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a  b  s  t  r  a  c  t

Retro-reflective  coatings  applied  to  blinds  of reduced  geometric  complexity  promise  to provide  view  to
the  outside  while  effectively  controlling  solar  gains  and  glare.  To  characterize  the  reflection  characteris-
tics  of  such  coatings  over  the  entire  solar  spectrum,  a novel  extension  to  a scanning  gonio-photometer  is
developed.  The  extended  instrument  is  tested  and  applied  to measure  a coating’s  Bidirectional  Reflection
Distribution  Function  including  the  region  of the retro-reflected  peak.  The  measured  datasets  are  com-
piled  into  a data-driven  reflection  model  for the  daylight  simulation  software  Radiance.  This  model  is
applied  to illustrate  the  coating’s  effect  in  a comparison  to  purely  diffuse  and  specular  surface  finishes  on
geometrically  identical,  flat  blinds.  Daylight  supply,  the  probability  of  glare,  and solar  gains  are  assessed
ulation
 model

for  an  exemplary,  South-oriented  office  under  sunny  sky  conditions.  The  results  indicate  the  potential  of
the  coating  to effectively  shade  direct  sunlight  even  if  applied  on  blinds  with  minimalistic  geometries.
The  modeling  technique  is  shown  to  be a general  means  to replicate  the irregular  optical  properties  of
the  coating,  which  cannot  be  represented  by the  standard  models  in  daylight  simulation  software.

© 2017  The  Author.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).
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Fig. 4. Gonio-photometer employed in this study. The incident direction (red) is set
by two-axis rotation of the sample. Rotation of the detectors on a spherical path
around  the sample continuously varies the outgoing direction (green) in the course
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revents the sample from bending, which would affect the
n of the measured surface region in the measurement.
le is shown in Fig. 3. Surface imperfections are visible

 due to the prototype character of the specimen.

urement of the BSDF

ning gonio-photometer is chosen for the measurement for
ns. First, since measurements are performed sequentially
endently at each pair of incident and outgoing directions,
ynamic range is achieved when compared to image-based

es. The dynamic range is crucial to capture the expected,
rectional reflection by the sample as well as features of

 where its value is low. Second, the open design of the
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cos �s

= Es(�i, �i, �s, �s)
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tion in Fig. 2.
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� ≈ 0.49 for the wavelength range of visible light
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the shading performance of the coating, the entire solar
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alogy to the beam characterization in the BSDF measure-
ploying the gonio-photometer’s default configuration,
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ig. 5). Since both light paths (green and red) involve one
 and one transmission event on identical BSs, exact a priori
e of their properties, which vary for different wavelength

 not required. This assumes that that the sample’s reflec-
trum is flat within the wavelength range covered by one

ent and greatly simplifies the measurement.
 the location of the sample behind the detector’s center

n, its optical distance to the detector (rr, red in Fig. 6) does
 the detector radius (r, blue in Fig. 6). The effective scatter

 �r,s according to the extended optical distance rr can be
m the direction relative to the centre of the detector radius
rded by the instrument:

r

rr
· sin �s (2)

easured datasets resulting from the measurement are
o that the angular offset of 90◦ caused by the BSs is com-
, and all data exceeding ±7.5◦ from the direction of ideal
ection is culled. The resulting BSDF, limited to the region
ak that cannot be otherwise measured, is finally com-
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 the peak region.
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p gradient, is misalignment of the sample in the mea-
s with and without beam-splitters. Alignment errors are

 to a certain degree due to the experimental nature of
ment extension. To correct for this expected misalign-
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ctional resolution. The peak shape for adjacent incident
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 ±7.5◦). Since the outgoing directions are effectively mir-
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 the measured distributions. A logarithmic scale ensures
of the background scatter in distributions featuring strong
expected for both the mirror and the retro-reflective sam-

ration of a data-driven model from the measured BSDF

ch measured incident direction and wavelength range,
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s functions approximating the BSDF over all outgoing
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Table  1
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Fig. 10. Profile of the retro-reflective sample’s DSF in the scatter plane measured in the wavelength range of Vis.
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Fig. 12. Profile of the retro-reflective sample’s DSF in the scatter plane as returned by the data-driven model in the wavelength range of Vis. The deviations from measurements
for �i = 30◦ and 60◦ are shaded.
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Fig. 14. Profile of the fenestration system DSFs in the scatter plane for transmission in Vis. Coordinates are relative to the fenestration plane. � = 0◦ points inward, positive �
upward.

Table 4
Comparison of the data-driven model with the measured DSF of the retro-reflective
coating  in the scatter plane by frequency of deviations �DSF and coefficient of
variation of the root-mean-square deviation CV(RMSD).

�i CV(RMSD) �DSF< 5% �DSF<10% �DSF<20%
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60◦ 3.713 4.4% 11.9% 50.1%
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Fig. 15. Profile of the fenestration system DSFs in the scatter plane for reflection in Vis. � = 180◦ points outward. � =90–180◦ is above, � =180–270◦ below the horizon.

Fig. 16. Distribution of horizontal illuminance on a sensor grid at z = 0.85 m (bottom = South). Black
cases  achieve Eh > 300 lx unless covered by furniture (left column, top row).

Table 6
Solar  gains glazing variant LeL� , cases A–C for exemplary sun elevations (values for
the evaluated sun elevation 50◦ in bold letters).
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Fig. 17. Distribution of illuminance E [lx] on the surfaces of an exemplary, South-facing office with flat blinds featuring retro-reflective (case A), ideally mirror-like (B), and
ideally  diffuse (C) top surfaces. Sun elevation 50◦ , azimuth 0◦ (South).

Fig. 18. Luminance maps [cd m−2] for cases A, B and C. Note the reflection of the su
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Fig. 19. Potential glare sources for cases

Table 8
Results of glare assessments for the three cases of retro-reflective (A), specular (B),
and diffuse (case C) blinds.

Case A Case B Case C

DGP 0.328 0.888 0.352
DGI 23.931 29.340 22.310
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el extension to a scanning gonio-photometer for the mea-
t of retro-reflection has been developed. Applicability and
f the approach, employing two beam-splitters to com-
or its wavelength dependent transmission and reflection
s, were demonstrated. Based on these initial tests, a fully
l setup shall be developed that reduces error due to mis-
t compared to the presented prototype.
valuated coating achieves a highly directional, retro-

 effect. This property is confirmed in both evaluated
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iled  from measured BSDF, the data-driven reflection
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