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1 GRAMMAR

The code generator presented here accepts as input a sequence of stencil statements that are
expressed in a restricted subset of C consistent with the grammar described in figure 1. The
input to the code generator is a full stencil code in a .cu file, with the regions that the user wants
to reorder annotated with #pragma begin stencil. . . and a matching #pragma end. The
parser is simplified and does not perform any syntactic verification, so when creating a new
benchmark, it is the user’s responsibility to ensure that the syntax adheres to the specifications
for the code generator to work correctly.

In the grammar of figure 1, a BaseExpr in a statement represents an accessed storage loca-
tion, and is identified by a label. A crucial part of the reordering framework is to identify the
same BaseExpr. This is done by checking the equivalence of the labels that are assigned to any
two BaseExpr. This is complicated by the fact that post unrolling, one has to guarantee that
A[i+1+1] will be assigned the same label as A[i+2]. In general, the array index expressions
can be rewritten in multiple, albeit equivalent ways – A[i+j] is the same as A[j+i], A[i+1+j]
is the same as A[i+j+1], and so on. To ensure that the semantically equivalent BaseExpr are
assigned the same label, the code generator has a mechanism that “canonicalizes” the accesses,
so that semantically equivalent accesses have the same pattern. We define an array index ex-
pression to comprise of an iterator-access component (e.g., (i+j) in access A[i+j+2]), and
an integer offset component (e.g., 2 in accesses A[i+j+1+1] and A[i+j+2]). Within the code
generator, this logic is encoded in the function array access info (), and it works in two steps:

(1) it separates out iterator-access component and the integer offset from an index expres-
sion

(2) it canonicalizes both the extracted components. For the iterator-access component, this
involves identifying the presence of an operator in the iterator-access, and then ex-
ploiting the properties of the operator to align the iterators in lexicographical order. For
example, (j-i)will be converted to (j+(-i)), and then (j op i)will be rearranged
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〈Program〉 :: 〈StmtList〉;

〈StmtList〉 :: 〈Stmt〉〈StmtList〉 | 〈Stmt〉

〈Stmt〉 :: 〈BaseExpr〉〈AssignOp〉〈Expr〉;

〈Expr〉 :: Side-effect-free expression of 〈BaseExpr〉

〈BaseExpr〉 :: 〈ID〉 | 〈ArrayExpr〉

〈ArrayExpr〉 :: 〈ID〉〈ArrayDims〉

〈ArrayDims〉 :: [〈AccessExpr〉]〈ArrayDims〉 | [〈AccessExpr〉]

〈AccessExpr〉 :: Side-effect-free expression of 〈AccessElement〉 with restrictions described in text

〈AccessElement〉 :: 〈Iterator〉 | 〈Const〉

〈AssignOp〉 :: = | += | -= | *= | . . .

〈DataType〉 :: double | float | int | bool | . . .

Fig. 1. Grammar for valid input statements to the code generator

as (i op j), if i precedes j in lexicographical ordering, and op is commutative, like
+,*. For the offset component, it identifies the operators involved, and performs the
mathematical operation to reduce the offset component to a single integer value.

The canonicalization part is non-trivial, and currently primitive in implementation in the code
generator. We currently restrict the number of operators in the iterator-access component to 1.
For example, we allow A[k+1+1][2*j+2][i] since we can canonicalize each of the array index
expressions, but not something as complex as A[(k+2)*(k+3)][j][i], since this access will result
in an iterator-offset component (k*k+5k) where there are two arithmetic operations involved.

In summary, We impose the following restrictions on the statements:

• The statements must not modify the iterators (e.g., i, j and k in listing 1) in any way.
• The statements can only have mathematical functions like sine, sqrt, cosine, etc. on the

RHS, that are side-effect free.
• The accessed locations in the stencil statements are either scalars or array elements.

The array index expressions can only comprise the loop iterators, integers or simple
arithmetic operations between them (+,-,*,/). We allow only one arithmetic operation in
the iterator-access component of the array index expressions, and the offset component
must be an integer.

Once the parsing is complete, the code generator lowers the input further to sub-statements
consistent with the grammar of figure 2. Informally, this lowering is like GIMPLE IR of GCC
(Stallman and DeveloperCommunity 2009) with accumulations.

2 CREATING AN EXAMPLE

Listing 1 shows a snippet of a cuda input code that can be passed as an input to the reordering
framework. The computation in lines 5-7 is affine, and in compliance with the restrictions we
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〈CodeBody〉 :: 〈StmtListl〉;

〈StmtListl〉 :: 〈Assignmentl〉;〈StmtListl〉 | 〈Assignmentl〉

〈Assignmentl〉 :: 〈BaseExpr〉〈AssignOp〉〈Exprl〉

〈Exprl〉 :: 〈BaseExpr〉〈BinaryOpl〉〈BaseExpr〉 | 〈BaseExpr〉

〈BinaryOpl〉 :: + | - | * | / | | | & | . . .

Fig. 2. Grammar for the lowered 3-address IR for instruction reordering

Listing 1. The input representation with pragmas

1 f o r ( k=1; k<=N−2; k++) {

2 f o r ( j =1; j <=N−2; j ++) {

3 f o r ( i =1; i<=N−2; i ++) {

4 # pragma b e g i n s t e n c i l 1 u n r o l l k=4 , j =1 , i=1

5 o u t [ k ] [ j ] [ i ] = a*( i n [ k+1] [ j ] [ i ] ) + b*( i n [ k ] [ j −1] [ i ] +

6 i n [ k ] [ j ] [ i −1] + i n [ k ] [ j ] [ i ] + i n [ k ] [ j ] [ i +1] +

7 i n [ k ] [ j +1] [ i ] ) + c*( i n [ k−1] [ j ] [ i ] ) ;

8 # pragma end s t e n c i l 1

9 }

10 }

11 }

placed on the input grammar. Note the pragmas in line 4 and 8 that surround the statement –
these demarcate the region that the code generator can parse and optimize. Additionally, the
pragma supplies the unrolling factor along each dimension. Given an input file with several
such pragma-demarcated regions, the steps in optimizing the code will be:

(1) A script will remove the statements between all the pragma, and put them into sepa-
rate .idsl files, each named based on the stencil name (e.g., stencil1.idsl for the
example in listing 1). Therefore, each stencil name must be distinct.

(2) From the pool of stencilname.idsl files generated, the code generator will pick one
at a time, parse it, optimize it, and write the results back in stencilname.cu.

(3) A script will then read the contents from stencilname.cu, and replace the original
statements demarcated by #pragma begin stencilname . . . #pragma end stencilname
with the optimized code.

The changes are made in-place to the input cuda file. Please look at the benchmarks in the
examples folder to learn more about how to use this code generator for your applications.
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