
1

Integration of IT-DB Monitoring
tools into IT General
Notification Infrastructure

August 2014

Author:
Binathi Bingi

Supervisor:
David Collados Polidura

CERN openlab Summer Student Report 2014

2

Project Specification

The goal of this openlab summer student project was to standardize the service

notification and alarming system in the IT Database group. For this we need to integrate

the IT General Notification Infrastructure (GNI) into some of our database services, like

for instance, RACMon, Enterprise Manager, Syscontrol, RMAN, Database on Demand,

and Storage Administrators' tools. The objective was to make the GNI service our only

mechanism to generate notifications and alarms (SMS, email, SNOW tickets) and as

unique interface to visualize notifications.

Abstract

The IT Database group has independent monitoring tools/data and is immersed in a
process of consolidating its monitoring infrastructure. The aim of this document is to
provide insight into the way we achieved integration of GNI into our database
services.

3

Table of Contents

Project Specification…..………………………………………………………………..2

Abstract………………………………………………………………………….……….2

1 Introduction .…………..…………………………………………….……………..…4

1.1 Database Monitoring tools………………..………………………..........4

1.2 GNI and SNOW…………………………………………………………….4

1.3 Kibana………………………………………………….……………………4

2 Consolidation of IT-DB monitoring….….……….…….….....…………………...5

 2.1 Input…………………………………………….…..………………………5

2.2 DB_notifier Producer…………………...…………………………….......6

2.3 Messaging Broker …..……………………………….……………….…10

2.4 Output…………………..…………………………………………………11

 3 Visualizations………………...………………………………………………..…11

 4 Conclusion…………………………………………………………………...……14

 5 Future Proposals…………….…………………..……………………………….15

 6 Bibliography …………………………………...……………………………….…15

4

1 Introduction

The IT Monitoring team is working to provide monitoring solutions in different areas.

Notifications: To get notified about problems affecting our services or nodes.

Archive: To archive data for offline batch analysis or historical reference.

Dashboards: To visualize monitoring data based on real time analysis.

To deliver successful monitoring solutions it is important to continuously monitor the status of all
resources (network equipment, physical machines, virtual machines, operating systems,
application services, etc.), to efficiently process all collected data, to promptly deliver monitoring
results (notifications, alarms, reports, etc.) to the appropriate target, and to have the capability of
executing complex queries across distinct monitoring data sets.

The IT-Database (IT-DB) group is in a process of consolidating the entire monitoring
infrastructure. As a part of it we created a single mechanism (DB_notifier Producer) to generate
notifications and alarms. We adopted a single interface Kibana, to visualize the monitoring data.
Our goal was to stop sending notifications in the form of emails as much as possible and
automate the opening of SNOW (Service Now) tickets for certain critical events.

1.1 Database monitoring tools
In IT-DB there are independent monitoring tools like Oracle Enterprise Manager (OEM),
Syscontrol, RACMon, Lightweight monitoring tools, monitoring data/scripts for middleware
tools like Syscontrol, or for other services like Storage, Backups, Recoveries, etc. These multiple
monitoring applications are deployed for monitoring the status of specific resources. These were
independent tools based on different tool chains. Despite their heterogeneity, they all shared a
similar architecture and faced the same limitations, leading to unnecessary duplication of effort
and increased difficulties in sharing monitoring data.

1.2 GNI and SNOW
GNI is a notification layer composed of several components responsible for dispatching alarms

triggered in each data centre node to multiple operations tools. Different from other tools, GNI

relies on dedicated transport layer, based on messaging brokers. Different producers publish

notifications to the messaging infrastructure, which are taken by two consumers: one which creates

tickets (SNOW tickets) in the CERN central ticketing system [1], while the second consumer

populates a web application (Kibana) [2] showing current notifications.

1.3 Kibana
Kibana is a browser based analytics and search interface for Elasticsearch that was developed
primarily to view Logstash event data. It is used by IT monitoring to visualize monitoring
data in real time. Kibana is user friendly dashboard and can be configured to display data as
per the user requirements. It facilitates query on the monitoring data and also to save the
dashboards.

5

2. Consolidation of IT-DB monitoring

DB-notifier Producer

In the process of consolidation of monitoring tools, we created a DB-notifier producer which
would take messages in a specific format as input from the monitoring tools to generate
notifications. These notifications are sent to the messaging broker in the cloud. Further, the
notifications are forwarded to the consumers like GNI and SNOW depending on the type of
notification.

2.1 Input

DB_notifier Producer takes two arguments as input.
Messages: In the form of key value pair.
Configuration file: configuration files of monitoring tools generating the message.

Messages from Syscontrol monitoring tool are in the form of key value pair as shown below:
Feb 12 16:15:37 itrac1111 SYSCONTROL_LOGGER[23286]:
|V:002|BEGIN_REMOTE:17837630655748|USER_LOCAL:sysctl|CMD:ssh|USER_REMOTE:s
ysctl|HOST:dbsrvg3301|SCRIPT:/etc/init.d/syscontrol|SINGLE:single|SUSPEND:|RUN_AS_RE

6

MOTE:|IGNORE_ACTIVE:|TAG:tagenable_printers|DELAY:|DELAY_VAL:|SILENT:very_sil
ent|HOST:dbsrvg3301|ENTITY:enable_printers|OPS:start|ARGS:|APPLY_PROFILE:|

DB_notifier Producer facilitates an option to provide either individual message or a log file of
messages as input. Monitoring tools like OEM, RACMon generate messages in text format. We
wrote a shell script that would consume these text messages and generate the message in required
key value pair format. Whenever there is an event triggered in the monitoring tool, it would make
a call to the shell script. The script would consume the text message, generate output in proper
format and pass it as input to the DB_notifier producer.

The second argument passed to DB_notifier is the configuration file of the monitoring tool. We
had written configuration files for each monitoring tool in IT-DB, these are passed as argument to
the DB_notifier producer.

Example: Configuration file of the Syscontrol monitoring tool

[configuration]
destination_dir = tmp/teststomp

[header]

Version = 2.0

Type = notification
des = /topic/monitoring.notification.db
env = dbnotifier_dev
host_group = physicsdb/pdbbackup
producer = dbnotifier_syscontrol
snow = 1

2.2 DB_notifier Producer

DB_notifier producer is a python script that takes the configuration file of the monitoring tool and
output of the shell script as input to generate a JSON(JavaScript Object Notation) file of the
notifications. The notification specification [3] given by IT Monitoring must be followed in order
for the GNI to accept the notification.

Message structure:

{

 "header":{ ... },

 "body":"{

 "payload": { ... },

 "metadata": { ... }

 }"

}

7

Notification specification mandates the inclusion of certain fields in the header and body of
the messages as specified below. Current version of notification specification is v2.0

Header tags:

TAG MANDATORY TYPE DESCRIPTION

m_version yes string version of message specification

m_type yes string type of message

m_producer yes string

identifier of the application producing

messages

m_submitter_environment yes string environment of the submitter host

m_submitter_hostgroup yes string cluster of the submitter host

m_submitter_host yes string submitter host

m_toplevel_hostgroup no string top level hostgroup of the source host

m_snow no string enable or disable snow tickets

destination no string destination of the message (necessary

 for the stompclt)

Body/Metadata tags:

TAG MANDATORY TYPE DESCRIPTION

timestamp yes int
time when the event occurred (seconds

since epoch)

uuid yes string unique message identifier

metric_id yes int metric id

metric_name yes string metric name

entity yes string source host

hostgroup no string

hostgroup of the source host (snow

defaults to NO_HOSTGROUP)

environment no string environment of the source host

is_essential no string

is_essential flag of the source host (snow

defaults to "0")

asset_id no string identifier of the source machine

 detailed description of the notification,

description no string

used in the SNOW title of the INC

(defaults to "no description provided" in

 snow)

notification_type no string type of the notification (os, app, hw, nc)

8

state no string local state of the notification: open,

 close, *

validity

no int
notification validity in hours (default

24h)

egroup_name no string egroup responsible for entity

fe_name no string name of functional element to send snow

 ticket

troubleshooting

no string

url or comment for troubleshooting

 information

snow_assignment_level no int
assigment level to created Snow ticket,

defaults to 2

 boolean to request or not grouping of

snow_grouping

no string

ticket in snow based on hostgroup and

 metric_name over a 1hour period,

 defaults to "1"

snow_instance no string the CERN snow instance: cern, cerndev,

 cerntest, cernsandox

snow_display_value no string

the incident number of the record in

snow

snow_id no string sys_id of already created snow ticket

 (event record)

Body/Payload tags:

TAG MANDATORY TYPE DESCRIPTION

* no * *

General format for a custom notification producer:

#/usr/bin/python

from monitoringdatamodel.gni import Notification

from monitoringdatamodel import utils

from messaging.message import Message

from messaging.queue.dqs import DQS

import time

import socket

if __name__ == "__main__":

 # Local path to send message so stomp client can consume it

9

 mq = DQS(path="/tmp/test")

 # You can see the complete specification of a notification in:

 my_notification_header = {

 'm_type': 'notification',

 'm_version': '2.0',

 'm_producer': 'mycustomscript',

 'm_submitter_environment': 'qa',

 'm_submitter_hostgroup': 'aimon/my/host/group',

 'm_submitter_host': socket.gethostname(),

 'destination': '/topic/monitoring.notification.generic'

 }

 my_payload = {

 "MyValues": [1, 2, 3],

 "custom": "field"

 }

 my_notification_body = {

 'payload': my_payload,

 'metadata': {

 'metric_id': 123456,

 'metric_name': 'my_big_problem_alarm',

 'entity': 'my_little_machine',

 'timestamp': int(time.time()),

 'destination': '/topic/monitoring.lemon.notification',

 'uuid': utils.generate_uuid(),

 }

 }

 notif = Notification({

 'header': my_notification_header,

 'body': my_notification_body

 })

 # We send the message to the queue directory

 mq.add_message(notif.to_message())

10

The above producer has certain dependencies:

Monitoring-data-model: to build valid notifications[4].

python-messaging: for writing in the notifications queue of the broker[5].

stompclt: necessary dependency to send message to the messaging broker[6].

These dependencies are Red Hat Linux6 dependent rpms and can be installed using yum.

yes | yum install stompclt monitoring-data-model python-messaging

Now, we have a single notification producer for all the monitoring tools/data in IT-DB. The
output of the notifier is sent to the messaging brokers using client that uses STOMP protocol.

2.3 Messaging Broker
stompclt is a versatile tool to interact with messaging brokers speaking STOMP and/or message
queues on disk. It receives messages from an incoming module, optionally massaging them (i.e.
filtering and/or modifying), and sends them to an outgoing module. Depending on which
modules are used, the tool can perform different operations.

Here are the supported incoming modules:

 broker: connect to a messaging broker using STOMP, subscribe to one or more
destinations and receive the messages sent by the broker

 queue: read messages from a message queue on disk

Here are the supported outgoing modules:

 broker: connect to a messaging broker using STOMP and send the messages

 queue: store the messages in a message queue on disk

In our case, stompclt is the messaging broker that forwards the JSON files from the DB_notifier
Producer to the GNI. stompclt must be configured to the incoming queue path and is done in the
stompclt-notifications.conf file.

Certain credentials are needed to access stompclt. They are configured in the stompclt-auth.conf
file.

2.4 Output
JSON format files are forwarded from the messaging brokers to the GNI Dashboards by a client.

11

Now, we can visualize the notification data in real time and perform query on it. In addition,
generation of automatic SNOW tickets is facilitated for critical events.

3. Visualizations
Kibana interface is used for visualization of data. We can login into dashboard to see, create and
query on the monitoring data generated by IT-DB production monitoring tools.

The previous notification system was in the form of emails. In November 2013, we received
almost 6638 emails, approximately 221 emails per day. It was very difficult to share or query the
monitoring data using the previous notification system.

DB_notifier Producer has facilitated us to make use of the dashboards to visualize notifications
rather than receiving them in form of emails.

12

Kibana interface

Many dashboards are available on Kibana. GNI dashboard can be loaded onto the Kibana.

GNI Dashboard

13

Dashboards also display various fields regarding each event. It is possible to choose the fields to
be displayed for each event and query using the value of the fields.

We can also query for top host groups or producers, etc. as per the requirement and configure
how the result of our query would be displayed (either in the form of tables, or graphs like
histograms, pie charts, etc.).

14

For example if we run a query for top producers on GNI dashboard and configure to display
result in the form of a pie chart. Clicking on any of the sectors of the pie chart would display the
concerned notification data.

4. Conclusion
Through this project we achieved

Single IT-DB producer: DB_notifier Producer that we developed is the single notification

producer for all the IT monitoring tools in IT-Databases. It is easy to maintain and run same

notifier in all the production monitoring machines.

Visualize and query monitoring data: Display of data on Kibana interface facilitates

visualization of data in the form of graphs and tables. It is easy to query or filter the monitoring

data using the tools available on Kibana.

Configure and display monitoring data: Dashboards can be configured to display the

monitoring data that interests the user. These dashboards can be saved and then shared, imported

or exported.

Email notifications: We could stop global email notifications to a considerable level by putting

DB_notifier Producer into production. Events, alerts, etc. are displayed on the dashboards rather

than sending them in the form of emails to the group users.

 SNOW tickets: Automatic Service NOW tickets can be opened for events or alerts that are

critical enough.

15

5. Future Proposals

At present, production monitoring machines (db-manager, oem.cern.ch, etc.) run on RedHat
Linux5. DB_notifier Producer that we developed has RedHat Linux6 dependencies. Servers need
to be migrated to RedHat Liux6 in order to bring DB_notifier Producer into production. We also
need to identify the messages that should generate SNOW tickets and put it into production.
Currently we integrated Syscontrol, OEM into GNI and are working on RACMon. We can
further add more IT-DB monitoring tools into GNI.

6. Bibliography

1. https://cern.service-now.com/service-portal/

2. https://dashboards.cern.ch/public/_plugin/kibana/#/dashboard/elasticsearch/Notificati

ons:%20All

3. https://itmon.web.cern.ch/content/build-custom-notifications-consumer

4. http://itmon-doc.web.cern.ch/itmon-doc/monitoring-data-model/

5. https://messaging.readthedocs.org/en/latest/index.html

6. http://mig.web.cern.ch/mig/doc/stompclt.html

https://cern.service-now.com/service-portal/
https://dashboards.cern.ch/public/_plugin/kibana/#/dashboard/elasticsearch/Notifications:%20All
https://dashboards.cern.ch/public/_plugin/kibana/#/dashboard/elasticsearch/Notifications:%20All
https://dashboards.cern.ch/public/_plugin/kibana/#/dashboard/elasticsearch/Notifications:%20All
https://itmon.web.cern.ch/content/build-custom-notifications-consumer
http://itmon-doc.web.cern.ch/itmon-doc/monitoring-data-model/
https://messaging.readthedocs.org/en/latest/index.html
http://mig.web.cern.ch/mig/doc/stompclt.html

