DenseVNet Multi-organ Segmentation on Abdominal CT

This dataset includes the multi-organ abdominal CT reference segmentations publicly released in conjunction with the IEEE Transactions on Medical Imaging paper "Automatic Multi-organ Segmentation on Abdominal CT with Dense V-networks" [1].

The data comprises reference segmentations for 90 abdominal CT images delineating multiple organs: the spleen, left kidney, gallbladder, esophagus, liver, stomach, pancreas and duodenum.

The abdominal CT images and some of the reference segmentations were drawn from two data sets: The Cancer Image Archive (TCIA) Pancreas-CT data set [2-4] and the Beyond the Cranial Vault (BTCV) Abdomen data set [5-6]. The Pancreas-CT data set comprises abdominal CT acquired at the National Institutes of Health Clinical Center from pre-nephrectomy healthy kidney donors or patients with neither major abdominal pathologies nor pancreatic cancer lesions. Segmentations of the pancreas are included with this data set; images were manually labeled slice-by-slice by a medical student, and verified/modified by an experienced radiologist. The BTCV data set comprises abdominal CT acquired at the Vanderbilt University Medical Center from metastatic liver cancer patients or post-operative ventral hernia patients. Segmentations of the spleen, right and left kidney, gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, portal vein and splenic vein, pancreas, right adrenal gland, left adrenal gland are included in this data set; images were manually labeled by two experienced undergraduate students, and verified by a radiologist on a volumetric basis using the MIPAV software.

Segmentations that were not present in the original data sets were performed interactively using Matlab 2015b and ITK-SNAP 3.2 by an image research fellow under the supervision of a board-certified radiologist with 8 years of experience in gastrointestinal CT and MRI image interpretation. Segmentations that were present in the original data sets were edited to ensure a consistent segmentation protocol across the data set.

Terms of use

The terms of use of this data set include the terms of use of both the TCIA Pancreas-CT data set (see tabs for data links and terms of use) and the Beyond the Cranial Vault (BTCV) Abdomen data set (terms of use; after registration, you can access the data). If you use these reference segmentations, please cite the above manuscript and the references below. Because these data include manual segmentations of images from the Beyond the Cranial Vault challenge test data, they may not be used to develop submissions for the challenge.

References

[1] Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Transactions on Medical Imaging, 2018.

[2] Roth HR, Farag A, Turkbey EB, Lu L, Liu J, and Summers RM. (2016). Data From Pancreas-CT. The Cancer Imaging Archive. http://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU

[3] Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB, Summers RM. DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 556–564, 2015. http://arxiv.org/pdf/1506.06448.pdf

[4] Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. http://doi.org/10.1007/s10278-013-9622-7

[5] Xu Z, Lee CP, Heinrich MP, Modat M, Rueckert D, Ourselin S, Abramson RG, and Landman BA, “Evaluation of six registration methods for the human abdomen on clinically acquired CT,” IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1563–1572, 2016.http://doi.org/10.1109/TBME.2016.2574816

[6] Landman BA, Xu Z, Igelsias JE, Styner M, Langerak TR, and Klein A, “MICCAI multi-atlas labeling beyond the cranial vault - workshop and challenge,” 2015, https://doi.org/10.7303/syn3193805

File format

Labels are in NIfTI format with the following label definitions. Labels marked with * are only available in the BTCV data set.
  1. spleen
  2. right kidney*
  3. left kidney
  4. gallbladder
  5. esophagus
  6. liver
  7. stomach
  8. aorta*
  9. inferior vena cava*
  10. portal vein and splenic vein*
  11. pancreas
  12. right adrenal gland*
  13. left adrenal gland*
  14. duodenum

Subjects included in the dataset

The data comprises segmentation volumes for 90 cases, and the cropping coordinates (cropping.csv) used in the manuscript. The abdominal CT can be obtained from the links above. The reference standard segmentations may be incomplete outside of the specified cropping region. The cases are listed by their subject identifiers in their original data set:

1TCIAPancreas-CT0002
2TCIAPancreas-CT0003
3TCIAPancreas-CT0004
4TCIAPancreas-CT0005
5TCIAPancreas-CT0006
6TCIAPancreas-CT0007
7TCIAPancreas-CT0008
8TCIAPancreas-CT0009
9TCIAPancreas-CT0010
10TCIAPancreas-CT0011
11TCIAPancreas-CT0012
12TCIAPancreas-CT0013
13TCIAPancreas-CT0014
14TCIAPancreas-CT0016
15TCIAPancreas-CT0017
16TCIAPancreas-CT0018
17TCIAPancreas-CT0019
18TCIAPancreas-CT0020
19TCIAPancreas-CT0021
20TCIAPancreas-CT0022
21TCIAPancreas-CT0024
22TCIAPancreas-CT0025
23TCIAPancreas-CT0026
24TCIAPancreas-CT0027
25TCIAPancreas-CT0028
26TCIAPancreas-CT0029
27TCIAPancreas-CT0030
28TCIAPancreas-CT0031
29TCIAPancreas-CT0032
30TCIAPancreas-CT0033
31TCIAPancreas-CT0034
32TCIAPancreas-CT0035
33TCIAPancreas-CT0038
34TCIAPancreas-CT0039
35TCIAPancreas-CT0040
36TCIAPancreas-CT0041
37TCIAPancreas-CT0042
38TCIAPancreas-CT0043
39TCIAPancreas-CT0044
40TCIAPancreas-CT0045
41TCIAPancreas-CT0046
42TCIAPancreas-CT0047
43TCIAPancreas-CT0048
44SynapseBeyondTheCranialVault0001
45SynapseBeyondTheCranialVault0002
46SynapseBeyondTheCranialVault0003
47SynapseBeyondTheCranialVault0004
48SynapseBeyondTheCranialVault0005
49SynapseBeyondTheCranialVault0006
50SynapseBeyondTheCranialVault0007
51SynapseBeyondTheCranialVault0008
52SynapseBeyondTheCranialVault0009
53SynapseBeyondTheCranialVault0010
54SynapseBeyondTheCranialVault0021
55SynapseBeyondTheCranialVault0022
56SynapseBeyondTheCranialVault0023
57SynapseBeyondTheCranialVault0024
58SynapseBeyondTheCranialVault0025
59SynapseBeyondTheCranialVault0026
60SynapseBeyondTheCranialVault0027
61SynapseBeyondTheCranialVault0028
62SynapseBeyondTheCranialVault0029
63SynapseBeyondTheCranialVault0030
64SynapseBeyondTheCranialVault0031
65SynapseBeyondTheCranialVault0032
66SynapseBeyondTheCranialVault0033
67SynapseBeyondTheCranialVault0034
68SynapseBeyondTheCranialVault0035
69SynapseBeyondTheCranialVault0036
70SynapseBeyondTheCranialVault0037
71SynapseBeyondTheCranialVault0038
72SynapseBeyondTheCranialVault0039
73SynapseBeyondTheCranialVault0040
74SynapseBeyondTheCranialVault0061
75SynapseBeyondTheCranialVault0062
76SynapseBeyondTheCranialVault0063
77SynapseBeyondTheCranialVault0064
78SynapseBeyondTheCranialVault0065
79SynapseBeyondTheCranialVault0066
80SynapseBeyondTheCranialVault0067
81SynapseBeyondTheCranialVault0068
82SynapseBeyondTheCranialVault0069
83SynapseBeyondTheCranialVault0070
84SynapseBeyondTheCranialVault0074
85SynapseBeyondTheCranialVault0075
86SynapseBeyondTheCranialVault0076
87SynapseBeyondTheCranialVault0077
88SynapseBeyondTheCranialVault0078
89SynapseBeyondTheCranialVault0079
90SynapseBeyondTheCranialVault0080