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Abstract. This paper considers a class of reinforcement-learning that

belongs to the family of Learning Automata and provides a stochastic-

stability analysis in strategic-form games. For this class of dynamics,

convergence to pure Nash equilibria has been demonstrated only for the

fine class of potential games. Prior work primarily provides convergence

properties of the dynamics through stochastic approximations, where

the asymptotic behavior can be associated with the limit points of an

ordinary-differential equation (ODE). However, analyzing global conver-

gence through the ODE-approximation requires the existence of a Lya-

punov or a potential function, which naturally restricts the applicabity of

these algorithms to a fine class of games. To overcome these limitations,

this paper introduces an alternative framework for analyzing stochastic-

stability that is based upon an explicit characterization of the (unique)

invariant probability measure of the induced Markov chain.

1 Introduction

Recently, multi-agent formulations have been utilized to tackle distributed op-

timization problems, since communication and computation complexity might

be an issue in centralized optimization problems. In such formulations, decisions

are usually taken in a repeated fashion, where agents select their next actions

based on their own prior experience of the game.

The present paper discusses a class of reinforcement-learning dynamics, that

belongs to the large family of Learning Automata [1,2], within the context of

(non-cooperative) strategic-form games. In this class of dynamics, agents are

repeatedly involved in a game with a fixed payoff-matrix, and they need to de-

cide which action to play next having only access to their own prior actions
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ICT-2014-1 project RePhrase (No. 644235).
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and payoffs. In Learning Automata, agents build their confidence over an ac-

tion through repeated selection of this action and proportionally to the reward

received from this action. Naturally, it has been utilized to analyze human-like

(bounded) rationality [3].

Reinforcement learning has been applied in evolutionary economics, for mod-

eling human and economic behavior [3,4,5,6,7]. It is also highly attractive to

several engineering applications, since agents do not need to know neither the

actions of the other agents, nor their own utility function. It has been utilized for

system identification and pattern recognition [8], distributed network formation

and coordination problems [9].

In strategic-form games, the main goal is to derive conditions under which

convergence to Nash equilibria can be achieved. In social sciences, deriving such

conditions may be important for justifying emergence of certain social phenom-

ena. In engineering, convergence to Nash equilibria may also be desirable in

distributed optimization problems, when the set of optimal solutions coincides

with the set of Nash equilibria.

In Learning Automata, deriving conditions under which convergence to Nash

equilibria is achieved may not be a trivial task. In particular, there are two

main difficulties: a) excluding convergence to pure strategies that are not Nash

equilibria, and b) excluding convergence to mixed strategy profiles. As it will be

discussed in detail in a forthcoming Section 2, for some classes of (discrete-time)

reinforcement-learning algorithms, convergence to non-Nash pure strategies may

be achieved with positive probability. Moreover, excluding convergence to mixed

strategy profiles may only be achieved under strong conditions in the utilities of

the agents, (e.g., existence of a potential function).

In the present paper, we consider a class of (discrete-time) reinforcement-

learning algorithms introduced in [9] that is closely related to existing algorithms

for modeling human-like behavior, e.g., [3]. The main difference with prior rein-

forcement learning schemes lies in a) the step-size sequence, and b) the pertur-

bation (or mutations) term. The step-size sequence is assumed constant, thus

introducing a fading-memory effect of past experiences in each agent’s strategy.

On the other hand, the perturbation term introduces errors in the selection pro-

cess of each agent. Both these two features can be used for designing a desirable

asymptotic behavior.

We provide an analytical framework for deriving conclusions over the asymp-

totic behavior of the dynamics that is based on an explicit characterization of

the invariant probability measure of the induced Markov chain. In particular, we

show that in all strategic-form games satisfying the Positive-Utility Property, the

support of the invariant probability measure coincides with the set of pure strat-

egy profiles. This extends prior work where nonconvergence to mixed strategy

profiles may only be excluded under strong conditions in the payoff matrix (e.g.,



existence of a potential function). A detailed discussion of the exact contribu-

tions of this paper is provided in the forthcoming Section 2. At the end of the

paper, we also provide a brief discussion over how the proposed framework can be

further utilized to provide a more detailed characterization of the stochastically

stable states (e.g., excluding convergence to non-Nash pure strategy profiles).

Due to space limitations, this analysis is not presented in this paper.

In the remainder of the paper, Section 2 presents a class of reinforcement-

learning dynamics, related work and the main contribution of this paper. Sec-

tion 3 provides the main result of this paper (Theorem 1), where the set of

stochastically stable states is characterized. A short discussion is also provided

over the significance of this result and how it can be utilized to provide fur-

ther conclusions. Finally, Section 4 provides the technical derivation of the main

result and Section 5 presents concluding remarks.

Notation:

− For a Euclidean topological space X ⊂ R
n, letNδ(x) denote the δ-neighborhood

of x ∈ R
n, i.e.,

Nδ(x)
.
= {y ∈ X : |x− y| < δ},

where | · | denotes the Euclidean distance.

− ej denotes the unit vector in R
n where its jth entry is equal to 1 and all

other entries is equal to 0.

− ∆(n) denotes the probability simplex of dimension n, i.e.,

∆(n)
.
=

{

x ∈ R
n : x ≥ 0,1Tx = 1

}

.

− For some set A in a topological space Z, let IA : Z → {0, 1} denote the

index function, i.e.,

IA(x)
.
=

{

1 if x ∈ A,

0 else.

− δx denotes the Dirac measure at x.

− Let A be a finite set and let any (finite) probability distribution σ ∈ ∆(|A|).

The random selection of an element of A will be denoted randσ[A]. If σ =

(1/|A|, ..., 1/|A|), i.e., it corresponds to the uniform distribution, the random

selection will be denoted by randunif [A].

2 Reinforcement Learning

2.1 Terminology

We consider the standard setup of finite strategic-form games. Consider a finite

set of agents (or players) I = {1, ..., n}, and let each agent have a finite set of



actions Ai. Let αi ∈ Ai denote any such action of agent i. The set of action

profiles is the Cartesian product A
.
= A1 × · · · × An and let α = (α1, ..., αn) be

a representative element of this set. We will denote −i to be the complementary

set I\i and often decompose an action profile as follows α = (αi, α−i). The

payoff/utility function of agent i is a mapping ui(·) : A → R. A strategic-form

game is defined by the triple 〈I,A, {ui(·)}i〉.

For the remainder of the paper, we will be concerned with strategic-form

games that satisfy the Positive-Utility Property.

Property 1 (Positive Utility Property). For any agent i ∈ I and any action profile

α ∈ A, ui(α) > 0.

2.2 Reinforcement-learning algorithm

We consider a form of reinforcement learning that belongs to the general class of

learning automata [2]. In learning automata, each agent updates a finite proba-

bility distribution xi ∈ ∆(|Ai|) representing its beliefs with respect to the most

profitable action. The precise manner in which xi(t) changes at time t, depend-

ing on the performed action and the response of the environment, completely

defines the reinforcement learning model.

The proposed reinforcement learning model is described in Table 1. At the

first step, each agent i updates its action given its current strategy vector xi(t).

Its selection is slightly perturbed by a perturbation (or mutations) factor λ > 0,

such that, with a small probability λ agent i follows a uniform strategy (or, it

trembles). At the second step, agent i evaluates its new selection by collecting a

utility measurement, while in the last step, agent i updates its strategy vector

given its new experience.

Here we identify actions Ai with vertices of the simplex, {e1, ..., e|Ai|}. For

example, if agent i selects its jth action at time t, then eαi(t) ≡ ej . Note that by

letting the step-size ǫ to be sufficiently small and since the utility function ui(·)

is uniformly bounded in A, xi(t) ∈ ∆(|Ai|) for all t.

In case λ = 0, the above update recursion will be referred to as the unper-

turbed reinforcement learning.

2.3 Related work

Erev-Roth type dynamics In prior reinforcement learning in games, analy-

sis has been restricted to decreasing step-size sequences ǫ(t) and λ = 0. More

specifically, in [3], the step-size sequence of agent i is ǫi(t) = 1/(ctν+ui(α(t+1))

for some positive constant c and for 0 < ν < 1 (in the place of the con-

stant step size ǫ of (2)). A comparative model is also used by [6], with ǫi(t) =

1/(Vi(t) + ui(α(t+1))), where Vi(t) is the accumulated benefits of agent i up to



At fixed time instances t = 1, 2, ..., and for each agent i ∈ I, the following steps are

executed recursively. Let αi(t) and xi(t) denote the current action and strategy of

agent i, respectively.

1. (action update) Agent i ∈ I selects a new action αi(t+ 1) as follows:

αi(t+ 1) =

{

randxi(t)[Ai], with probability 1− λ,

rnadunif [Ai], with probability λ,
(1)

for some small perturbation factor λ > 0.

2. (evaluation) Agent i applies its new action αi(t+1) and retrieves a measurement

of its utility function ui(α(t+ 1)) > 0.

3. (strategy update) Agent i revises its strategy vector xi ∈ ∆(|Ai|) as follows:

xi(t+ 1)

= xi(t) + ǫ · ui(α(t+ 1)) · [eαi(t+1) − xi(t)]
.
= Ri(α(t+ 1), xi(t)), (2)

for some constant step size ǫ > 0.

Table 1. Perturbed Reinforcement Learning.

time t which gives rise to an urn process [5]. Some similarities are also shared

with the Cross’ learning model of [4], where ǫ(t) = 1 and ui(α(t)) ≤ 1, and its

modification presented in [10], where ǫ(t), instead, is assumed decreasing.

The main difference of the proposed reinforcement-learning algorithm (Ta-

ble 1) lies in the perturbation parameter λ > 0 which was first introduced and

analyzed in [9]. A state-dependent perturbation term has also been investigated

in [11]. The perturbation parameter may serve as an equilibrium selection mech-

anism, since it excludes convergence to non-Nash action profiles. It resolved one

of the main issues of several (discrete-time) reinforcement-learning algorithms,

that is the positive probability of convergence to non-Nash action profiles under

some conditions in the payoff function and the step-size sequence.

This issue has also been raised by [12,6]. Reference [12] considered the model

by [3] and showed that convergence to non-Nash pure strategy profiles can be

excluded as long as c > ui(α) for all i ∈ I and ν = 1. On the other hand,

convergence to non-Nash action profiles was not an issue with the urn model of

[5] (as analyzed in [6]). However, the use of an urn-process type step-size sequence

significantly reduces the applicability of the reinforcement learning scheme. In

conclusion, the perturbation parameter λ > 0 may serve as a design tool for

reinforcing convergence to Nash equilibria without necessarily employing an urn-

process type step-size sequence. For engineering applications this is a desirable

feature.



Although excluding convergence to non-Nash pure strategies can be guaran-

teed by using λ > 0, establishing convergence to pure Nash equilibria may still be

an issue, since it further requires excluding convergence to mixed strategy pro-

files. As presented in [11], this can be guaranteed only under strong conditions

in the payoff matrix. For example, as shown in [11, Proposition 8], excluding

convergence to mixed strategy profiles requires a) the existence of a potential

function, b) conditions over the second gradient of the potential function. Re-

quiring the existence of a potential function considerably restricts the class of

games where equilibrium selection can be described. Furthermore, condition (b)

may not easily be verified in games of large number of players or actions.

Learning automata Certain forms of learning automata have been shown to

converge to Nash equilibria in some classes of strategic-form games. For exam-

ple, in [2], and for a generalized nonlinear reward-inaction scheme, convergence

to Nash equilibrium strategies can be shown in identical interest games. Simi-

lar are the results presented in [13] for a linear reward-inaction scheme. These

convergence results are restricted to games of payoffs in [0, 1]. Extension to a

larger class of games is possible if absolute monotonicity (cf., [2, Definition 8.1])

is shown (similarly to the discussion in [11, Proposition 8]).

Reference [14] introduced a class of linear reward-inaction schemes in combi-

nation with a coordinated exploration phase so that convergence to the efficient

Nash equilibrium is achieved. However, coordination of the exploration phase

requires communication between the players.

Recently, work by the author [9] has introduced a new class of learning au-

tomata (namely, perturbed learning automata) which can be applied in games

with no restriction in the payoff matrix. Furthermore, a small perturbation factor

also influences the decisions of the players, through which convergence to non-

Nash pure strategy profiles can be excluded. However, to demonstrate global

convergence, a monotonicity condition still needs to be established [11].

Q-learning Similar questions of convergence to Nash equilibria also appear in

alternative reinforcement learning formulations, such as approximate dynamic

programming methodologies and Q-learning. However, this is usually accom-

plished under a stronger set of assumptions, which increases the computational

complexity of the dynamics. For example, the Nash-Q learning algorithm of [15]

addresses the problem of maximizing the discounted expected rewards for each

agent by updating an approximation of the cost-to-go function (or Q-values).

Alternative objectives may be used, such as the minimax criterion of [16]. How-

ever, it is indirectly assumed that agents need to have full access to the joint

action space and the rewards received by the other agents.



More recently, reference [17] introduces a Q-learning scheme in combination

with either adaptive play or better-reply dynamics in order to attain convergence

to Nash equilibria in potential games [18] or weakly-acyclic games. However, this

form of dynamics require that each player observes the actions selected by the

other players, since a Q-value needs to be assigned in each joint action.

When the evaluation of the Q-values is totally independent, as in the indi-

vidual Q-learning in [19], then convergence to Nash equilibria has been shown

only for 2-player zero-sum games and 2-player partnership games with count-

ably many Nash equilibria. Currently, there are no convergent results in games

in multi-player games.

Payoff-based learning The aforementioned types of dynamics can be con-

sidered as a form of payoff-based learning dynamics, since adaptation is only

governed by the perceived utility of the players. Recently, there have been sev-

eral attempts for establishing convergence to Nash equilibria through alterna-

tive payoff-based learning dynamics, (see, e.g., the benchmark-based dynamics

of [20], or the aspiration-based dynamics in [21]). For these type of dynamics,

convergence to Nash equilibria can be established without requiring any strong

monotonicity property (e.g., in multi-player weakly-acyclic games in [20]). How-

ever, an investigation is required with respect to the resulting convergence rates

as compared to the dynamics incorporating policy iterations (e.g., the Erev-Roth

type of dynamics or the learning automata discussed above).

2.4 Objective

This paper provides an analytical framework for analyzing convergence in multi-

player strategic-form games when players implement a class of perturbed learning-

automata. We wish to impose no strong monotonicity assumptions in the struc-

ture of the game (e.g., the existence of a potential function). We provide a char-

acterization of the invariant probability measure of the induced Markov chain

that shows that only the pure-strategy profiles belong to its support. Thus, we

implicitly exclude convergence to any mixed strategy profile (including mixed

Nash equilibria). This result imposes no restrictions in the payoff matrix other

than the Positive-Utility Property.

3 Convergence Analysis

3.1 Terminology and notation

Let Z
.
= A×∆, where ∆

.
= ∆(|A1|)× . . .×∆(|An|), i.e., pairs of joint actions α

and nominal strategy profiles x. The set A is endowed with the discrete topology,



∆ with its usual Euclidean topology, and Z with the corresponding product

topology. We also let B(Z) denote the Borel σ-field of Z, and P(Z) the set

of probability measures on B(Z) endowed with the Prohorov topology, i.e., the

topology of weak convergence. The algorithm introduced in Table 1 defines an Z-

valued Markov chain. Let Pλ : Z×B(Z) → [0, 1] denote its transition probability

function (t.p.f.), parameterized by λ > 0. We refer to the process with λ > 0 as

the perturbed process. Let also P : Z ×B(Z) denote the t.p.f. of the unperturbed

process, i.e., when λ = 0.

We let Cb(Z) denote the Banach space of real-valued continuous functions

on Z under the sup-norm (denoted by ‖ · ‖∞) topology. For f ∈ Cb(Z), define

Pλf(z)
.
=

∫

Z

Pλ(z, dy)f(y),

and

µ[f ]
.
=

∫

Z

µ(dx)f(z), for µ ∈ P(Z).

The process governed by the unperturbed process P will be denoted by {Zt :

t ≥ 0}. Let Ω
.
= Z∞ denote the canonical path space, i.e., an element ω ∈

Ω is a sequence {ω(0), ω(1), . . .}, with ω(t) = (α(t), x(t)) ∈ Z. We use the

same notation for the elements (α, x) of the space Z and for the coordinates

of the process Zt = (α(t), x(t)). Let also Pz[·] denote the unique probability

measure induced by the unperturbed process P on the product σ-algebra of

Z∞, initialized at z = (α, x), and Ez [·] the corresponding expectation operator.

Let also Ft, t ≥ 0, denote the σ-algebra generated by {Zτ , τ ≤ t}.

3.2 Stochastic stability

First, we note that both P and Pλ (λ > 0) satisfy the weak Feller property

(cf., [22, Definition 4.4.2]).

Proposition 1. Both the unperturbed process P (λ = 0) and the perturbed pro-

cess Pλ (λ > 0) have the weak Feller property.

Proof. Let us consider any sequence {Z(k) = (α(k), x(k))} such that Z(k) → Z =

(α, x) ∈ Z.

For the unperturbed process governed by P (·, ·), and for any open set O ∈

B(Z), the following holds:

P (Z(k) = (α(k), x(k)), O)

=
∑

α∈PA(O)

{

PZ(k) [rand
x
(k)
i

[Ai] = αi, ∀i ∈ I]·

n
∏

i=1

PZ(k) [Ri(α, x
(k)
i ) ∈ PXi

(O)]
}



=
∑

α∈PA(O)

{

n
∏

i=1

IPXi
(O)(Ri(α, x

(k)
i ))x

(k)
iαi

}

,

where PXi
(O) and PA(O) are the canonical projections defined by the product

topology. Similarly, we have:

P (Z = (α, x), O)

=
∑

α∈PA(O)

{

n
∏

i=1

IPXi
(O) (Ri (α, xi))xiαi

}

.

(a) Consider the case x ∈ ∆o, i.e., x belongs to the interior of ∆. For all

i ∈ I, due to the continuity of Ri(·, ·) with respect to its second argument, and

the fact that O is an open set, there exists δ > 0 such that IPXi
(O)(Ri(α, xi)) =

IPXi
(O)(α, yi)) for all yi ∈ Nδ(xi). Thus, for any sequence Z(k) = (α(k), x(k))

such that Z(k) → Z = (α, x), we have that P (Z(k), O) → P (Z,O), as k → ∞.

(b) Consider the case x ∈ ∂∆, i.e., x belongs to the boundary of ∆. Then,

there exists i ∈ I such that xi ∈ ∂∆(|Ai|), i.e., there exists an action j ∈ Ai such

that xij = 0. For any open set O ∈ B(Z), xi /∈ PXi
(O). Furthermore, for any

αi ∈ randxi
[Ai], IPXi

(O)(Ri((αi, α−i), xi) = 0 (since xij = 0 and therefore xi
cannot escape from the boundary). This directly implies that P (Z = (α, x), O) =

0. Construct a sequence (α(k), x(k)) that converges to (α, x) such that α(k) = α,

x
(k)
iαi

> 0 and xi = eαi
, i.e., the strategy of player i converges to the vertex of

action αi. Pick also O ∈ B(Z), such that IPXi
(O)(Ri(α, x

(k)
i )) = 1 for all large

k. This is always possible by selecting an open set O such that x ∈ ∂PX (O)

and x(k) ∈ PX (O) for all k. In this case, limk→∞ P (Z(k), O) = 1. We conclude

that for any sequence Z(k) = (α(k), x(k)) that converges to Z = (α, x), such that

x ∈ ∂∆, and for any open set O ∈ B(Z),

lim
k→∞

P (Z(k), O) ≥ P (Z,O) = 0.

By [22, Proposition 7.2.1], we conclude that P satisfies the weak Feller prop-

erty. The same steps can be followed to show that Pλ also satisfies the weak

Feller property. •

The measure µλ ∈ P(Z) is called an invariant probability measure for Pλ if

(µλPλ)(A)
.
=

∫

Z

µλ(dx)Pλ(z, A) = µλ(A), A ∈ B(Z).

Since Z defines a locally compact separable metric space and P , Pλ have the

weak Feller property, they both admit an invariant probability measure, denoted

µ and µλ, respectively [22, Theorem 7.2.3].

We would like to characterize the stochastically stable states z ∈ Z of Pλ,

that is any state z ∈ Z for which any collection of invariant probability mea-

sures {µλ ∈ P(Z) : µλPλ = µλ, λ > 0} satisfies lim infλ→0 µλ(z) > 0. As the



forthcoming analysis will show, the stochastically stable states will be a subset

of the set of pure strategy states (p.s.s.) defined as follows:

Definition 1 (Pure Strategy State). A pure strategy state is a state s =

(α, x) ∈ Z such that for all i ∈ I, xi = eαi
, i.e., xi coincides with the vertex of

the probability simplex ∆(|Ai|) which assigns probability 1 to action αi.

We will denote the set of pure strategy states by S.

Theorem 1 (Stochastic Stability). There exists a unique probability vector

π = (π1, ..., π|S|) such that for any collection of invariant probability measures

{µλ ∈ P(Z) : µλPλ = µλ, λ > 0}, the following hold:

(a) limλ→0 µλ(·) = µ̂(·)
.
=

∑

s∈S πsδs(·), where convergence is in the weak sense.
(b) The probability vector π is an invariant distribution of the (finite-state)

Markov process P̂ , such that, for any s, s′ ∈ S,

P̂ss′
.
= lim

t→∞
QP t(s,Nδ(s

′)), (3)

for any δ > 0 sufficiently small, where Q is the t.p.f. corresponding to only

one player trembling (i.e., following the uniform distribution of (1)).

The proof of Theorem 1 requires a series of propositions and will be presented

in detail in Section 4.

3.3 Discussion

Theorem 1 establishes an important observation. That is, the “equivalence” (in

a weak convergence sense) of the original (perturbed) learning process with a

simplified process, where agents simultaneously tremble at the first iteration and

then they do not tremble. This form of simplification of the dynamics has orig-

inally been exploited to analyze aspiration learning dynamics in [21], and it is

based upon the fact that under the unperturbed dynamics, agents’ strategies will

eventually converge to a pure strategy profile.

Furthermore, the limiting behavior of the original (perturbed) dynamics can

be characterized by the (unique) invariant distribution of a finite-state Markov

chain {Pss′}, whose states correspond to the pure-strategy states of the game. In

other words, we should expect that as the perturbation parameter λ approaches

zero, the algorithm spends the majority of the time on pure strategy profiles. The

importance of this result lies on the fact that no constraints have been imposed

in the payoff matrix of the game other than the Positive-Utility Property 1.

Thus, it extends to games beyond the fine set of potential games.

This convergence result can further be augmented with an ODE analysis for

stochastic approximations to exclude convergence to pure strategies that are not

Nash equilibria (as derived in [11] for the case of diminishing step size). Due to

space limitations this analysis is not presented in this paper, however it can be

the subject of future work.



4 Technical Derivation

4.1 Unperturbed Process

For t ≥ 0 define the sets

At
.
= {ω ∈ Ω : α(τ) = α(t) , for all τ ≥ t} ,

Bt
.
= {ω ∈ Ω : α(τ) = α(0) , for all 0 ≤ τ ≤ t} .

Note that {Bt : t ≥ 0} is a non-increasing sequence, i.e., Bt+1 ⊆ Bt, while

{At : t ≥ 0} is non-decreasing, i.e., At+1 ⊇ At. Let

A∞
.
=

∞
⋃

t=0

At and B∞
.
=

∞
⋂

t=1

Bt.

In other words, the set A∞ corresponds to the event that agents eventually play

the same action profile, while B∞ corresponds to the event that agents never

change their actions.

Proposition 2 (Convergence to p.s.s.). Let us assume that the step size

ǫ > 0 is sufficiently small such that 0 < ǫui(α) < 1 for all α ∈ A and for all

agents i ∈ I. Then, the following hold:

(a) infz∈Z Pz[B∞] > 0,

(b) infz∈Z Pz[A∞] = 1.

The first statement of Proposition 2 states that the probability that agents

never change their actions is bounded away from zero, while the second statement

states that the probability that eventually agents play the same action profile is

one.

Proof. (a) Let us consider an action profile α = (α1, ..., αn) ∈ A, and an initial

strategy profile x(0) = (x1(0), ..., xn(0)) such that xiαi
(0) > 0 for all i ∈ I. Note

that if the same action profile α is selected up to time t, then the strategy of

agent i satisfies:

xi(t) = eαi
− (1− ǫui(α))

t(eαi
− xi(0)). (4)

Given that Bt is non-increasing, from continuity from above we have

Pz[B∞] = lim
t→∞

Pz[Bt] = lim
t→∞

t
∏

k=0

n
∏

i=1

xiαi
(k).

Note that P[B∞] > 0 if and only if

∞
∑

t=1

log(xiαi
(t)) > −∞. (5)



Let us introduce the variable

yi(t)
.
= 1− xiαi

(t) =
∑

j∈Ai\αi

xij(t),

which corresponds to the probability of agent i selecting any action other than

αi. Condition (5) is equivalent to

−
∞
∑

t=0

log(1 − yi(t)) <∞, for all i ∈ I. (6)

We also have that

lim
t→∞

− log(1− yi(t))

yi(t)
= lim

t→∞

1

1− yi(t)
> ρ

for some ρ > 0, since 0 ≤ yi(t) ≤ 1. Thus, from the Limit Comparison Test, we

conclude that condition (6) holds if and only if
∑∞

t=1 yi(t) <∞, for each i ∈ I.

Lastly, note that yi(t+1)/yi(t) = 1− ǫui(α). By Raabe’s criterion, the series
∑∞

t=0 yi(t) is convergent if limt→∞ t (yi(t)/yi(t+1) − 1) > 1. We have

t

(

yi(t)

yi(t+ 1)
− 1

)

= t
ǫui(α)

1− ǫui(α)
.

Thus, if ǫui(α) < 1 for all α ∈ A and i ∈ I, then 1 − ǫui(α) > 0 and

limt→∞ t(ǫui(α)/1−ǫui(α)) > 1, which implies that the series
∑∞

t=1 yi(t) is con-

vergent. Thus, we conclude that Pz[B∞] > 0.

(b) Define the event

Ct
.
=

{

∃α′ 6= α(t) : xiα′
i
(t) > 0, for all i ∈ I

}

,

i.e., Ct corresponds to the event that there exists an action profile different

from the current action profile for which the nominal strategy assigns positive

probability for all agents i. Note that Ac
t ⊆ Ct, since A

c
t occurs only if there

is some action profile α′ 6= α(t) for which the nominal strategy assigns positive

probability. This further implies that Pz[A
c
t ] ≤ Pz[Ct]. Then, we have:

Pz[At+1|A
c
t ]

=
Pz[At+1 ∩Ac

t ]

Pz[Ac
t ]

≥
Pz[At+1 ∩A

c
t ]

Pz[Ct]
≥ Pz[At+1 ∩A

c
t |Ct]

= Pz[{α(τ) = α′ 6= α(t), ∀τ > t}|Ct]

≥ inf
α′ 6=α

n
∏

i=1

xiα′
i
(t)

∞
∏

k=t+1

{

1− (1− ǫui(α
′))k−t−1ci(α

′)
}



≥ inf
α′ 6=α

n
∏

i=1

xiα′
i
(t)

∞
∏

k=0

{

1− (1− ǫui(α
′))kci(α

′)
}

where ci(α
′)

.
= 1 − xiα′

i
(t) ≥ 0. We have already shown in part (a) that the

second part of the r.h.s. is bounded away from zero. Therefore, we conclude

that Pz[At+1|Ac
t ] > 0. Thus, from the counterpart of the Borel-Cantelli Lemma,

Pz [A∞] = 1. •

The above proposition is rather useful in characterizing the support of any

invariant measure of the unperturbed process, as the following proposition shows.

Proposition 3 (Limiting t.p.f. of unperturbed process). Let µ denote an

invariant probability measure of P . Then, there exists a t.p.f. Π on Z ×B(Z)

such that

(a) for µ-a.e. z ∈ Z, Π(z, ·) is an invariant probability measure for P ;

(b) for all f ∈ Cb(Z), limt→∞ ‖P tf −Πf‖∞ = 0;

(c) µ is an invariant probability measure of Π;

(d) the support1 of Π is on S for all z ∈ Z.

Proof. The state space Z is a locally compact separable metric space and the

t.p.f. of the unperturbed process P admits an invariant probability measure due

to Proposition 1. Thus, statements (a), (b) and (c) follow directly from [22,

Theorem 5.2.2 (a), (b), (e)].

(d) Let us assume that the support of Π includes points in Z other than the

pure strategy states. Let also O ⊂ Z be an open set such that O ∩ S = ∅ and

Π(z∗, O) > 0 for some z∗ ∈ Z. Given that P t converges weakly to Π as t→ ∞,

from Portmanteau theorem (cf., [22, Theorem 1.4.16]), we have that

lim inf
t→∞

P t(z∗, O) ≥ Π(z∗, O) > 0.

This is a contradiction of Proposition 2(b). Thus, the conclusion follows. •

Proposition 3 states that the limiting unperturbed t.p.f. converges weakly to

a t.p.f. Π which accepts the same invariant p.m. as P . Furthermore, the support

of Π is the set of pure strategy states S. This is a rather important observation,

since the limiting perturbed process can also be “related” (in a weak-convergence

sense) to the t.p.f. Π , as it will be shown in the following section.

1 The support of a measure µ on Z is the unique closed set F ⊂ B(Z) such that

µ(Z\F ) = 0 and µ(F ∩O) > 0 for every open set O ⊂ Z such that F ∩ O 6= ∅.



4.2 Decomposition of perturbed t.p.f.

We can decompose the t.p.f. of the perturbed process as follows:

Pλ = (1− ϕ(λ))P + ϕ(λ)Qλ

where ϕ(λ) = 1 − (1 − λ)n is the probability that at least one agent trembles

(since (1−λ)n is the probability that no agent trembles), and Qλ corresponds to

the t.p.f. induced by the one-step reinforcement-learning update when at least

one agent trembles. Note that ϕ(λ) → 0 as λ→ 0.

Define also Q to be the t.p.f. when only one players trembles, and Q∗ is the

t.p.f. where at least two players tremble. Then, we may write:

Qλ = (1− ψ(λ))Q + ψ(λ)Q∗, (7)

where ψ(λ)
.
= 1 − nλ

1−(1−λ)n corresponds to the probability that at least two

players tremble given that at least one player trembles.

Let us also define the infinite-step t.p.f. when trembling only at the first step

(briefly, lifted t.p.f.) as follows:

PL
λ

.
= ϕ(λ)

∞
∑

t=0

(1 − ϕ(λ))tQλP
t = QλRλ (8)

where Rλ
.
= ϕ(λ)

∑∞
t=0(1−ϕ(λ))tP t, i.e., Rλ corresponds to the resolvent t.p.f.

Proposition 4 (Invariant p.m. of perturbed process). The following hold:

(a) For f ∈ Cb(Z), limλ→0 ‖Rλf −Πf‖∞ = 0.

(b) For f ∈ Cb(Z), limλ→0 ‖PL
λ f −QΠf‖∞ = 0.

(c) Any invariant distribution µλ of Pλ is also an invariant distribution of PL
λ .

(d) Any weak limit point in P(Z) of µλ, as λ → 0, is an invariant probability

measure of QΠ.

Proof. (a) For any f ∈ Cb(Z), we have

‖Rλf −Πf‖∞

= ‖ϕ(λ)
∞
∑

t=0

(1 − ϕ(λ))tP tf −Πf‖∞

= ‖ϕ(λ)
∞
∑

t=0

(1 − ϕ(λ))t(P tf −Πf)‖∞

where we have used the property ϕ(λ)
∑∞

t=0(1− ϕ(λ))t = 1. Note that

ϕ(λ)
∞
∑

t=T

(1 − ϕ(λ))t‖P tf −Πf‖∞



≤ (1− ϕ(λ))T sup
t≥T

‖P tf −Πf‖∞.

From Proposition 3(b), we have that for any δ > 0, there exists T = T (δ) > 0

such that the r.h.s. is uniformly bounded by δ for all t ≥ T . Thus, the sequence

AT
.
= ϕ(λ)

T
∑

t=0

(1− ϕ(λ))t(P tf −Πf)

is Cauchy and therefore convergent (under the sup-norm). In other words, there

exists A ∈ R such that

lim
T→∞

‖AT −A‖∞ = 0.

For every T > 0, we have

‖Rλf −Πf‖∞ ≤ ‖AT ‖∞ + ‖A−AT ‖∞.

Note that

‖AT ‖∞ ≤ ϕ(λ)

T
∑

t=0

(1− ϕ(λ))t‖P tf −Πf‖∞.

If we take λ ↓ 0, then the r.h.s. converges to zero. Thus,

‖Rλf −Πf‖∞ ≤ ‖A−AT ‖∞, for all T > 0,

which concludes the proof.

(b) For any f ∈ Cb(Z), we have

‖PL
λ f −QΠf‖∞

≤ ‖Qλ(Rλf −Πf)‖∞ + ‖QλΠf −QΠf‖∞
≤ ‖Rλf −Πf‖∞ + ‖QλΠf −QΠf‖∞.

The first term of the r.h.s. approaches 0 as λ ↓ 0 according to (a). The second

term of the r.h.s. also approaches 0 as λ ↓ 0 since Qλ → Q as λ ↓ 0.

(c) Note that, by definition of the perturbed t.p.f. Pλ, we have

PλRλ = (1− ϕ(λ))PRλ + ϕ(λ)QλRλ.

Note further that QλRλ = PL
λ and

(1− ϕ(λ))PRλ = Rλ − ϕ(λ)I,

where I corresponds to the identity operator. Thus, we have

PλRλ = Rλ − ϕ(λ)I + ϕ(λ)PL
λ .



For any invariant probability measure of Pλ, µλ, we have

µλPλRλ = µλRλ − ϕ(λ)µλ + ϕ(λ)µλP
L
λ ,

which equivalently implies that

µλ = µλP
L
λ ,

since µλPλ = µλ. Thus, we conclude that µλ is also an invariant p.m. of PL
λ .

(d) Let µ̂ denote a weak limit point of µλ as λ ↓ 0. To see that such a limit

exists, take µ̂ to be an invariant probability measure of P . Then,

‖Pλf − Pf‖∞
≥ ‖µλ(Pλf − Pf)‖∞
= ‖(µλ − µ̂)(I − P )[f ]‖∞.

Note that the weak convergence of Pλ to P , it necessarily implies that µλ ⇒ µ̂.

Note further that

µ̂[f ]− µ̂QΠf

= (µ̂[f ]− µλ[f ]) + µλ[P
L
λ f −QΠf ]+

(µλ[QΠf ]− µ̂[QΠf ]).

The first and the third term of the r.h.s. approaches 0 as λ ↓ 0 due to the fact

that µλ ⇒ µ̂. The same holds for the second term of the r.h.s. due to part (b).

Thus, we conclude that any weak limit point of µλ as λ ↓ 0 is an invariant p.m.

of QΠ . •

4.3 Invariant p.m. of one-step perturbed process

Define the finite-state Markov process P̂ as in (3).

Proposition 5 (Unique invariant p.m. of QΠ). There exists a unique in-

variant probability measure µ̂ of QΠ. It satisfies

µ̂(·) =
∑

s∈S

πsδs(·) (9)

for some constants πs ≥ 0, s ∈ S. Moreover, π = (π1, ..., π|S|) is an invariant

distribution of P̂ , i.e., π = πP̂ .

Proof. From Proposition 3(d), we know that the support of Π is on the set of

pure strategy states S. Thus, the support ofQΠ is also on S. From Proposition 4,

we know that QΠ admits an invariant measure, say µ̂, whose support is also S.

Thus, µ̂ admits the form of (9), for some constants πs ≥ 0, s ∈ S.



Note also that Nδ(s
′) is a continuity set of QΠ(s, ·), i.e., QΠ(s, ∂Nδ(s

′)) = 0.

Thus, from Portmanteau theorem, given that QP t ⇒ QΠ ,

QΠ(s,Nδ(s
′)) = lim

t→∞
QP t(s,Nδ(s

′)) = P̂ss′ .

If we also define πs
.
= µ̂(Nδ(s)), then

πs′ = µ̂(Nδ(s
′)) =

∑

s∈S

πsQΠ(s,Nδ(s
′)) =

∑

s∈S

πsP̂ss′ ,

which shows that π is an invariant distribution of P̂ , i.e., π = πP̂ .

It remains to establish uniqueness of the invariant distribution of QΠ . Note

that the set S of pure strategy states is isomorphic with the set A of action

profiles. If agent i trembles (as t.p.f. Q dictates), then all actions in Ai have

positive probability of being selected, i.e., Q(α, (α′
i, α−i)) > 0 for all α′

i ∈ Ai

and i ∈ I. It follows by Proposition 2 that QΠ(α, (α′
i, α−i)) > 0 for all α′

i ∈ Ai

and i ∈ I. Finite induction then shows that (QΠ)n(α, α′) > 0 for all α, α′ ∈ A.

It follows that if we restrict the domain of QΠ to S, it defines an irreducible

stochastic matrix. Therefore, QΠ has a unique invariant distribution. •

4.4 Proof of Theorem 1

Theorem 1(a)–(b) is a direct implication of Propositions 4–5.

5 Conclusions & Future Work

In this paper, we considered a class of reinforcement-learning algorithms that

belong to the family of learning automata, and we provided an explicit char-

acterization of the invariant probability measure of its induced Markov chain.

Through this analysis, we demonstrated convergence (in a weak sense) to the set

of pure-strategy states, overcoming prior restrictions necessary under an ODE-

approximation analysis, such as the existence of a potential function. Thus, we

opened up new possibilities for equilibrium selection through this type of algo-

rithms that goes beyond the fine class of potential games.

Although the set of pure-strategy-states (which are the stochastically-stable

states) may contain non-Nash pure strategy profiles, a follow-up analysis that

excludes convergence to such pure-strategy-states may be performed (similarly

to the analysis presented in [11] for diminishing step size).
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