also schematically illustrated in Fig. 1): we first 

cluster the historic STD by using dist() and for each cluster we 

build a HMM; then, given a flight plan, we probabilistically 

recognize the cluster (through the respective HMM) that F 

matches best. The 2nd step is a classification problem, where 

the set of classes corresponds to the set of cluster identifiers C: 

<C1, C2, …, CK>. More specifically, given an unclassified 

flight plan F and the set           of the HMMs 
representing each cluster (i.e., class), we search for the model 

that maximizes the likelihood of having generated F: 

                    
     (2) 

Interestingly, this problem can be straightforwardly solved 

by applying the Forward algorithm [8]. 

  

 

Fig. 1 The Future Semantic Trajectory Prediction (FSTP) framework 

At the 3rd step, we focus on the cluster that is the most 
probable to find the solution and retrieve the top-k most 

similar semantic trajectories by applying dist() in order to 

reach the final answer. Obviously, this approach is an 

approximate one (i.e. we cannot guarantee that the most 

similar trajectory belongs to the top-k clusters), but our claim 

is that the way we cluster the STD and model each cluster 

with a HMM results in a very accurate solution. Of course, 

this approach provides a significant speedup w.r.t. 

exhaustively searching the entire STD. 
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In the following subsections, we provide details of each 

step of our methodology. 

A. Clustering Semantic Trajectories 

Clustering semantic trajectories implies the partitioning of 

a STD into clusters (groups), so that each cluster contains 

similar semantic trajectories according to a specific similarity 

measure. Two semantic trajectories of aircrafts may be 

considered similar in many ways; they may have common 

departure and/or destination airports; they may fully or partly 

be close to each other throughout the flight, they may be fully 

or partly synchronous, or they may be disjoint in time but with 

similar behavior (e.g. same control operations as these are 

represented by their aircraft intent, etc.). For our task, we 

adopt the SemT-OPTICS approach proposed in [12]. The 

SemT-OPTICS algorithm is driven by the popular OPTICS 
clustering method [13]; it is tuned by the same parameters, 

namely minPts describing the number of elements required to 

form a cluster and eps describing the maximum distance 

(radius) to consider for a sufficiently dense cluster, and its 

outcome is also a reachability plot, upon which we 

automatically extract clusters and outliers using the ξ-

clustering method, originally proposed in [13]. 

For our purposes, the dissimilarity between two enriched 

points is decomposed by two parts, one regarding their spatio-

temporal dissimilarity and another regarding their 

dissimilarity on the semantic components. In particular, we 
adopt an appropriate modification of the function proposed in 

[12], which in its turn is a variant of Edit distance with Real 

Penalty (ERP) [14]: 

Definition 3 (distance between enriched points, Dr): Given 

two enriched points ri and rj, their distance Dr(ri, rj) is defined 

as: 

                                            (2) 
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where diste is the Euclidean distance in the 4-D space (x, y, z, 

t), user-defined weights w1 and w2 = 1 – w1 weight and bring 

into similar scale the spatial vs. the temporal dimension, 

maxEuclideanDistance(STD) is the coverage of the database in 

the 4-D space acting as a normalization factor in [0..1], distv is 

the Jaccard distance of the semantic components, and   

[0..1] is a user-defined parameter that tunes the relative 
importance between the two components.  

In particular for the semantic distance, the part of the vector 

vi consisting of the numerical variables is normalized to 

exclude scaling effects, whereas each categorical variable 

(described by a set of keywords) is transformed to vector of 

weights, the dimensionality of which corresponds to the 

vocabulary of all distinct keywords in the database. Thus, 

each keyword corresponds to a weight that is calculated by 

TF-IDF [15]. Overall, vi is the concatenation of the two 

(numerical and categorical) vectors. As the Jaccard distance 

maps the semantic similarity to the range [0..1], it follows that 

Dr(ri, rj) always results into [0..1].  

Having defined distance Dr between two enriched points, 

distance DR between two semantic trajectories is defined as 

follows: 

Definition 4 (distance between semantic trajectories, DR): 

Given two semantic trajectories Ri and Rj of arbitrary length 

(i.e., arbitrary number of enriched points), their distance 

DR(Ri, Rj) is defined as: 

             

 
 
 

 
                               

                             

                            

 

 
 
 

 
 

 (5) 

where T(Ri) denotes the tail of Ri, namely the enriched points 

of Ri after removing the first enriched point of the i-th 

semantic trajectory (ri,1), and gap is a virtual enriched point 

whose spatio-temporal value is the origin of the 4-D space of 

the entire dataset, while its semantic component corresponds 

to the zero vector. 

The value of the gap element is given in a way similar with 
[14], where it is determined as the first value of the time scale 

for the time series (i.e., typically gap = 0). Following a similar 

approach as in [12], it is trivial to prove that DR is a metric. 

Given the distance    and a corresponding clustering result 

  consisting of K clusters (noise could also be considered as a 

separate cluster), we define the average distance    

       
 of a 

member    of a cluster               from all other 

    members of the same cluster          as: 

   

         
 

   
           

         

 (6) 

The member    which has the minimum average distance in 

cluster    is considered the medoid   
   of cluster   . 

Formally:  

     
               

               (7) 

Thus, each clustering of semantic trajectories can be 
represented by the corresponding cluster medoids. 

B. Model-Based trajectory prediction via HMM 

As already discussed earlier, HMM formulates the 

evolution of a system by a set of states and transitions 

between them, each one accompanied by a probability that is 

typically extracted by analyzing historic data. In the context of 

trajectory prediction, the flight route and all the associated 

information (weather, semantic data, etc.), are encoded into 

discrete values that constitute the HMM states. Then, the 
trajectory itself is treated as an evolution of transitions 

between these states, using the raw trajectory data of a large 

set of flights for training, plus spatio-temporal constraints 

(locality) to reduce the dimensionality of the problem. This 

approach is already being tested for trajectory prediction from 
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raw data and some very recent case studies show that its 

results on real data are very promising (e.g. see [9] [11]).  

Mathematically speaking, a HMM is defined as a doubly 

stochastic process. It represents the joint probability of an 

unobservable (so is called hidden) finite state sequence 

              , where             , and an 

observable emissions sequence               , where 

       is associated to the corresponding   . Formally, a 

HMM is defined by M distinct states, L distinct values that can 

be observed at each state transition, the MxM matrix   
      of transition probabilities, where                 

   with        , and    being the state at time t 
(stationary, first-order Markov chain), the MxL matrix 

          of the probabilities of emissions x at state i, 

where                   , with    being the observed 

value produced by the HMM at time t, and the set        of 

prior state probabilities, where                   . 

Therefore, a HMM θ is specified as a triple θ=       . 

According to this formulation, a HMM is the functional form: 

                       

 

   

         

 

   

 (8) 

As described earlier, the FSTP task involves the modeling 

of the complete trajectory and not just the forecasting of     

future locations for a trajectory of length T. Hence, the entire 

(semantic) trajectory has to be transformed into a discrete-

space domain, in order to be modelled into states and 

emissions sets. Moreover, if the trajectories are organized into 
different groups, e.g. by clustering, a separate HMM is 

associated with each one of these groups.  

In order to apply a HMM-based modeling to already 

clustered semantic trajectories, the following steps are 

performed: 

1. For each semantic trajectory cluster Ck , k = {1, …, K}, a 

HMM θk is trained, i.e., the model parameters         
are estimated for maximum likelihood of the training set 

observation sequences for the corresponding cluster Ck . 

This is the HMM training phase and it is realized by 
applying the Expectation-Maximization (EM) algorithm.  

2. For a new flight plan Q=FP that is used as a query, i.e., a 

prediction of its complete semantic path in the FSTP 

sense, the model likelihood of Q is computed for all K 

possible HMM models, P(Q|θk),      . Then Q is 

assigned to the cluster with the highest HMM likelihood 

according to Eq.(8). This is the HMM evaluation stage. 

The Expectation-Maximization (EM) algorithm [16] used to 

find the local maximum of the HMM likelihood of the state-

transition sequence, consists of two iterative steps: (a) the 

initialization or Expectation step (E-step) and the refinement 
or Maximization step (M-step). Following the procedure 

described in the previous section, the initial estimates for the 

model parameters         are used to specify a HMM, which 

will be the starting point for the E-step. In the M-step the 

model parameters         are adjusted in order to maximize 

the models’ likelihood P(Q|θ). This process is repeated until a 

desired convergence limit is satisfied, i.e., the likelihood of 

the HMM cannot be further improved.  

The Expectation step (E-step) involves estimating two 

terms. The first is the probability of being in state i at time t 

given the observed emissions sequence: 
                     (9) 

The second is the probability that the process rests at state i 

at time t and moves to state j at t+1 given the observed 
emissions sequence is: 

                              (10) 

These terms can be calculated via a dynamic programming 

method known as the forward-backward algorithm, which has 

a complexity of O(J2T). 

In the Maximization step (M-step), based on Eq.(9) and 

Eq.(10), the initial transition probabilities are estimated as: 

   
            

  
        

 
   

            
 
   

 (11) 

In the common case where the observations      are 

normally distributed given     , i.e.,            
       

  , the parameters    and   
  are estimated as: 

   
  

        
 
   

      
 
   

      
  

             
    

   

      
 
   

 (12) 

C. HMM design and parameters 

In order to determine the state transition and the emissions 

probability matrices of the HMM, the set Μ of its hidden 

states and the associations between them have to be 

determined. If the semantic trajectories of N aircrafts belong 

to a certain cluster   , then the set of M hidden states can be 

defined in various ways. In the following, we present three of 

them: 

Exhaustive mapping: If the complexity of the problem is 

low, i.e., the size of all    is small and/or the dimensionality is 
low, then the HMM states can be defined as the union of the 

(distinct) enriched points from all the trajectories within each 

group. 

Maximum-length representative: In this case, the 

representative semantic trajectory denoted as    
  for group    

is defined by selecting the one that contains the maximum 

number of enriched points within this group.  

Cluster medoid: Instead of selecting the member of    

with the maximum length, the group itself is treated as a 

cluster and its medoid is the one that is used as the 

representative. Then, each of its semantic points is translated 
to a separate state, similarly to the maximum-length case. 

However, the medoid is statistically a much better 

representative than the maximum-length one, since it is 

created in terms of density-based optimization and, thus, 

exhibits minimum deviation from all the trajectories it 

represents. This approach has the additional advantage that the 

clusters    can also be discovered via a typical clustering 

process, employing a proper semantic-aware similarity metric 

that separates the original set of trajectories into compact 

groups, essentially making the whole process of designing the 

HMM unsupervised. Apparently, the medoid-based state 



definition is the method adopted in this paper for the HMM 

design. 

Concerning the observation space B of emissions for each 

hidden state of the model, this is much more problem-specific. 

Typically, the emissions are associated with some property or 

output from the system that is modelled by the HMM, in the 
sense that the system shifts between states internally and the 

emissions are the corresponding observations produced with 

every such transition. In other words, an emission is 

associated with some observable result from the state 

transitions, since the states themselves are not observed in a 

HMM. It is common to assume that the HMM emissions 

follow a Gaussian distribution in each state, if the number of 

observations allow such a statistical approximation (typically 

more than 30 unbiased samples). 

The design of the state transitions space A and observation 

space B directly affects the way the corresponding matrices 

are created. At each time step t, an observation is emitted and 
the process can either stay at the same state or shift to another, 

updating the two matrices accordingly. This process is 

followed for every point in the trajectory and for every 

trajectory in group    that is modelled by the θk HMM, 

essentially producing the corresponding cumulative 

probability density matrices    and    (estimated).  

In most cases, the system is assumed to be stationary and, 

thus, the resulting HMM static. This means that all the 
probabilities in Eq.(8) through Eq.(11) become time-

independent and can be approximated by the corresponding 

frequency distributions, provided that both the sizes of each 

trajectory group   , as well as the length of each trajectory 

itself, are large enough to produce statistically significant 

estimates. In practice, this means that each cluster should 

contain at least 30 or more members (trajectories). 

For the final transition matrix A, the transition probabilities 

    are computed as:     
    

     
 , where the sum       is taken 

over all the next-states    . As a result, the probability of 

staying at the same state is     and for the last state in a 

transition sequence it is 1. Similarly for the final emissions 

matrix B, the emission probabilities       are computed by 

dividing the number of observed emission x when arriving at 

state i by the total number of observed emissions for this state. 

If there are only                  distinct emission 

values in the observation set, then           
    

     
, where 

the sum       is taken over all the emissions    . As 

described above, the corresponding probability density 

function can be approximated in continuous form by assuming 

a Gaussian as in Eq.(12), in which case       is defined by the 

closed-form analytical formula for normal distribution.  

Finally, for the initial state probabilities            
 , matrix    is used again as for A, in order to produce relative 

frequency estimations. In other words:    
     

      
 , where the 

sum       is taken over all the next-states     and the sum 

       is taken over the entire matrix   . 
Using these estimations for matrices A and B, as well as the 

initial state probabilities    the HMM           is fully 

defined. Hence, for K clusters    of trajectories, each of the 

   HMM is defined similarly. 

D. Medoid-based HMM: The hybrid approach 

In the previous sections, HMM was described as the base 
model for the FSTP task. In this work, a novel HMM 

approach is proposed for addressing two problems, i.e., the 

inherent complexity issues of the HMM in general and the 

physical meaning of the model with regard to the FSTP task. 

The first part is addressed by employing a combination of 

flight plans and matching route points from the actual 

trajectory, instead of using the full-resolution trajectory itself. 

The second part is addressed by associating the emissions to a 

transformation of the combined flight plans and matching 

route points, in a way that actually correspond to the observed 

“output” of the model.  

(a) Waypoints as HMM states: The general idea of this 
novel approach is described earlier (see: Introduction). A pair 

of departure and destination airports is selected for trajectory 

modeling, using a large set of flights between them (historic 

data). Flight plans (FP) and matching actual route points (RT), 

together with additional semantic information (SW) including 

weather parameters, aircraft type, wake category, weekday of 

flight, etc, are used as the training dataset. Each flight plan 

FPi contains a limited number of reference waypoints, 

typically 40-50 times less than the full-resolution trajectory 

track (e.g. secondary radar). For each waypoint fij of a flight 

plan FPi, a matching route point rij is the closest one from the 
full-resolution trajectory. Hence, there is a 1-on-1 association 

between the waypoints fij of a flight plan and its actual route 

points rij, producing a sequence of pairs {fij, rij} of length 

L=|FPi|=|RTi| for each flight in the dataset. Additionally, each 

of these flight plan or actual route points is “enriched” by a 

semantic vector sij that includes every item of information that 

is available for weather, aircraft, etc. Some of the properties 

such as the aircraft type and wake category do not change, but 

the exact values of (local) weather parameters may differ 

between the waypoints. Moreover, if the route points rij 

deviate significantly from the flight plan waypoints fij they 

refer to, the values of weather parameters may differ between 
these too. In practice, this means that each of the fij and rij is 

accompanied with its own semantic vector sij as per-point 

enrichment variables, namely sfij and srij. Using this 

formulation, each flight in the training dataset corresponds to 

a triplet of {FPi, RTi, SWi}, which becomes a series of {fij, rij, 

{sfij, srij}} of length L. 

The clustering stage of this approach essentially employs 

the semantic-aware similarity function we introduced earlier 

for comparing and grouping enriched routes together, i.e., 

against the {RTi, SWi} part. It should be noted that FPi 

contains the waypoints which constitute a priori constraints of 
each flight and RTi contains the actual route points that are the 

closest realizations of these constraints. In other words, {RTi, 

SWi} embodies information associated to each actual flight 

and at the same time posterior knowledge related to it. The 

spatio-temporal proximity between different trajectories is not 

only included but augmented with semantics during the 
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clustering stage, which produces a medoid as a semantic-

aware representative for each cluster. This procedure 

essentially renders unnecessary any further discretization step 

for the design of the HMM. In practice, using the {RTi, SWi} 

in clustering and the resulting medoids as the baseline for 

producing corresponding HMMs is analogous to employing a 
discretization process with a non-uniform grid: each state is 

now associated to an enriched route point {rij, srij} as a graph 

node and each state transition as a directed edge in this graph. 

It should be noted that the state-of-the-art approach used e.g. 

in [9] employs a uniform spatial grid, each point of the full-

resolution trajectory is aligned to a grid cell and the HMM 

states are essentially the non-empty cells produced after 

processing the entire training dataset. Together with weather 

parameter discretization, this “blind” HMM approach 

normally produces an excessive number of states that 

correspond to a very large but sparse state transition matrix. In 

contrast, the novel approach proposed in this work produces 
multiple HMMs (one for each cluster) that exhibit very limited 

probabilistic path variability and very compact in size, since 

there are only L states and almost 1  sequential transitions 

between them. 

(b) FP/RT deviations as HMM emissions: The physical 

meaning of the HMM emissions is the observed output of the 

system. Given the availability of both the flight plans FPi and 

the corresponding actual routes RTi, the proposed approach 
associates the emissions with the deviation between these two, 

since this is the actual output observed from the evolution of a 

flight. Specifically, the medoid of each cluster, i.e., the 

representative actual route, is used to specify the sequence of 

states for the corresponding HMM, as described above. Then, 

each individual flight plan FPi is compared to the medoid of 

its assigned cluster to calculate the deviation for each of its L 

reference points, which become the emissions sequence. This 

deviation can be spatiotemporal-only or fully semantic-aware 

as in the similarity function used during the clustering stage. In 

this work, the first choice was employed for the emissions, i.e., 
the deviations include only the 3-D differences (signed) 

between the reference points, as this is the standard 

requirement for assessing the prediction accuracy of FSTP 

algorithms in most cases. For per-dimension deviations 

(lat/lon/alt), simple subtraction is used and the (signed) result 

is subsequently converted to meters. For 3-D deviation 

calculations, the Haversine method [17] is employed to 

calculate the spherical distance, enhanced with trapezoid 

approximation for surface-to-altitude distances, producing a 

full 3-D calculation for an arbitrary pair of points in the 

Earth’s atmosphere. For instance, for the area of the utilized 

training dataset, i.e., flights between Barcelona and Madrid in 

Spain2, the true geodesic resolution is 111.133 km/deg Lat 

(mean) and 83.921 km/deg Lon. 

                                                
1 Employing non-sequential HMM state transitions in this approach 

requires the exploitation of multiple top-l medoids or combinations 

of medoid segments per cluster. In this approach, one medoid per 
cluster is used, i.e., l = 1. 

2 LEBL-LEMD: lat = [40...43]o, lon = [-3...+3]o, alt = [0...40,000]ft. 

Since multiple flights are included in each cluster, the 

values of these emissions produce an empirical probability 

distribution function per state (i.e., reference waypoint), which 

under moderate statistical assumptions can be approximated 

by a parametric Gaussian. In other words, the final HMM for 

each cluster contains exactly L states 3  with sequential 
transition between them and a continuous-valued Gaussian 

distribution of emissions that correspond to individual point-

wise deviations between flight plans and the cluster’s medoid. 

This is exactly why this “hybrid” approach that employs 

clustering before the HMM design produces a very efficient 

and truly scalable solution for the FSTP task. 

In summary, the outline of the training phase of the 

proposed FSTP framework is described in Algorithm I. 
 

Algorithm I: Training of the Hybrid Clustering/HMM method 

INPUT: FP={FPi}, RT={RTi}, SW={SWi}, i=1,...,N, a set of 
flight plans, actual matching routes and associated semantics. 

1.  Let: zij={fij, rij, {sfij, srij}}∈ Z the corresponding data series 

of length Lz=|FPi|=|RTi|=|SWi|, where fij ∈ FPi, rij ∈ RTi 

and {sfij, srij} ∈ SWi. 

2.  Let: vij={fij, sfij}∈ Zf and uij={rij, srij}∈ Zr sets of enriched 

flight plans and enriched actual routes, where fij ∈ FPi, rij 

∈ RTi and {sfij, srij} ∈ SWi. 

3.  [CLUSTERING] Let:           the semantic-aware 

similarity function for comparing two enriched trajectories 
in Zf or Zr . 

4.  Cluster Zr into K distinct groups using          . For each 

cluster Ck, produce the best-match (maximum similarity) 
representative or medoid Rk. Note: K is computed 
automatically by the clustering algorithm. 

5.  [HMM SETUP] For each cluster Ck with medoid Rk , design 
a HMM θk with exactly Lk=|Rk| states and sequential 

transitions between them, i.e.: {Sk1→Sk2→...→SkL}. 

6.  Using          , calculate the dn,k =DR(νn*, Rk) semantic-

aware similarity between every enriched flight plan νn*      

(* = j ∈ {1,...,Lk}) and the medoid Rk . In this study, FSTP 

accuracy is focused only on the 3-D spatial error 
(Lat/Lon/Alt). 

7.  For each state Skj the corresponding emission Ekj is 

modelled by a Gaussian distribution of the dn,k values, i.e., 

mean μkj and standard deviation σkj of dn,k, where: n ∈ Ck , 

i.e.: Ekj ~ N(d; μkj, σkj). 

OUTPUT: K clusters Ck with medoids Rk , K HMMs θk with 
states Skj defined by the waypoints of Rk and emissions Ekj 
modelled by corresponding Gaussian distributions of means μkj 
and standard deviation σkj . 

After the last step in the training pipeline, each flight subset 

in cluster Ck is fully described by a representative semantic-

aware medoid Rk and the corresponding Gaussian 

approximation for the emissions Ok: 

                                                
3 When a cluster contains flights with different number of reference 

points, the medoid length is used as the basis for the entire cluster, 

with flight expansions or cropping when needed. However, for 
statistical consistency, all errors and confidence intervals presented 
later on refer to the minimum-common-length Lk, i.e., all 
calculations are made using the entire cluster in all cases. 



i   Ck : μk* = E[( fij – rkj)] , σk* = Var[( fij – rkj)]1/2 

                                ( fij – rkj     Ekj ~ N(d; μkj, σkj) 

(13) 

Then, the state transition within the Rk of each cluster 

essentially defines the maximum-likelihood emissions 

sequence as: Ok ={μk1→μk2→...→μkL}, i.e., through the means 

of each Gaussian pdf of the per-waypoint deviations. Hence, 

for each Rk a corresponding representative flight plan can be 

produced in the maximum-likelihood sense as: 

Ok - Rk   Ek  Ok = Rk + Ek   Rk + μk ±    k (14) 

where errk* is estimated as the half-width of the confidence 

interval for the mean μk, i.e.: errk* = 
     

   
 , where, nk is the size 

of cluster k, sk is the sample standard deviation of the fij – rkj 

differences and tα is the corresponding one-tailed t-Student 

value at significance level a, all calculated separately for each 

reference waypoint (* = j ∈ {1,...,Lk}). 

Next, the exact route of the predicted trajectory, based on a 

query flight plan as input, is based on the maximum-

likelihood estimation of emissions from the best-matching 

cluster. In summary, the outline of the query (or testing) 

phase of the proposed FSTP framework is described in 

Algorithm II. 

 

Algorithm II: Testing of the Hybrid Clustering/HMM method 

INPUT: Let: qXj={qfXj, qsfXj}∈ Zf a new enriched flight plan of 

Lz reference waypoints of a future flight, for which the actual 
route is to be predicted. 

1.  Let: dn,m=g(un*,um*) a semantic-aware similarity function for 
comparing two enriched trajectories in Zf. 

2.  Using g(.,.), calculate the dX,k=g(qX, Ok) similarity between 
qXj and the K representative flight plans, i.e.: Ok 

={μk1→μk2→...→μkL}. 
3.  Let: b=argmin{dX,k}, k=1,...,K, i.e., the id of the cluster Cb 

for which the corresponding HMM θb produces the best-
matching Ob with respect to qX . 

OUTPUT: qX is assigned to cluster b and Hb is the maximum-
likelihood estimation for its (future) actual route as: Hb = qX – Eb 
≈ qX – μb ± errb 

V. EXPERIMENTAL STUDY 

A. Dataset and experimental setup 

The experimental setup for validating the proposed Hybrid 

Clustering/HMM approach is based on a selected set of flights 
between Madrid and Barcelona. More specifically, the flight 

plans (the latest submitted before departure), the radar tracks, 

weather data (actual) and additional aircraft properties are 

included in the enriched “linked” FP/RT flights dataset from 

April 2016. The specific pair of airports was selected as the 

one with the heaviest traffic on a monthly basis compared to 

any other airport pair in Spain. It involves different flight 

plans (reference waypoints) and multiple takeoff / landing 

approaches. In operational mode, each direction and each pair 

of airports will be associated with a separate Clustering/HMM 

model, in order to capture the fine details and the specific 

statistics of each case. 

Table II summarizes the dataset used in the experimental 

study. Fig. 2 and Fig. 3 illustrate examples of flights with 

moderate matching and severe between the submitted flight 

plan and the actual route flown. Fig. 4 presents the (colored) 
clusters produced for a 4+1 cluster setup, with one of them 

used to group outliers/noise (7 of 703), for the one-direction 

subset of flights used from the dataset. Fig. 5 illustrates the 

corresponding medoid for each cluster. 

TABLE II 

SUMMARY OF THE DATASETS USED IN THE EXPERIMENTAL STUDY 

Element Description Comments 

Airport pairs 
(subsets) 

(a) LEBL → LEMD: 
693 flights 
(b) LEMD → LEBL: 
703 flights 

 

Flight plans 
(FP) 

Latest submitted FP 
for each flight. 

Each FP consists of  
11-18 reference 
waypoints 

Actual route 
(RT) 

Reference waypoints 
from the full radar 
track route, matched 
(closest) to the FP. 

Waypoint matching 
was conducted only on 
the spatio-temporal 
basis (no semantics ). 

Weather 
(SW) 

Latest NOAA weather 
parameters estimated 
via interpolation upon 
each reference point. 

Wind speed, wind 
direction, temperature, 
humidity. 

Other 
semantics 
(SW) 

Additional parameters 
used in the 
enrichment process. 

Aircraft type, wake 
(size), weekday. 

 

 

Fig. 2 Example of flight plan vs. actual route from Madrid to Barcelona, with 

intermediate mismatch between the two trajectories (max{dij}>20 km). 
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Fig. 3 Example of flight plan vs. actual route from Barcelona to Madrid, with 

distinct deviation between the two trajectories (different landing approach). 

 

Fig. 4 Example of four main clusters (colored) and one cluster of 

noise/outliers (black) produced in the clustering phase upon the RT (actual 

routes) using the EDR semantic-aware similarity metric. 

 

Fig. 5 The medoids of the four main clusters, representing 696 of 703 flights 

in the enriched FT/RT dataset. 

B. Semantic trajectory clustering phase 

As described above, the first stage in the proposed 

approach is the clustering of the flights using a semantic-

aware similarity metric. The parameters of the composite 

distance metric described in Eq.(2), Eq.(3) and Eq.(4) were 

established after extensive experimentation and evaluation of 

the quality (size vs. compactness) of the resulting clusters. 

More specifically, the spatio-temporal part was preferred over 

the semantic part (λ=3/4), in order to produce easily 

interpretable visual plots for the clusters in 3-D, equally-

weighted spatial dimensions (w1=1/3), as well as a 

requirement for time-invariant trajectory matching (w2=0). 

Using the flights of each direction separately between Madrid 
and Barcelona, the enriched {RTi, SWi} trajectories were 

clustered and the corresponding Rk medoid of each cluster was 

identified. 

C. HMM modeling phase 

According to the description of the proposed approach, the 

results from the clustering stage are used as input for the next, 

i.e., the setup and training of the corresponding HMMs. No 

assumption is made with regard to their statistical distribution, 

but enforcing a sample size (cluster members) of at least 30 or 

more essentially enables the estimation of the confidence 

intervals via proper means, i.e. using sample variations and 

the t-Student distribution for hypothesis testing. Table III 
summarizes the results from the statistical significance 

analysis of the emissions model regarding the four main 

clusters (7 outliers excluded) of the experimental setup 

described above. For each cluster, the FP/RT deviations upon 

every waypoint over its members is used to produce a 
corresponding (Gaussian) pdf and subsequently the mean, 

sample stdev and confidence interval of the per-waypoint 

means are calculated, here for a significance level of a=0.1. 

The resulting half-width confidence interval or HWCI, which 

is essentially the radius of the sphere around each reference 

waypoint, is the aggregated statistic that corresponds to the 

error term when calculating the maximum-likelihood of an 

estimated future route, according to Algorithm II (see step 5). 

It is the average per-waypoint “uncertainty” distance (in 

meters) through which each Ck member flight will pass with 

probability 1-α. TABLE III presents these statistics separately 
for each dimension (Lat/Lon/Alt) and as 3-D radius, in order 

to examine the accuracy and error sensitivity of the HMMs. 

TABLE III 

SUMMARY OF THE EMISSIONS MODEL PER CLUSTER. HWCI = HALF-WIDTH 

CONFIDENCE INTERVAL FOR PER-WAYPOINT FP/RT DEVIATIONS OVER THE 

FLIGHTS |CK| IN EACH CLUSTER. THE MEANS VALUE, CONFIDENCE INTERVAL 

AND SAMPLE STDEV REFER TO THE ENTIRE FLIGHT PATH LK DEFINED BY RK. 

Ck |Ck| Lk HWCI 

mean 

HWCI mean: 

conf.int.range 

HWCI mean: 

sample stdev 

1 255 13 Lat: 194.5 
Lon: 48.3 
Alt: 29.6 

Lat: 52.3 
Lon: 11.2 
Alt: 7.2 

Lat: 138. 9 
Lon: 29.9 
Alt: 19.2 

R = 208.5 R = 50.4 R = 133.9 

2 228 14 Lat: 269.5 
Lon: 73.0 

Alt: 32.0 

Lat: 72.0 
Lon: 33.4 

Alt: 6.3 

Lat: 199.6 
Lon: 92.7 

Alt: 17.5 

R = 285.3 R = 77.5 R = 214.7 

3 138 15 Lat: 440.1 
Lon: 112.8 
Alt: 48.7 

Lat: 138.1 
Lon: 40.2 
Alt: 9.1 

Lat: 397.8 
Lon: 115.8 
Alt: 26.2 

R = 460.9 R = 142.5 R = 410.4 

4 75 11 Lat: 617.6 
Lon: 200.6 
Alt: 102.7 

Lat: 128.1 
Lon: 73.0 
Alt: 16.1 

Lat: 309.6 
Lon: 176.4 
Alt: 38.9 

R = 665.9 R = 141.0 R = 340.8 

 

It should be noted that these estimations may differ 

significantly between the waypoints, due to the fact that the 

first and last ones are very “strict” constraints as part of 
standard takeoff and landing procedures, while intermediate 

ones can be traversed more “loosely” but shortcuts if 

necessary, e.g. to save time lost in flight delays. As an 

example, Fig. 6 illustrates the per-waypoint box plot for 
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cluster 1 as described above. The height of each bounding box 

is directly linked to the uncertainty associated with producing 

the maximum-likelihood FP/RT deviation from the HMM 

emissions in each waypoint. As expected, most of the 

waypoints just after takeoff and just before landing have the 

tightest confidence intervals. 
Additionally, Fig. 7 illustrates the per-waypoint RMSE 3-D 

deviation between flight plans and actual routes for cluster 1, 

where it is evident that the largest values appear after the 

takeoff phase (wp.1-2) and just before entering the final 

approach to landing (wp.12-13). Finally, Fig. 8 illustrates the 

distributions of the confidence intervals (ranges) of 

Lat/Lon/Alt and inclusion radius R, providing an overview of 

the statistical uncertainty per dimension and in 3-D. This is an 

example of graphical representation of the distributions 

described in Table III (cluster 1), but here in standard box plot 

notation, i.e., with median, quartiles and extremes instead of 

mean and standard deviation. 
  

 

Fig. 6 Mean and confidence interval of the FP/RT Latitude deviations (in 

meters) within cluster 1 over the minimum common length of flight plans 

included. 

 

 

Fig. 7 Mean radius (in meters) of the sphere corresponding to the Lat/Lon/Alt 

confidence intervals of the FP/RT deviations (in meters) within cluster 1 over 

the minimum common length of flight plans included. 

 

 

Fig. 8 Distributions of confidence intervals (ranges) of Lat/Lon/Alt and radius 

of inclusion sphere (in meters) within cluster 1 over the minimum common 

length of flight plans included. 

VI. DISCUSSION 

As described earlier, the proposed method exploits the 
constraints imposed by the flight plans, i.e., the intended flight 

path, as well as other “enrichment” parameters such as 

localized weather and aircraft properties. The first stage 

incorporates the principle of “divide-and-conquer” via a 

semantic-aware clustering of actual flight routes, essentially 

grouping together flights that exhibit similarity not just in 

their spatio-temporal path but also in their semantic vectors.  

As described earlier, each flight path is not modelled by the 

full-resolution spatio-temporal grid (radar track), but rather by 

the reference waypoints of the flight plans. This way, the 

length of the corresponding time series for each flight path is 

reduced by a factor of 1:50 on average, since in the current 
datasets described in Table II the full-resolution radar tracks 

of the flights vary in length between 680-730 points on 

average, with slightly varying sampling rate of about 5 

seconds, while the corresponding FP/RT/weather linked data 

include 11-18 waypoints with arbitrary time intervals. 

Additionally, the grouping of flights via clustering in the 

“enriched” data space reduces the complexity of the 

corresponding flight paths that will be modelled next by the 

HMMs, further scaling down the complexity of the training 

phase. Finally, the modeling of the waypoints as HMM states 

in this non-uniform/sparse manner, as well as the modeling of 
deviations between flight plans and actual routes as the per-

waypoint emissions, is a natural way to describe the 

probabilistic model of the FSTP in the context of HMMs. 

The results presented in Table III as well as the plots in Fig. 

6 through Fig. 8, demonstrate the robustness and the statistical 

significance of the Hybrid Clustering/HMM proposed here. 

According to the confidence intervals, flights in cluster 1 can 

be predicted (see Algorithm II) with accuracy of roughly: errk 

= 208.5 ± 50.4/2 = 183...234 meters upon each waypoint of its 

submitted flight plan. In contrast, flights in the much smaller 

cluster 4 can be predicted with accuracy of roughly: errk* = 

665.9 ± 141/2 = 595...736 meters upon each waypoint of its 
submitted flight plan. It should be noted that the significance 

level a=0.1 has some but not very large effect in these 

confidence intervals in terms of the order of magnitude of this 



uncertainty. Since this is a one-tailed t-Student test (upper 

bound for errors, n>30), α=0.1 (p=90%) corresponds to 

ta=1.282, α=0.05 (p=95%) to ta=1.645 and α=0.01 (p=99%) to 

ta=2.326. In other words, even at very high confidence levels 

(p=99%) the corresponding interval is at most 81% wider than 

the values presented in TABLE III, which are already 
adequately tight. Even for cluster 4 with the smallest size (75), 

the confidence interval is expected to become (roughly) 1.2 

km with probability p=99%, which is actually the worst-case 

and stricter error bound for this model setup; this is still an 

order of magnitude more accurate in absolute cross-track error 

than the current state-of-the-art with “blind” HMM for TP as 

in [9] [11], i.e,. without using the flight plans as constraints. 

According to the results in Table III as well as the per-

dimension summary plot in Fig. 8, the confidence intervals 

(ranges) of Lat/Lon/Alt demonstrate significant differences. 

More specifically, Lat error bounds are consistently much 

larger than of the other dimensions, 4-3 times wider than Lon 
and 10 times wider than Alt. The same behavior was 

confirmed with configurations involving 9-10 clusters instead 

of four as presented here. This is a very important conclusion 

from these experiments, related to the fine-tuning of the 

similarity metric weights and the capability of “shaping” the 

error margins in a way that prediction uncertainty is equally 

distributed between the dimensions of the trajectory domain 

space. In other words, the errors in each dimension can be 

scaled appropriately so that the flattened ellipsoid that they 

produce becomes a sphere of radius R, i.e., approximately the 

same 3-D error distance in all dimensions. 
In this hybrid approach, the FSTP task is addressed from 

the start. Both the clustering and the HMM stages are 

inherently designed to be dimensionality-invariant, in the 

sense that they can be applied in a unified way regardless of 

the presence or dimensionality of the semantics set SW that 

“enriches” the flight plan and actual route sets FP and RT, 

respectively. The complexity of having additional semantic 

dimensions over the spatio-temporal domain is addressed 

efficiently by employing a proper similarity function, which is 

typically some linear vector norm. This enables the 

incorporation of any number of semantic parameters to be 

used, e.g. weather conditions, aircraft properties, etc, with 
limited impact on the overall complexity. Moreover, the 

clustering is performed using a properly designed semantic-

aware similarity function that takes into account the entire 

input space instead of just the spatio-temporal proximity of 

flight trajectories. In other words, the proposed approach 

addresses the fact of flight plans that may seem identical in 

the spatio-temporal domain but may produce quite different 

realizations of actual routes due to different weather 

conditions. This is extremely important for creating clusters 

that are compact, not only in the spatio-temporal domain 

(geodesic proximity) but in the full semantic-enriched domain. 
Hence, the design of HMM states based upon these enriched 

waypoints incorporates this integrated semantic-enriched 

information, not directly as with HMMs that employ separate 

discretization for each domain dimension, but indirectly by 

having different semantic-aware clusters. To put it another 

way, in this hybrid approach the different medoids upon 

which HMMs are trained are produced taking into account the 

full semantic-enriched domain, hence they already incorporate 

any significant semantic information available without 

explicitly increasing the complexity of the HMM design. 

Another important difference between the proposed 
approach and the typical HMM methods used for the FSTP 

task is the emissions model. For example, in [9] and [11] the 

emissions sequence is constructed via Dynamic Time 

Warping (DTW) clustering of weather “paths” that are related 

to a specific state transition sequence. This approach is an 

effective one for designing HMMs where the Viterbi 

algorithm estimates the most probable state transition 

sequence, i.e., spatio-temporal movement of the aircraft, from 

the “observed” emissions sequence. However, this modeling 

is not fully associated to the physical world: the weather 

conditions are not “emitted” by the point-to-point movement 

of the aircraft; it is an environmental observation that is 
inherently unrelated to what the state-transition model 

generates as a result. Furthermore, this standard approach 

requires discretization of the emissions into “buckets” and 

combination with the states, in order to produce a fully 

discrete HMM model. In contrast, the proposed approach 

employs a very limited number of states, mapped against the 

waypoints of flight plans and actual routes, and an analytical 

probabilistic model for approximating the per-state emissions. 

Practically, every state in each HMM is accompanied with a 

Gaussian pdf that approximates the empirical emissions 

(FP/RT deviations). This way, the HMM “explains” precisely 
what the system generates as output and at the same time it is 

trained analytically by statistical modeling, instead of using 

emissions sequences to estimate state transitions. 

It is worth noting that the proposed hybrid approach 

produces a multi-level organization of the flights by 

employing a two-stage training with the dataset: During the 

clustering stage, any statistically significant semantic-aware 

dissimilarity produces different clusters, i.e., splits the entire 

dataset for flights into groups. Therefore, if these clusters are 

produced compact enough, the HMM in the second stage is 

inevitably deterministic, i.e., the state transitions inherently 

become sequential. In other words, the path-finding problem 
is for the most part addressed already during the clustering 

stage, while the HMM stage subsequently uses the 

corresponding FP/RT deviations sequence for producing a 

maximum-likelihood emissions probabilistic model. This 

approach is much more natural and expected by such a FSTP 

algorithm: given a complete set of parameters (aircraft 

characteristics, flight plan, weather conditions) as prior 

constraints, the proposed method produces as output the most 

probable sequence of deviations from a given flight plan, i.e., 

the maximum-likelihood actual route waypoints where the 

aircraft will fly through. 
In should also be noted that the proposed method is 

inherently generic. It does not rely on spatio-temporal grid 

sizes or resolution, number of semantic parameters or 

discretization of them. It does rely on pre-flight constraints, 

more importantly the flight plan that is associated with each 



actual route, an updated semantic vector for each reference 

point (primarily localized weather), as well as a specific pair 

of departure/destination airports. The basic assumption here is 

that (a) all flights submit a flight plan prior to take off and (b) 

that all pilots have more or less the same incentives to follow 

it. This is the core factor upon which the FP/RT deviations are 
used as the output of a maximum-likelihood probabilistic 

formulation (HMM emissions), with error bound that can be 

estimated accurately via confidence interval statistical 

analysis. This formulation can be extended to cases where a 

completely new flight plan is submitted for a route never 

flown before by anyone (“outlier” in clusters), assuming (b) 

and exploiting the flight plan similarly in combination with 

the “closest match” for the deviations model, e.g. for the 

closest pair of airports, geographical region, number of 

waypoints, total length of flight, etc. 

The applicability of this proposed hybrid clustering/HMM 

method to other domains is limited only by the availability 
and mandatory provision of appropriate constraints as input, 

i.e., something analogous to the flight plans. This includes 

maritime domain and even land transportations, if/when 

specific spatio-temporal constraints are present and available 

beforehand, e.g. estimated time of arrival (ETA) at specific 

critical points on the intended route. In this respect, the 

aviation domain can be considered as the most difficult and 

demanding, as it includes high dimensionality and increased 

variability in the semantic parameters in the short-term (e.g. 

altitude-dependent, localized weather). In this work, the 

aviation domain was chosen precisely for these reasons and 
the feasibility study of the proposed method was concluded 

successfully. 

VII. CONCLUSION 

In this paper, we presented a novel Hybrid 

Clustering/HMM method for addressing the TP problem in the 

aviation domain, building upon and substantially improving 

the “blind” probabilistic methods that are currently used in the 

context of TP. Furthermore, our work enhances the content of 

the spatio-temporal trajectories towards with annotations 

(semantic information) that includes flight plans, localized 

weather and aircraft properties that enables modeling in an 

arbitrary N-dimensional domain. Clustering is employed as a 
first processing phase, using properly designed semantic-

aware similarity functions as distance metrics, in order to 

clustering, in order to produce compact groups of similar 

trajectory evolutions. Then, HMMs are trained for each cluster, 

using non-uniform graph-based spatial grid and exploiting 

flight plans as constraints for a parametric probabilistic model 

for the emissions. 

The proposed hybrid method exhibits at least an order of 

magnitude better accuracy in terms of absolute cross-track 

error compared to the current state-of-the-art with “blind” 

HMM for TP, while at the same time exhibiting two to three 
orders of magnitude less processing and storage resources. 

Further work will be focused on improvements with respect to 

designing proper semantic-aware similarity metrics and 

segmented-trajectory models, for very large training datasets. 
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