

D.6.3 The E-ARK Data Mining Showcase

Name(s)

DOI: 10.5281/zenodo.1173018

 Grant Agreement Number: 620998

 Project Title:

European Archival Records and
Knowledge Preservation

 Release Date:

 14th February 2018

 Contributors

Name Affiliation

Rainer Schmidt Austrian Institute of Technology

Sven Schlarb Austrian Institute of Technology

Jan Rörden Austrian Institute of Technology

Janet Anderson University of Brighton

Zoltán Lux National Archives of Hungary

David Anderson University of Brighton

Statement of originality:

This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of
the work of others has been made through appropriate citation, quotation or
both.

STATEMENT OF ORIGINALITY

Page 2 of 35

Project 620998: European Archival Records and Knowledge Preservation - E-ARK

EXECUTIVE SUMMARY

����������	
�
�
�
	���
����
����
	������
����
�
�
��
�����
�
�����
����������������������
�����
�

��
�
���
��
��������
���
���
����
��������	����
���������	�����
�������
���
�
��
� �!�
���	
�������

�
��
������	��
���
�
��
��
����
�����
�����
�"

��	
����
	���������	
���
��"�
���#$ %���	�#$ &� �!�
�

������
��
�
����
����
�������
�����������
����
��
��������	
��������"�
������������������������
��
��

��
������'��(����
�����
��������
����	���	�����
�������
�
���
����
���
����������	����
������	������
���

��	
���	 �

!����	
���
��"�
��
���
��
���
�
���	
�
�
��
�������������
�����
�	
��
��
���
����
����������	���
�
���

�
���������
����������������
�
�	
�����
� �����
)�"�
������������
���������
�"��
	������������	��
�
�

"���
�	�����
�
�����
��
��"�
������
�������
��
��
��	
��
��
����
��	
���	 �!�
������"�
��*�	

��

"��
	�"���
�	�����
�
�����
������"

���
��
	��
���
����
���+#*��+�
�	
���#�����"���
��*�	

���

	�����"���
�����
�	
���
�����
������
�
����
���
�
�����������	����
	�	������������
��
�������	�
��
�����
�

	
���	� �(�
����
�������	
�����������
����������
��
���
)�������������
���
�����
�
)������
����	�

�������,���
��
���

�������������
�����
�����
�����
�
�����
��
����	���"��
������������
����
�����	������

	
���
������
������
�"

������
�
��
	���	�	
��
�
	��������
�
�	
�����
�����*���������	�(�
�
��� �

�

�

�

�

Page 3 of 35

�����������	
�	
��

�

EXECUTIVE SUMMARY .. 3

Table of Contents ... 4

1. Introduction... 5

2. The Standalone Software Stack ... 6

2.1. Pair-Tree based storage backend ... 6

2.2. Container-based Deployment Model ... 7

3. Revised Cluster Software Stack ... 13

3.1. Motiviation .. 13

3.2. Revised Data-Centric Implementation ... 14

4. Demonstrators and Showcases .. 16

4.1. Natural Language Processing of Archived Content ... 16

4.2. Visualization of Extracted Geographical Data ... 20

4.3. Archiving and Accessing Operational Databases .. 25

5. Testbeds and Pilot Deployments .. 26

5.1. Earkdev Public Deployment .. 28

5.2. Standalone Deployments at the Slovenian National Archives 30

5.3. Cluster Deployment at the National Archives of Hungary .. 31

6. Conclusion ... 34

Page 4 of 35

Page 5 of 35

�� �	
��
��
��	�

E-ARK has developed the Integrated Platform Reference Implementation (IPRIP) which is a
software prototype for package creation, search, and access using data-centric
technologies. The underlying concepts and technologies of the system have been detailed in
past deliverables (D6.1 and D6.2). The main components of the IPRIP include a scalable
packaging infrastructure for creating OAIS Information Packages and a data-centric
repository for searching and accessing data items on demand.

The IPRIP is an archiving environment that consists of two main components: a Python-
based graphical front-end application and OAIS package creation infrastructure, and a
backend repository for data storage, search, and access. The frontend and backend
systems are loosely coupled through HTTP REST interfaces. This approach has been taken
as it provides one with the flexibility to swap different implementations and/or deployments of
the frontend and backend components. A detailed description of the IPRIP architecture can
be found in the E-ARK deliverable D6.2.

This deliverable (D6.3) focuses on recent developments that support the deployment of the
IPRIP in different configurations at E-ARK stakeholder sites. These configurations are
specifically targeting the processing of E-ARK Archival Information Packages (AIPs), as
detailed in D4.4 Part A. A flexible packaging mechanism combined with a standalone
backend implementation enables custom single-server deployments on demand. Work on
the single-server deployment has been carried out jointly with WP4 in the context of the E-
ARK Web project. For a detailed description of the E-ARK Web SIP to AIP conversion
component, the reader is referred to deliverable D4.4 Part B.

The scalable, Hadoop-based backend implementation has been ported to the latest CDH
distribution in order to support a recent technology stack, advanced data mining concepts,
and enterprise demands. Showcases that dealt with the application of text mining
approaches, the extraction and visualization of geographical information, the implementation
of a database archiving workflow, and mass document ingest have been implemented and
deployed at stakeholder sites in Hungary and Slovenia.

In section 2, we give an overview of the standalone version of the IPRIP that provides a
software stack for small scale deployments. This software package, called E-ARK Web lite,
utilizes a pairtree1 based storage backend and a container-based deployment model that is
based on the Docker2 platform. In section 3, we discuss work on porting the initial system to
a contemporary Hadoop distribution, and the Cloudera Search platform and its implications.
Section 4 provides an overview of implemented use-case demonstrations and data-mining
showcases including the application of Natural Language Procession techniques on archived
data, the extraction and visualization of geographic information (geo-coding) on archived
data, and the implementation of automated processes for archiving operational databases.
Section 5 provides an overview of testbeds and pilot deployments that haven been
evaluated by E-ARK stakeholders, including a public deployment as well as two on-site
deployments.

1 https://wiki.ucop.edu/display/Curation/PairTree
2 https://www.docker.com/

Page 6 of 35

�� �����
�	
���	�����
������
����

The goal of the standalone software stack is to provide an installation package of the
Integrated Platform Reference Implementation for small scale environments using an
integrated storage backend and a container-based deployment model. The storage is file
based using the pairtree algorithm to store Information Packages on the platform.
Deployments can be carried out on single machines. The installation is based on Docker
containers to ensure a simple installation procedure and support for updating the various
components of the system separately. This section describes the storage and deployment
mechanisms implemented for standalone deployments of the IPRIP.

���� ��������������
��
�����������	
��

The standalone version of the IPRIP makes use of a file-based storage backend that uses
the pairtree algorithm for file placement. This storage backend provides an alternative to
deploying the scalable but also more complex Hadoop-based backend infrastructure which
is used for cluster deployments of the IPRIP.

The storage backend used in the standalone software stack makes use of the Python-based
Pairtree File System implementation3 of the Pairtrees for Collection Storage specification4. It
is used to store the physical representation of the AIP in a conventional file system.

A pairtree is a filesystem hierarchy for storing digital objects where the unique identifier
string of the object is mapped to a unique directory path so that the file system location of
the object can be derived from the identifier string. Basically, the identifier string is split each
two characters at a time and the object folder has by definition more than two characters.
Furthermore, the specification defines a mapping of special characters to a set of alternative
characters in order to ensure file system level interoperability.

The following example explains how the Pairtree storage method is used in the E-ARK Web
implementation.

According to the default E-ARK Web configuration, the path to the storage directory in the
file system is:

/var/data/earkweb/storage

The storage folder contains an empty file called “pairtree_version0_1” which specifies
the version of the Pairtree specification.

The storage directory contains the root folder of the Pairtree storage:

/var/data/earkweb/storage/pairtree_root

Let us assume that an AIP has the following identifier

urn:uuid:6c496473-4e77-44f5-b387-25bffd362789

3 https://pypi.python.org/pypi/Pairtree
4 https://wiki.ucop.edu/display/Curation/PairTree?preview=/14254128/16973838/PairtreeSpec.pdf

Page 7 of 35

Following the method defined by the Pairtree specification, this identifier is mapped to the
following path:

 ur/n+/uu/id/+6/c4/96/47/3-/4e/77/-4/4f/5-/b3/87/-2/5b/ff/d3/62/78/9

and the actual AIP container file is stored in a “data” folder which represents the leaf node of
the pairtree file system hierarchy.

The leaf node contains one or possibly more sub-directories (5-digits fixed length zero-filled
number) for the versions of the AIP.

The full path to the AIP file is as follows (to be read as a single line string):

/var/data/earkweb/storage/pairtree_root/ur/n+/uu/id/+6/c4/96/47/3

-/4e/77/-4/4f/5-/b3/87/-2/5b/ff/d3/62/78/9/data/00001/urn+uuid
+6c496473-4e77-44f5-b387-25bffd362789.tar

The purpose of the pairtree storage backend is to allow a large number of AIPs5 to be stored
in a conventional file system, such as Network Attached Storage (NAS), for example, and
allow fast access to individual files by directly reading content streams from the files stored
in the TAR-packaged AIP container files.

���� ��	
��	�������
���������	
���
�����

The IPRIP provides an e-archiving environment that can be deployed at different scales
ranging from a single server to a computer cluster hosted within a data centre. Cluster
deployments are based on software components that make use of Apache Hadoop6 and
other data-centric software stacks. While the Hadoop-based deployment provides built-in
scalability, robustness, and support for data-centric processing, it also comes with increased
configuration and maintenance requirements compared to a standalone deployment.

The storage backend described in section 2.1 does not depend on the cluster software
stack. It has been designed to support traditional (non-distributed) deployments, which
provides an adequate solution for smaller institutions or demonstration purposes, as
compared to big data-oriented software environments. The standalone version of the IPRIP
e-archiving environment has been made available using a container-based deployment
model using Docker7 in order to support simple and modular installation of the software.

Docker is an open-source engine that automates the deployment of any application as a
lightweight and portable container that will run on any platform where the Docker engine is
supported.8 In order to allow deploying IPRIP services on a Docker platform, Docker

5 No concrete numbers will be given here as to what a “large number of AIPs” means in this context,
as the requirements regarding scalability of indexing and access procedures depend on various
factors, such as the environment (hardware and network) and the type of collection data to be stored
in the repository. It is a matter of evaluating the Standalone Software Stack (cf. section 5) using
scalability tests to find out if it can cope with the given scalability requirements, or if the Cluster
Software Stack (cf. section 5) is needed.
6 http://hadoop.apache.org/
7 https://www.docker.com
8 https://docs.docker.com/engine/installation

Page 8 of 35

containers for the individual services of E-ARK Web’s frontend and backend have been
created.

Table 1 shows the software module and the corresponding images used in an IPRIP Docker
deployment. The left column describes the software module and the right column indicates
the image which is used to create and run a container to provide the corresponding service.

Software module Docker image

MysSQL9 earkdbimg10

SolR11 Solr12

RabbitMQ13 tutum/rabbitmq14

Redis15 tutum/redis16

E-ARK Web17 earkwebimg18

Celery19 earkwebimg

Celery Flower20 earkwebimg

Table 1 The standalone deployment stack packaged as Docker containers

Docker Compose21 is used to run the components listed in Table 1 as multi-container Docker
applications. Docker compose allows one to automatically retrieve or build required images
and containers as well as to control start up and shut down of multiple inter-dependent
services. Docker Compose also allows one to interlink services making communication
between services easier. Figure 1 shows the YAML22 file for E-ARK Web which defines the
service composition allowing different containers to interact in an isolated environment. The
dotted lines are used to visually divide the YAML file according to the different services it
defines.

9 http://www.mysql.com
10 Based on earkweb image created from http://github.com/eark-project/earkweb
11 https://lucene.apache.org/solr
12 https://hub.docker.com/_/solr
13 http://www.rabbitmq.com
14 https://hub.docker.com/r/tutum/rabbitmq
15 http://redis.io
16 https://github.com/tutumcloud/redis
17 http://github.com/eark-project/earkweb
18 https://github.com/eark-project/earkweb/blob/master/Dockerfile
19 http://www.celeryproject.org
20 https://github.com/mher/flower
21 https://github.com/docker/compose
22 http://yaml.org/

Page 9 of 35

Figure 1 Docker containers included by the IPRIP standalone software stack and the main
links between the containers.

Page 10 of 35

For example, the first service, named ‘db’, provides the MySQL database service needed by
the E-ARK Web frontend web application to store basic information about the processing
status of information packages. The service is defined by the following properties:

• image: earkdbimg – The name of the image which is used to provide the MySQL
database.

• container_name: earkdb_1 – The name of the Docker container.

• build: ./docker/earkdb – The Docker file which contains the build instructions to
create the Docker image.

• volumes: - /tmp/earkweb-mysql-data:/var/lib/mysql – A directory from the Host
system (here: /tmp/earkweb-mysql-data) is mounted as the MySQL data directory
into the Docker container (here: /var/lib/mysql).

• ports: - ‘3306:3306’ – The Port of the application is mapped to the port where the
service will be exposed (in this case the standard MySQL port 3306 will be exposed
as port 3306 by the container).

The orange arrows in figure 1 show how the services are linked with each other using the
“links” attribute of the E-ARK Web container. The attribute references the required service by
name. The BROKER_URL environment variable of the flower service is used to link it with to
the ‘rabbitmq’ service.

Page 11 of 35

Figure 2 shows the origin of the images which are needed to run the various Docker
containers. It shows that the Solr, RabbitMQ, and Redis images are directly retrieved from
the Docker Image Library23, and that the remaining containers are based on Docker
container build instructions provided in form of Dockerfiles24 as part of the E-ARK Web code
base.25

Figure 2 Origin of the images which are the basis to run the Docker containers

23 https://hub.docker.com
24 https://docs.docker.com/engine/reference/builder
25 http://github.com/eark-project/earkweb

Page 12 of 35

Figure 3 shows how various directories of the host file system are mapped to directories of
the corresponding Docker containers. On the top right, there are directories of the local file
system, and on the bottom right, there are directories of the Docker containers. The colours
of the bounding boxes show the relationship between host file system and container
directories. For example, the ‘/tmp/earkweb-mysql-data’ directory of the host file

system is mapped to the ‘/var/lib/mysql’ directory of the MySQL database container. It
is worth highlighting that for the containers E-ARK Web, Celery, and Celery Flower, the
current directory (‘.’) – which corresponds to the E-ARK Web code base – is mounted to the
/earkweb container directory. These containers provide the different types of services (the

E-ARK Web frontend, the Celery task queue backend, and the Celery Flower task execution
monitoring service), based on the same base image using service specific container run
instructions respectively.

Figure 3 Data directories of the Docker containers and mapping to directories of the host file
system

Page 13 of 35

�� ������
�����
������
������
����

A major part of the work carried out in WP6 in the final project year was the development of
a new release of the scalable backend of the IPRIP. The backend is mainly responsible for
providing storage, search, and access methods for the ingested information packages. In
contrast to the standalone version described in the previous section, the scalable backend
relies on data-centric technologies that enable a cluster deployment. As described in the
previous WP6 deliverables, the cluster deployment supports scalable storage based on the
Hadoop Distributed File System, a distributed and replicated search environment that is
based in the SolR cloud platform, and a data-centric repository that provides random access
and full-text search to all data items shipped with the ingested information packages. The
initial system was based on the CDH4.7 Hadoop distribution and the Lily project, and has
been upgraded to CDH5.8 and the Cloudera Search platform in the recent version.

���� ��
����
��	�

As the Hadoop eco-system is developing at rapid pace, it is crucial to ensure that
applications that build on the Hadoop software stack are kept up-to-date in order to ensure
they do not rely on outdated software platforms. One can view the installation of a Hadoop
environment as a kind of operating system for the cluster. In order to execute an application,
it is required to compile it for the particular software components and APIs installed on the
cluster.

It is also important to note that many Hadoop-based applications rely on higher-level
frameworks (like Pig, Hive, or HBase) which use Hadoop as their underlying environment.
For this reason, cluster administrators typically rely on Hadoop software distributions that
include a variety of optional software components that can be deployed on top of the
Hadoop base installation. Installing software via a distribution eases the deployment
procedure and ensures that the installed components are stable and interoperable.

Apache Hadoop distributions are for example available from Cloudera26, Hortonworks27, and
MapR28. The IPRIP relies on Cloudera’s CDH distribution for cluster deployments. It also
makes use of the Hadoop-based Lily repository29 which provides a scalable repository
system for storing, searching, and retrieving records and content items. The latest version of
Lily was however written for the CDH 4.7 distribution which has passed its end of
maintenance date. Besides providing a convenient and powerful repository API on top of
HDFS and HBase, a major strength of Lily is its integration of the Apache SolR search
platform with the distributed Hadoop environment.

At the time writing this report, the actual Cloudera Hadoop distribution is CDH 5.8. The CDH
5.x Hadoop distributions include the Lily HBase indexer as part of the newly introduced
Cloudera search platform which provides a tight integration of Apache SolR with the CDH

26 http://www.cloudera.com/
27 http://hortonworks.com/
28 https://www.mapr.com/
29 https://github.com/NGDATA/lilyproject

Page 14 of 35

distribution. Compared to CDH 4.x, the CDH 5.x distribution also provides stronger support
for advanced data analytics on Hadoop by integrating the Apache Spark platform30.

As a consequence, WP6 started to port the scalable E-ARK Web backend from CDH4.7,
together with the Lily repository, to CDH5.8 and Cloudera Search. The main motivation for
this decision was to upgrade the E-ARK Web cluster software stack to a contemporary
Hadoop platform, allowing us to maintain and further develop the software on a long-term
basis.

���� ������
���
����	
�����������	
�
��	��

The data-centric backend implementation consists of a set of source code projects that deal
with data transfer, messaging, ingest, storage and search as well as access and data
mining, and are made available through the E-Ark Github repository31. As a result of porting
the backend from CDH 4.7 to CDH 5.8, it was required to create a new version of the ingest
component which is responsible for loading data into the repository. The general functionality
of this component, as well as its interfaces, remains, however, unchanged.

To summarize the server-sided workflow: Clients upload information packages to a staging
area on the HDFS. During repository ingest, the content and metadata is extracted from the
packages. For each content item, a repository record is created and stored on the cluster,
where it is indexed and made available through an access API.

In its present version32, the entire payload for the created repository records is stored within
the HBase system. Large binary objects will be written to HDFS only in later versions33. As
the HBase data model stores all data as uninterpreted byte arrays and due to the absence of
the Lily API, it was required to develop a small software layer (the E-ARK repository client)
that allows one to store basic data types such numbers, strings, or dates into the database,
and to ensure that these data types are also understood by the full-text indexer (provided via
Solr).

30 http://spark.apache.org/
31 https://github.com/eark-project
32 presently available through the git branch: cdh5.8
33 Objects above 50 MB should be stored on HDFS only and not being put into an HBASE cell. The
object type is not relevant in this context as HBase stores its cells as uninterpreted bytes arrays.

Page 15 of 35

Figure 4 Components of the data-centric backend implementation and migration from Lily to
Cloudera Search.

Figure 4 provides an overview of the Hadoop-based backend implementation of the IPRIP. A
detailed description of the backend architecture and its components has been provided in
deliverable D6.2. Here, we highlight modifications that have been made to the backend
system porting the backend from CDH 4.7 to CDH 5.8.

E-ARK Repository Client: The components provide a thin layer that enables the ingest
service to store content extracted from the ingested information packages into the repository.
In its present implementation, this layer supports storing data items into HBase only. Very
large data items are currently ignored and will be stored to the HDFS file system in future
versions. The software layer supports a simple typing mechanism that allows the system to
take advantage of basic data types like strings, dates, or numbers.

E-ARK HBase Repository: In its present version, data is directly stored into HBase. Each
data item (e.g. a file contained within an information package), is stored as a separate
column. The fields of each column reflect the structure of the record created by the
repository client. The record structure and the structure of the row key have not been
changed compared with the previous version, which used the Lily client for record creation,
as described in deliverable D6.2.

Indexing and Search Server: Lily’s HBase triggering and indexing mechanisms have been
integrated with the latest CDH release34. In its present version, the data-centric backend
makes use of CDH5.8 and incorporates the toolset provided by Cloudera search. This
includes the Lily HBase Batch Indexer as well as the Lily HBase near real-time (NRT)

34 http://blog.cloudera.com/blog/2013/07/cloudera-search-over-apache-hbase-a-story-of-collaboration/

Page 16 of 35

Indexer Service. Cloudera Morphlines are used for the Extract-Transfer-Load (ETL)
procedure required to transfer data from HBASE and SolR for indexing.

Search Interface: The IPRIP and its front-end components make direct use of the Solr
REST interface and search API, as described in deliverable D6.1. Both, Lily and Cloudera
Search (CDH5.8) rely on Solr 4.x as their search server. Consequently, the search interface
of the IPRIP remains unchanged after porting it to CDH5.8.

Access Interface: In its current version, the IPRIP stores all data to the HBASE distributed
database. After porting the backend to CDH5.8 the HBASE REST API35 has been used for
providing the access interface. In order to support both HDFS and HBASE as storage media
for the repository, it will be required to enhance the access interface accordingly.

Finally, it is important to note that the introduced changes integrate well with the graphical
environments provided by the IPRIP, and hence are not recognizable by the end-user.

�� ����	�
��
�����	
�����������

In the following, we provide an overview of implemented use-case demonstrations and data-
mining showcases implemented in the final project year.

���� ��
�������	��������������	������������
���	
�	
�

The Natural Language Processing (NLP) part of E-ARK Web serves as a showcase for text
mining that is possible in the context of large-scale archived data. Our goal was to improve
and add value to the Solr36 index created from the ingested data, as well as show possible
options in terms of access methods. For the reference implementation, we focused on
Named Entity Recognition (NER). In the following we will describe experiments carried out
for NER as well as additional approaches like geo-spatial search which have been carried
out as proof-of-concept implementations. A summary of NLP techniques used in the
experiments carried out in this context are provided in figure 5.

35 https://www.cloudera.com/documentation/enterprise/5-8-x/topics/admin_hbase_rest_api.html
36 http://lucene.apache.org/solr/

Page 17 of 35

Figure 5 NLP techniques utilized in experiments. Visualization methods and the utilization of
discovered implicit information enable the development of advanced search and access

methods.

The developed NER component makes use of an already generated Solr index as described
previously. The Solr index serves as (a) the data source for data mining and (b) as the data
sink where results are added. A data set for mining is typically created by formulating a
query that selects the data of interest (e.g. data that lies within a certain time frame or within
a range of information packages). In its current version, data mining takes place by using the
Celery-based task processing infrastructure provided by the E-ARK Web project, as
explained in deliverable D6.2 and in section 5 of this document.

The experiments carried out in the context of the data mining showcase make use of the
IPRIP search interface in order to receive input data through HTTP requests. The Solr index
generated by the IPRIP contains, besides a significant set of metadata elements, the content
for every text document in plain text. The individual items of a data set are unambiguously
identified using identifiers provided by the Solr record.

Named Entity Recognition
For carrying out NER, the Stanford CRF-NER37 parser was used in combination with the
NLTK38 (Natural Language Toolkit) Python library. These were orchestrated and processed
in parallel using one main task queue, and a subtask for every file that should be processed
in the Celery environment provided by E-ARK Web.

37 http://nlp.stanford.edu/software/CRF-NER.shtml
38 http://www.nltk.org/

Page 18 of 35

Figure 6 Conceptual workflow implemented for carrying out Named Entity Recognition
(NER) using the Integrated Platform Reference Implementation Prototype.

The conceptual workflow and setup for carrying out the NER experiments are shown in
figure 6. In the first step (1), the user specifies the criteria for the records to be processed
within the E-ARK Web user interface. These criteria are automatically translated into a valid
Solr query and sent to the search server; In case matching data is found by the search
server, a corresponding Celery task is created (2). This task retrieves the content of every
found document from Solr (3). A set of asynchronous subtasks is started to perform NER in
parallel (4) using the Stanford NER parser (5).

Page 19 of 35

An example of a tagged sentence can be seen below.

Optionally, the Celery worker sends a request to Solr, the obtained results are written back
to the search server extending the Solr index with information on the found entities for each
document or data item (6). The index entry for the individual data items is therefore extended
with corresponding fields, as show in the XML snippet below.

Fields are created for extracted entity classes like location, person, and organization. This
extension provides additional search terms that allow a user to formulate richer queries, and
to find archived documents based on automatically recognized entities:

Examples are:

• Which entities have been found in a particular package/file?

• Which packages/files contain data on a specific location/person/organization?

Here, it is important to note that NER results cannot be considered as 100% accurate, so
both false positives as well as false negatives are possible; nonetheless, we believe that this
approach offers valuable insights into large amounts of data (within certain margins of error).

Geo-Coding

For implementing automatic geo-coding, an additional experiment was carried out that uses
NER results as a basis to add geo information to data items. This was achieved by adding

����������	
���
�����	�������������������
������������������

���

���������������������������������������
���������������

�� ��������������!
����������������������������
"���

���
��"�#$������%�#$��������������#$���������������

	�����������
������������ ��������������!
����������������

��������������������������������&�"����������������'�����"���

(���"�#$�����)%�#$�����#�&��
��#$�����*�%�#$�����%����

��+�
',�

����+��������-.	���.,/�010'�234/55367/�38�813

6��
08�'287
���	���������
�����	3770������9����������%	��+����,�

����+��������-.'
������"	�.,�		��'���
��	��+����,�

����+��������-.�
'���
��:��.,�

������+���,(������+����,�

������+���,)
���+����,�

������+���,9�����
+����,�

������+���,�;&������+����,�

������+���,�;&������+����,�

����+����,�

��+��
',�

Page 20 of 35

geo information to documents based on identified locations. Subsequent to named entity
recognition, geo-coordinates were retrieved for locations using the Nominatim39 database.

When combining the extracted geo information with a tool like Peripleo,40 the geo-spatial
search engine also used by the geo-data demonstrator described in section 4.2, it is possible
to offer novel ways to analyse and access text documents. The approach makes it possible
to visualize the geographic focus of documents using digital maps, and to access the
document with respect to geo information through the same interface. In addition, it is
possible to visualize geo-locations and associated data sets over a timely dimension using
Peripleo. This allows a user, for example, to visualize and browse documents that are
associated with a geo-location (like a city) in different time periods.

Automatic Database Building

In this context, we also included the XML database eXistdb41 as an additional database to
store extensive NLP results, and use them as a basis to gather more information about
documents. Using such an external data store, we are free to include information that would
not be suitable for the Solr index. This covers information such as tf-idf scores for every
detected entity to rank entities according to their statistical importance and significance in
relation to the (sub-)corpus; coordinates (latitude, longitude) for every location; dpbedia42
links for entities etc. Such information can only be found implicitly in the documents –
humans make those associations and links based on their knowledge of the world, but they
cannot be searched unless they are explicitly added to a database or search index.

Topic Modeling
An experiment on topic modelling has been carried out using the Python machine learning
library scikit-learn.43 Using a pre-trained model based on newspaper categories (“Sports”,
“Culture”, “Politics” etc.), abstract categories of documents were identified and adding to the
Solr index. The idea of this approach is to enable users to quickly identify and select or
exclude documents, and to narrow down search queries on large datasets. An important
prerequisite for topic modelling, however, is the creation of a trained model that is capable of
identifying relevant categories in the processed data collection.

���� ���������
��	���� !
���
�
�"��������������
��

The visualization of extracted geographical data is part of the development of the AIP to DIP
conversion44. As a pre-requisite of this conversion, it is assumed that data is available in the
form of data files encoded following the Geography Markup Language (GML) Encoding
Standard.45 Examples of these files are GML representations of the regions of Slovenia in a
time series of the years 1994, 1995, 1998, 2002, 2006, 2010, and 2015.46

39 http://wiki.openstreetmap.org/wiki/Nominatim
40 https://github.com/pelagios/peripleo
41 http://www.exist-db.org/exist/apps/homepage/index.html
42 http://wiki.dbpedia.org/
43 http://scikit-learn.org/stable/
44 A more detailed description of the AIP-DIP conversion tool can be found in E-ARK deliverable D5.4.
45 GML XML Schema files: http://schemas.opengis.net/gml/3.2.1/
46 https://github.com/eark-project/earkweb/tree/master/earkresources/geodata

Page 21 of 35

Regarding the visualization use case, the relevant information available in these GML
example files are lists of white space separated coordinate values (each X and Y coordinate
pair being comma separated) stored as the gml:coordinates element’s text value which

represent polygons of the Slovenian regions. An example section of the GML XML file about
the Slovenian region “AJDOVŠČINA” is provided in the XML snippet shown in figure 7. Only
the beginning and the end of the coordinate list is shown to save space. Note that the first
coordinate is the same as the last coordinate because the list of coordinates must describe a
closed ring by convention.

The Peripleo47 tool from the Pelagios project48 was chosen as the environment for visualizing
the geographical data because it is especially designed to visualize, search, and discover
sets of geographical data which are created over time. Peripleo used an RDF based format
where the geographical properties are available as one feature amongst other properties of
a gazetteer entity, such as name, and year of a region or point on a map.

47 https://github.com/eark-project/peripleo
48 http://commons.pelagios.org

Page 22 of 35

Figure 7 XML snippet of a section of the GML file describing one region of Slovenia.

To publish a gazetteer to Peripleo, it is required to create a representation of the region in
RDF. A portion of the RDF file, which corresponds to the GML encoded region shown in the
Peripleo RDF49 snippet, is shown in figure 8. In the Peripleo RDF, the region is encoded as a

WKT string50. A Python module was created to allow converting the GML coordinates to
WKT.51 This module can convert a list of position values (element gml:posList) into a

coordinate tuples list. Furthermore, as the coordinates are in the coordinate system

49 Full example available at https://raw.githubusercontent.com/eark-
project/earkweb/master/earkresources/geodata/ob_1994.gml
50 http://www.giswiki.org/wiki/Well_Known_Text
51 https://github.com/eark-project/earkweb/blob/master/earkcore/conversion/peripleo/gml_to_wkt.py

<gml:featureMember>

 <ogr:ob_1994 fid="ob_1994.0">

 <ogr:geometryProperty>
 <gml:Polygon srsName="EPSG:3794">

 <gml:outerBoundaryIs>

 <gml:LinearRing>
 <gml:coordinates>

 432376.312,81964.773

 432424.5,81848.507
 ...

 432206.187,82004.351

 432376.312,81964.773

 </gml:coordinates>
 </gml:LinearRing>

 </gml:outerBoundaryIs>

 </gml:Polygon>
 </ogr:geometryProperty>

 <ogr:D46_ID>10053609</ogr:D46_ID>

 <ogr:OB_ATR_PE_SIF>OS</ogr:OB_ATR_PE_SIF>

 <ogr:OB_ATR_PE_IME>
 OBCINA - STARA (do 1.12.1994)

 </ogr:OB_ATR_PE_IME>

 <ogr:OB_ATR_D46_ID>1</ogr:OB_ATR_D46_ID>
 <ogr:OB_ATR_D46_IME>AJDOVŠČINA</ogr:OB_ATR_D46_IME>

 <ogr:OB_ATR_N8>0</ogr:OB_ATR_N8>

 <ogr:OB_ATR_POVRSINA>352640500</ogr:OB_ATR_POVRSINA>

 <ogr:OB_ATR_Y_C>415110</ogr:OB_ATR_Y_C>
 <ogr:OB_ATR_X_C>83160</ogr:OB_ATR_X_C>

 </ogr:ob_1994>
</gml:featureMember>

Page 23 of 35

EPSG:3912 (Slovene National Grid)52, a function from the Python package pyproj53 was
used to transform the coordinates to EPSG:4326 (WGS84 - World Geodetic System 1984)54
used in Peripleo.

Figure 8 Peripleo RDF snippet description of one region

A set of Celery backend tasks were created which can be used for DIP creation to validate
GML data (class DIPGMLDataValidation) and to add a Peripleo RDF representation to

the DIP (class DIPGMLDataConversion).55

Figure 9 shows an open DIP creation process (process id: 0fa52d40-77aa-41cf-b4ab-
9222307cf14e). The DIP creation process used one AIP (urn:uuid:f237c314-757f-4f11-9cb2-

52 http://epsg.io/3912
53 https://pypi.python.org/pypi/pyproj/
54 http://epsg.io/4326
55 https://github.com/eark-project/earkweb/blob/master/workers/tasks.py

@prefix cito: <http://purl.org/spar/cito> .
@prefix cnt: <http://www.w3.org/2011/content#> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix geosparql: <http://www.opengis.net/ont/geosparql#> .
@prefix gn: <http://www.geonames.org/ontology#> .
@prefix lawd: <http://lawd.info/ontology/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://127.0.0.1:8000/earkweb/sip2aip/working_area/aip2dip/0fa52d40-77aa-41cf-b4ab-
9222307cf14e/#place/Ajdovščina/1994> a lawd:Place ;
 rdfs:label "Ajdovščina"@si ;
 dcterms:isPartOf
http://earkdev.ait.ac.at/earkweb/sip2aip/working_area/sip2aip/5c6f5563-7665-4719-a2b6-
356ea033c1d/#place/Slovenia> ;
 dcterms:temporal "1994" ;
 gn:countryCode "SI" ;
 geosparql:hasGeometry [geosparql:asWKT "POLYGON ((
 14.1240482574528 45.87850063597578,
 14.12468538434922 45.87745938243139,
 …
 14.12185129747619 45.87883988684491,
 14.1240482574528 45.87850063597578))"] .

Page 24 of 35

b0cce7399623) with one representation named ‘gmlrep’ (GML files), to create a Peripleo
RDF representation named ‘peripleottl’ (TTL files).

Figure 9 DIP after adding the Peripleo RDF representation to a DIP

Finally, the DIPPeripleoDeployment task56 uses the Peripleo Gazetteer Upload interface

to upload the Peripleo RDF files into Peripleo.57

56 https://github.com/eark-project/earkweb/blob/master/workers/tasks.py
57 Specific changes required in the Peripleo admin API have been published in an E-ARK specific
Peripleo branch available at https://github.com/pelagios/peripleo/tree/eark.

Page 25 of 35

Figure 10 gives an example of searching the region “Llubljana” of Slovenia in the time range
between 1994 and 2015.

Figure 10 Rendering Slovenian regions on the map using Peripleo.

���� �������	���	
��������	��#����
��	�����
�������

Access of archived databases was implemented as part of the AIP to DIP conversion. As a
pre-requisite of this conversion, it was assumed that data is available in form of data
SIARD58 files which have been created as part of the AIP. For this purpose, the ingest
workflow can make use of Database Preservation Toolkit59 to generate SIARD from
databases, and create a SIARD representation as part of the AIP.

Celery backend tasks have been created which allow importing a SIARD file into an
available relational database management system supported by the Database Preservation
Toolkit (class DIPImportSIARD), and which allow exporting the database (class

DIPExportSIARD) as the version of the DIP which is created for access purposes.60 After
the import of the database into an available relational database management system, any
required modifications (e.g. deleting parts containing sensitive information) can be performed
before exporting the database version for access.

58https://www.bar.admin.ch/dam/bar/it/dokumente/kundeninformation/siard_formatbeschreibung.pdf.d
ownload.pdf/siard_format_descriptioning.pdf
59 http://www.database-preservation.com
60 https://github.com/eark-project/earkweb/blob/master/workers/tasks.py

Page 26 of 35

Figure 11 describes a basic workflow of archiving a database (here a Postgres database) in
SIARD format which is then imported into another target database (here Oracle). Finally,
further analysis can be performed using specific tools, e.g. Oracle’s OLAP tools. 61

Figure 11 Workflow describing the archiving of a database in SIARD format, the import into
another target database, and the subsequent analysis using dimensional tables.

A pilot carried out at the Hungarian National Archive (pilot 7) in the context of E-ARK was
dealing with the problem of accessing archived databases. In this context, a workflow was
implemented that loads a SIARD-based archived database from an E-ARK DIP into an
Oracle-based data warehouse providing convenient access and reporting mechanisms for
end-users. The various OLAP technologies utilized in pilot 7 are detailed in E-ARK
deliverable D5.4. A general presentation of the pilot is available on Github62. In addition,
deliverable D6.4 includes a proposal for an E-ARK Standard for Vendor-Independent
Archiving of Data Warehouses.

�� ���
��
���	
�����
���������	
��

The following provides an overview of testbeds and pilot deployments that haven been
evaluated by E-ARK stakeholders. The main difference between the different deployments of
the IPRIP is between the ones which use the Standalone Deployment Stack shown in figure
12, and the ones which use the Cluster Deployment Stack shown in figure 13. The public
demonstration instance (earkdev) falls somewhere between the two because it uses the
Cluster Software Stack, but it is actually installed on a single virtual machine (pseudo-
distributed Hadoop backend).

61 http://www.oracle.com/technetwork/database/options/olap
62 https://github.com/eark-project/Data-Warehouse-and-OLAP

Page 27 of 35

Standalone Deployment Stack Cluster Deployment Stack

Pilot at the Slovenian National Archives Pilot at the Hungarian National Archives

Virtual machine available for download63 Pseudo-distributed64 public instance earkdev

Figure 12 Standalone software stack

63 http://earkdev.ait.ac.at/eark/pilots/eark-pilot-vm.ova
64 http://earkdev.ait.ac.at/earkweb/

Page 28 of 35

Figure 13 Cluster Software Stack

�

���� ���
������������������	
�

Hardware

Type Virtual Machine

RAM 8GB

Processors 2 * Intel Xeon CPU 2.50GHz

Operating System Ubuntu 14.04 Desktop

Deployed Software

E-ARK Web frontend WSGI application deployed to an Apache
Webserver.

Storage Backend The storage backend of this instance is a
pseudo-distributed Hadoop installation. All
Hadoop services, i.e. Jobtracker,
Tasktracker, HDFS Datanode, HDFS
Namenode, and HDFS Secondary-
Namenode, are running on the same

Page 29 of 35

machine.

Indexing, search and access Lily single instance installation including
SolR for search, Lily access API for
accessing content files.

Celery distributed task queue The Celery backend (distributed task queue)
is configured with one single worker which
runs 4 processes (using 4 cores) in parallel.

Peripleo for visualizing Geodata Single instance installation of Peripleo
providing open API for Peripleo RDF file
deployment.

RabbitMQ Single instance installation used as
message broker by the Celery distributed
tasks queue and for information exchange
between E-ARK Web frontend and backend.

Redis Single instance installation used as task
execution result backend.

Data Mining Showcases

Full-text indexing and search Using typical office documents (Word, PDF,
etc.) to test the full-text indexing and search
features with document collections in the
English language.

Named Entity Recognition Using typical office documents (Word, PDF,
etc.) to test the Named Entity Recognition
with document collections in the English
language.

Database archiving Database archiving (creating and restoring
SIARD files).

Data

Electronic Documents The simplest type of data which can be used
to do tests in this instance are document
collections (e.g. Word or PDF documents).
These can be used to test the full-text
indexing and search features.

Stakeholders

Project partners All project partners are invited to use this
instance for testing new features.

DLM Forum members The first stable version was made available

Page 30 of 35

for access to DLM forum members.

Invited external parties An account can be created on request for
any external interested party.

���� �
�	
���	����������	
���
�
��������	��	���
��	������������

Hardware

Type Virtual Machine imported using VMWare.

RAM -

Processors -

Operating System Ubuntu 16.04 Desktop

Deployed Software

E-ARK Web frontend Django development server.

Storage Backend Pairtree Storage (cf. section) 2.1

Search and access Single instance SolR for search. Packages
can be indexed individually or the complete
Pairtree storage is indexed.

Django access API for accessing individual
content streams of TAR files entries.

Celery distributed task queue The Celery backend (distributed task queue)
is configured with one single worker which
runs 4 processes (using 4 cores) in parallel.

Peripleo for visualizing Geodata Single instance installation of Peripleo
providing open API for Peripleo RDF file
deployment.

RabbitMQ Single instance installation used as
message broker by the Celery distributed
tasks queue and for information exchange
between E-ARK Web frontend and backend.

Redis Single instance installation used as task
execution result backend.

Data Mining Showcases

Visualisation of Geodata Visualization of geographical data as
described in section 4.

Page 31 of 35

Data

Geographical data Geographical data in GML format as
described in section 4.

Electronic Documents Electronic documents for testing full-text
indexing and search.

Stakeholders

National Archives of Slovenia The National Archives of Slovenia are
evaluating the environment together with
Roda-in and ESSArch EPP regarding their
suitability to support Geodata archiving and
access.

���� ����
�����������	
��
�
�����
��	���������������$�	�����

Hardware

Type The installation at the Hungarian National
Archives is an installation on a real computer
cluster using 5 servers.

RAM Master: 48 Gigabyte

Slaves: 13 Gigabyte each

Processors Master: 2 Intel(R) Xeon(R) CPU X5650 @
2.67GHz (in total 12 cores and 24 threads)

Slaves: 2 Intel(R) Xeon(R) CPU E5-2660 0
@ 2.20GHz (in total 16 cores and 32
threads) each

Operating System RedHat RHEL 6

Deployed Software

E-ARK Web frontend WSGI application deployed to an Apache
Webserver.

Storage Backend The storage backend of is a distributed
Hadoop installation.

The Hadoop services Jobtracker,
Namenode, and Secondary-Namenode are
installed on the master node, and
Tasktracker, and Datanode services are

Page 32 of 35

installed on each of the slave nodes.

Regarding the distributed database HBase,
the hbase-master service is installed on the
master node and the hbase-regionserver on
each of the slave nodes.

Search and access Lily distributed installation including a SolR
Cloud installation for search, Lily access API
for accessing content files.

The Lily nodes are only installed on the
slave machines.

Celery distributed task queue The Celery backend (distributed task queue)
is configured with one single worker which
runs 4 processes (using 4 cores) in parallel.

Peripleo for visualizing Geodata Single instance installation of Peripleo
providing open API for Peripleo RDF file
deployment.

RabbitMQ Single instance installation used as
message broker by the Celery distributed
tasks queue and for information exchange
between E-ARK Web frontend and backend.

Redis Single instance installation used as task
execution result backend.

Data Mining Showcases

Full-text indexing and search Using typical office documents (Word, PDF,
etc.) to test the full-text indexing and search
features with document collections in the
Hungarian language.

Named Entity Recognition Using typical office documents (Word, PDF,
etc.) to test the Named Entity Recognition
with document collections in the Hungarian
language.

Database archiving Database archiving (creating and restoring
SIARD files).

Data

Geographical data Geographical data in GML format as
described in section 4.

Electronic Documents Electronic documents for testing full-text

Page 33 of 35

indexing and search.

Stakeholders

National Archives of Hungary The National Archives of Hungary are the
main stakeholders.

Page 34 of 35

�� ��	������	�

This deliverable summarizes a number of technical developments, experiments, and
deployments that have been carried out in the final project year in the context of WP6 -
Archival Storage, Services and Integration.

The workpackage has developed a flexible software prototype called the E-ARK Integrated
Prototype Reference Implementation (IPRIP). The software architecture and taken design
decisions have been described in the previous deliverables D6.1 and D6.2. This deliverable
focuses on the application of the software environment in different contexts.

The IPRIP provides an archiving environment that supports the creation of E-ARK
Submission Information Packages (SIPs) through the E-ARK Web’s package creation
environment. The workflow environment enables the system to transfer the created
information packages to archival storage as well as to a staging area which is used by the E-
ARK search infrastructure and the backend repository. Both components support the E-ARK
access interfaces which provide support for full-text search and fast retrieval of data items
(e.g. documents) contained in information packages. Specific software components like the
E-ARK WP5 order management tool take advantage of these interfaces for the computer
aided creation of Dissemination Information Packages.

At present the IPRIP comes with two different backend implementations and deployment
modes. The IPRIP can be deployed as a standalone system on a single computer. In this
deployment mode the system can be easily installed and all computing and IO processes
are handled on the same physical machine. The cluster deployment mode is extremely
scalable using Python Celery and Apache Hadoop as underlying platforms. Cluster
deployments are naturally more complex to configure and require the availability of
networked server hardware. Deliverable D6.3 provides details on the utilized software, its
configuration, and explains important recent developments.

A major benefit of the IPRIP architecture is the ability to find, retrieve, and process large-
volumes of data. This is achieved by storing the content as well as structured data across
computational computer nodes which are equipped with persistent storage media as well as
computing elements. Full text search is a common use-case (e.g. provided by Web search
engines) allowing users to retrieve a ranked list of relevant documents based on entered
query terms. This use-case is also supported by the IPRIP search interface. In year 3, WP6
has additionally carried out a set of so called data mining experiments. The goal of these
experiments was to develop and showcase strategies that can provide advanced research
and visualization services to stakeholders in the archival domain.

D6.3 describes a number of experiments that combine data analysis techniques such as text
mining, geo-coding, and multi-dimensional visualization (e.g. based on time and location).
The goal of this work was to improve the user experience and/or to enrich structured and
searchable information on the archived data sets. The experiments have been carried out
based on specific use-cases and test data-sets. D6.3 also describes an initial set of pilot
deployments of the IPRIP (in both cluster and standalone) mode that have been used to
ingest, index, and access data at different stakeholder sites.

Page 35 of 35

For future work, we see a large R&D potential in maturing the developed data mining
strategies for archives and implementing and piloting them in combination with existing
archival information systems at stakeholder sites.

