
Register Optimizations for Stencils on GPUs

Abstract

The recent advent of compute-intensive GPU architec-
ture has allowed application developers to explore high-order
3D stencils for better computational accuracy. A common
optimization strategy for such stencils is to expose su�cient
data reuse by means such as loop unrolling, with the hope
of register-level reuse. However, the resulting code is often
highly constrained by register pressure. While the current
state-of-the-art register allocators are satisfactory for most
applications, they are unable to e�ectively manage register
pressure for such complex high-order stencils, resulting in
a sub-optimal code with a large number of register spills. In
this paper, we develop a statement reordering framework
thatmodels stencil computations asDAGof treeswith shared
leaves, and adapts an optimal scheduling algorithm formini-
mizing register usage for expression trees. The e�ectiveness
of the approach is demonstrated through experimental re-
sults on a range of stencils extracted from application codes.

1 Introduction

Stencil computations are an important computational mo-
tif in many scienti�c applications. Typically, a simple sten-
cil computation updates elements of one or more output ar-
rays using elements in the spatial neighborhood from one or
more input arrays. The footprint of a stencil is determined
by its order, which is the number of input elements read in
each dimension from the center. In many scienti�c appli-
cations, the stencil order determines the computational ac-
curacy. For this reason, high-order stencils have been gain-
ing popularity. However, the inherent data reuse within or
across statements in such high-order stencils exposes per-
formance challenges that are not addressed by the current
stencil optimizers.
A signi�cant focus in optimizing stencil computations has

been to fuse operations across time steps or across a se-
quence of stencils in a pipeline [5, 21, 22, 36, 44, 53, 58].With
high-order stencils, the operational intensity is su�ciently
high so that even with just a simple spatial tiling, the com-
putation is not memory-bandwidth bound. Consider a GPU
with around 300 Gbytes/sec global-memory bandwidth and
a peak double-precision performance of around 1.5 TFLOPS.
The required operational intensity to be compute-bound and
notmemory-bandwidth bound is around 5 FLOPs/byte or 40
FLOPs per double-word. Many high-order stencil computa-
tions have much higher arithmetic intensities than 40. For
such stencils, achieving a high degree of reuse in cache is

Conference’17, July 2017, Washington, DC, USA

2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
h�ps://doi.org/10.1145/nnnnnnn.nnnnnnn

very feasible, but not realized on GPUs. The main hindrance
to performance is the high register pressure with such codes,
resulting in excessive register spilling and a subsequent loss
of performance. As we elaborate in the next section, exist-
ing register management techniques in production compil-
ers are not well equipped to address the problem with regis-
ter pressure for high-order stencils. Addressing this problem
in context of GPUs is even more challenging, since most of
the widely used GPU compilers like NVCC [38] are closed-
source. Even the recent open-source e�ort by Google [56]
has only the front-end exposed to the user, and uses NVCC
backend as a black box to perform instruction scheduling
and register allocation.
In this paper, we develop an e�ective pattern-driven global

optimization strategy for instruction reordering to address
this problem. The key idea behind our instruction reorder-
ing approach is to model reuse in high-order stencil compu-
tations by using an abstraction of aDAGof treeswith shared
nodes/leaves, and exploit the fact that optimal scheduling to
minimize registers for a single tree with distinct operands
at the leaves is well known [47]. We thus devise a statement
reordering strategy for a DAG of trees with shared nodes
that enables reduction of register pressure to improve per-
formance.
The paper makes the following contributions:
• It proposes a framework for multi-statement stencils
that reduces the register pressure by reordering in-
structions across statements.
• It describes heuristics to schedule a DAG of trees that
reuse data using minimal number of registers.
• It demonstrates the e�ectiveness of the proposed frame-
work on a number of register-constrained stencil ker-
nels.

2 Background and Motivation

RegisterAllocation and Instruction Scheduling Acom-
piler has several optimization passes, register allocation and
instruction scheduling being two of them. Passes before reg-
ister allocation manipulate an intermediate representation
with unbounded number of temporary variables. The goal
of register allocation is to assign those temporaries to phys-
ical storage locations, favoring the few but fast registers to
the slower but somehow unbounded memory.
For a �xed schedule, a common approach to perform reg-

ister allocation is to build an interference graph of the pro-
gram, which captures the intersection of the live-ranges of
temporaries at any program point. Register assignment is
then reduced to coloring the interference graph, where each
color represents a distinct register [9, 10]. Interfering nodes
in the interference graph will be assigned di�erent colors

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

for (i=2; i<N-2; i++)

for (j=2; j<N-2; j++) {

out[i][j] = 0;

for (ii=-2; ii<=2; ii++)

for (jj=-2; jj<=2; jj++)

out[i][j] += in[i+ii][j+jj] * w[ii+2][jj+2];

}

(a) Stencil with lexicographical sweeps

for (i=2; i<N-2; i++)

for (j=2; j<N-2; j++) {

out[i][j] = 0;

for (ii=2; ii>=-2; ii--)

for (jj=-2; jj<=2; jj++)

out[i][j] += in[i+ii][j+jj] * w[ii+2][jj+2];

}

(b) Stencil with reverse-lexicographical sweeps

i

j

i

j

Figure 1. Comparing same stencil computation with di�erent sweeping order

due to their adjacency. The number of registers needed by
the coloring algorithm is lower-bounded by the maximum
number of intersecting live-ranges at any program point
(MAXLIVE). If the MAXLIVE is more than the number of
physical registers, spilling of registers and the consequent
load/store operations from/to memory are unavoidable.
Register pressure can sometimes be alleviated by reorder-

ing the schedule of dependent instructions to reduce the
MAXLIVE. Reordering independent instructions is often used
to enhance the amount of instruction-level parallelism (ILP),
for hiding memory access latency. Thus, there is a complex
interplay between instruction scheduling and register allo-
cation, a�ecting instruction-level parallelism and register
pressure, but the associated optimization problem is highly
combinatorial. Production compilers generally use heuris-
tics for increasing ILP, with a best-e�ort greedy control on
register pressure. For typical application codes, the negative
e�ect on register pressure is not very signi�cant. However,
for high-order stencil codes with a large number of opera-
tions and a lot of potential register-level reuse, the impact
can be very high, as illustrated by an example below.
Illustrative Example Consider an unrolled version of

the double-precision 2D Jacobi stencil (�gure 1a) from [49].
NVCC interleaves the contribution from each input point
to di�erent output points to increase instruction level par-
allelism (ILP). The interleaving performed to increase ILP
also has the serendipitous e�ect of reducing the live range
of the register data, and a consequent reduction in register
pressure. Nvprof [39] pro�ling data on Tesla K40c device
shows that under maximum occupancy, this version per-
forms 3.73E+06 spill transactions, achieving 467 GFLOPS.
Figure 1b shows the same stencil computation after re-

structuring the order of accumulation. Exactly the same con-
tributions are made to each result array element, but the
order of the contributions has been reversed. With this ac-
cesses pattern for the code in �gure 1b, NVCC fails to per-
form the same interleaving despite allowing reassociations
using appropriate compilation �ags. In fact, the register pres-
sure is now exacerbated by the consecutive scheduling of
independent operations to increase the ILP. For this version,
1.58E+08 spill transactionsweremeasured, with performance
dropping to 51 GFLOPS.
This example illustrates a very pertinent problem with

register allocationwhen the computation has a speci�c reuse
pattern, characteristic of high-order stencil computations.

The problem stems from the fact for most compliers, the reg-
ister allocation and instruction scheduling algorithms that
operate at a basic-block level have a peephole view of the
computation – they make scheduling/allocation decisions
without a global perspective, and thus sometimes work an-
tagonistically.Meanwhile, stencil computations typically have
a very regular access pattern. With a better understanding
of the pattern, and a global perspective on the computation,
one can come upwith an instruction reordering strategy can
synergistically alleviate register pressure.
Solution Approach In this paper, we circumvent the

complexity of the general optimization problem of instruc-
tion reordering and register allocation by devising a pattern-
speci�c optimization strategy. Stencil computations involve
accumulation of contributions from array data elements in a
small neighborhood around each element. The additive con-
tributions to a data element may be viewed as an expression
tree. Thus, for multi-statement stencils, we have a DAG of
expression trees. Due to the fact that an element may con-
tribute to several result elements, the trees within the DAG
have many shared leaves.
Given a single tree without any shared leaves, it is well

known [47] how to schedule its operations in order to min-
imize the number of registers needed. We use this as the
basis for developing heuristics to schedule the operations
from the DAG of trees with shared leaves. In contrast to
the problem of reordering an arbitrary sequence of instruc-
tions tominimize register pressure, a structured approach of
adapting the optimal schedule for isolated trees to the case
of DAG of trees with shared leaves results in an e�cient and
e�ective algorithm that we develop in the next two sections.

3 Scheduling DAG of Expression Trees

Stencil computations are often succinctly represented us-
ing a DSL. Listing 1 shows a 7-point Jacobi stencil expressed
in an illustrative DSL, similar in spirit to stencil computation
DSLs such as SDSL [25] and Forma [43]. The core computa-
tion is shown at lines 2–4. As with similar DSLs, the user
can specify unroll factors for loop iterators (line 9). Loop
unrolling (for thread coarsening on GPUs) is often used to
exploit register-level reuse in the code. The computation is
unrolled before the code is generated and optimized.
It is important to note that using a DSL is not a prereq-

uisite for using the scheduling techniques proposed in this
work. As described shortly, our approachworks on aDAGof

2

Register Optimizations for Stencils on GPUs Conference’17, July 2017, Washington, DC, USA

Listing 1. The input representation in the DSL
1 function j3d7pt (out , in , a, b , c) {

2 out[k][j][i] = a*(in[k+1][j][i]) + b *(in[k][j-1][i] +

3 in[k][j][i-1] + in[k][j][i] + in[k][j][i+1] +

4 in[k][j+1][i]) + c *(in[k-1][j][i]);
5 }

6 parameter L, M, N;

7 iterator i, j, k;

8 double in[L][M][N], out[L][M][N], a, b , c;
9 unroll k=2, j=2;

10 j3d7pt (out , in , a, b , c);
11 return out;

expression trees. This DAG can be automatically extracted
either from the DSL representation or from C/Fortran code.
A stencil statement can be de�ned by the stencil shape (as

in lines 2–4) and the input/output data (as in line 8). Each
such stencil statement can be represented by a labeled ex-
pression tree. For example, the tree corresponding to the
computation in Listing 1 has array element out[k, j, i] as its
root, scalars a,b, c and accesses to elements of array in as its
leaves, and arithmetic operators ∗ and + as inner nodes.

An expression tree for a stencil computation has three
types of nodes: (1) nodes n ∈ Nmem representing accesses to
memory locations, (2) nodes n ∈ Nop representing binary/u-
nary arithmetic operators, and (3) leaf nodes representing
constants. All leaf nodes in Nmem correspond to reads of ar-
ray elements (e.g., in[k + 1, j, i]) or scalars. The root of the
expression tree is also in Nmem and corresponds to a write to
an array element (e.g., out[k, j, i]) or a scalar. We associate a
unique label with each read/written memory location, and
assign to each node in Nmem the corresponding label. The
remaining tree nodes are in Nop. Figure 2b shows the ex-
pression tree for an illustrative expression.
In a preprocessing step, we introduce k-ary nodes for as-

sociative operators. For example, for the tree in Figure 2b,
the chain of + nodes is replaced with a single “accumula-
tion” + node. Figure 2c shows the resulting expression tree;
the numbers on the nodes will be described shortly. The se-
mantics of an accumulation node is as expected: the value
is initialized as appropriate (e.g., 0 for +, 1 for ∗) and the
contributions of the children are accumulated in arbitrary
order.
We often consider a sequence of stencil computations—

for example, in image processing pipelines. Each computa-
tion in the sequence will be represented by a separate ex-
pression tree. Similarly, unrolling will result in distinct ex-
pression trees for each unrolled instance. For example, after
unrolling along dimensions k and j in Listing 1, there will
be a sequence of four expression trees. In some cases the
output of a tree is used an input to a later tree in the se-
quence. In such a case, there is a �ow dependence: the root
of the producer tree has the same label as some leaf node of
the consumer tree (without an in-between tree that writes
to that label). In the input to our analysis, this �ow is repre-
sented by a dependence edge from the root node to the leaf
node. Thus, the entire computation is represented as a DAG
of expression trees.

Throughout the paper, we make the following two as-
sumptions: (1) the assembly instructions generated for the
DAG of trees after register allocation are of the form r1 ←

r2 op r3, where r1 and r2 can be the same; (2) the computa-
tion is single-precision, so that each operand/result requires
exactly one register. This condition is only enforced to sim-
plify the presentation of the next two sections, and can be
very easily relaxed [4]. Our objective is to schedule the com-
putations in the DAG so that register pressure is reduced.

3.1 Sethi-Ullman Scheduling

We will use “data sharing” to refer to cases where the
same memory location is accessed at multiple places. There
are two types of data sharing: (1) within a tree: several nodes
from Nmem have the same label; and (2) across trees: in a
DAG of trees, nodes from distinct trees have the same label.
A classic result, due to Sethi and Ullman [47], applies

to a single expression tree without data sharing (i.e., each
n ∈ Nmem has a unique label) and with binary/unary oper-
ators. They present a scheduling algorithm that minimizes
the number of registers needed to evaluate the expression,
under a spill-free model.1 Each tree node n is assigned an
Ershov number [1]; we will refer to them as “Sethi-Ullman
numbers” and denote them by su(n). They are de�ned as

su(n) =





1 n is a leaf

su(n1) n has one child n1
max (su(n1), su(n2)) su(n1) , su(n2)

1 + su(n1) su(n1) = su(n2)

(1)

The last two cases apply to a binary op node n with chil-
dren n1 and n2. Intuitively, su(n) is the smallest possible
number of registers used for the evaluation of the subtree
rooted at n. The �rst two cases are self-explanatory. For a
binary op node n, if one child n′ has a higher register re-
quirement (case 3), this “big” child should be evaluated �rst.
The result of n′ will be stored in a register, which will be
alive while the second (“small”) child is being evaluated. The
remaining su(n′) − 1 registers used for n′ are available (and
enough) to evaluate the small child. Finally, the register of
n′ can be used to store the result for n, meaning that su(n) is
equal to su(n′). If the order of evaluation were reversed, the
result of the small child would have to be kept in a register
whilen′ is being evaluated, whichwould lead to sub-optimal
su(n) = 1+ su(n′). In the last case in equation (1), both chil-
dren have the same register needs; thus, their relative order
of evaluation is irrelevant and one extra register is needed
for n. Of course, under the de�nitions in equation (1), su(n)
is the same as MAXLIVE for the tree rooted at n.
It is straightforward to generalize to trees containing ac-

cumulation nodes (as in Figure 2c). Each such n has children
ni for 1 ≤ i ≤ k . Let mx = maxi {su(ni)}. If there is a single

1In a spill-free model of the computation, a data element is loaded only
once into a register for all its uses/defs.

3

Conference’17, July 2017, Washington, DC, USA

out = a + (b * c[i]) + d[i] + ((e[i] * f) / 2.3);

(a) Illustrative stencil statement

(b) Expression tree (c) Expression treewith ac-
cumulations

Figure 2. Expression tree example

child nj with su(nj) = mx, this child is scheduled for evalua-
tion �rst, and therefore su(n) = mx. If two or more children
nj have su(nj) = mx, one of them is scheduled �rst; how-
ever, in this case su(n) = 1 +mx. In both cases, the order of
evaluation of the remaining children is irrelevant. Figure 2c
shows the Sethi-Ullman numbers for the sample tree.
Note that the schedules produced by this approach per-

form atomic evaluation of subexpressions: one of the chil-
dren is evaluated completely before the other ones are con-
sidered. For a tree without data sharing, this restriction does
not a�ect the optimality of the result. In the presence of data
sharing, atomic evaluation may not be optimal.
Since stencils read values from a limited spatial neighbor-

hood, data sharing oftenmanifests in the DAG of expression
trees. For example, in Listing 1, in[k][j][i] will be an input
to all four expression trees corresponding to the unrolled
stencil statements. One can also �nd other nodes in List-
ing 1 that will be shared across multiple expression trees.
For such DAGs, the Sethi-Ullman algorithm cannot be di-
rectly applied to obtain an optimal schedule. In Section 3.2,
we present an approach to compute an optimal schedule for
a DAG of expression trees with data sharing. In cases when
�nding an optimal evaluation can be prohibitively expen-
sive, Section 3.3 presents heuristics to trade o� optimality
in favor of pruning the exploration space. Finally, restrict-
ing the evaluation to be atomic can generate sub-optimal
schedules. Section 4 presents a remedial slice-and-interleave
algorithm that performs interleaving on the output schedule
generated by the approach presented in Section 3.2.

3.2 Scheduling a Tree with Data Sharing

Figure 3a shows an expression tree with data sharing. For
illustration, nodes with the same label are connected. Recall
that we assume a spill-free model, therefore a shared label
loaded once into a register will remain live for all its uses.
With data sharing, there is a possibility that (1) a label is
already live before we begin the recursive evaluation of a
subtree that has its subsequent use, and/or (2) a label must
remain live even after the evaluation of a subtree in which it
is used. The optimal schedule of a subtree is a�ected by the

(a) Tree with data sharing (b) Scheduling cost

Figure 3. Scheduling a tree with data sharing

labels that are live before and after processing of the subtree.
Therefore, we need to add live-in/out states as parameters
to the computation of the optimal schedule of a subtree. In
this section, we present an approach to optimally schedule a
treewith data sharing, under themodel of atomic evaluation
of children; we defer the interleaving of computation across
subtrees to Section 4.
For a node n, let uses(n) be the set of labels used in the

subtree rooted at n. Figure 3a shows uses(n) for each inter-
nal node n. The live-in set for a node n, denoted by in(n),
contains all labels that are live before the subtree rooted at
n is evaluated. The live-out set is

out (n) = (in(n) ∪ uses(n)) \ kill (n) (2)

where kill (n) is the set of labels that have their last uses in
the subtree rooted atn. Note that kill (n) is context-dependent,
i.e., the set will vary depending on the order in which the
node is evaluated. The kill sets can be computed on the �y
by maintaining the number of occurrences of each label l in
the current schedule, and comparing it with the total num-
ber of l occurrences in the entire DAG.
We now show how to compute a modi�ed Sethi-Ullman

number, su′ for each node n, when provided with an “eval-
uation context” in terms of live-in and live-out labels. Con-
sider a node n with some in and out state. Just before the
evaluation of n begins, |in(n) | registers are live. Similarly,
just after the evaluation of n �nishes, |out (n) | registers will
be live. During the evaluation of n, additional registers may
become live, while some of the other live registersmay be re-
leased. Now su′(n, in, out) represents the maximum number
of registers that were simultaneously live at any point dur-
ing the evaluation of n. We also de�ne su′(π , in, out), where
π is a sequence of sibling nodes. This value will represent
the maximum number of registers that were simultaneously
live at any point during the evaluation of all the nodes in the
sequence described by π .
For simplicity we will use su′(n) instead of su′(n, in, out),

but the de�nitions will use the live-in/out sets in(n) and
out (n).
For a leaf node n ∈ Nmem with |in(n) | = α ,

su′(n) =




α + 1 label (n) < in(n)

α label (n) ∈ in(n)

4

Register Optimizations for Stencils on GPUs Conference’17, July 2017, Washington, DC, USA

To compute su′ for a k-ary (binary or accumulation) node
n with children n1 . . .nk , we need to explore all k! evalu-
ation orders of the children. Let π be any permutation of
the children of n representing their evaluation order. Then
su′(n) = min

π
su ′(π).

For the purpose of explanation, suppose the permutation
π = 〈n1,n2〉 is one particular evaluation order for a binary
node n. To compute su ′(π), �rst we determine the live-in
and live-out sets for nodes in π as follows: in(n1) = in(n),
in(n2) = out (n1), and out (n2) = out (n); here out (n1) is as
de�ned in equation 2. This provides the required context
to compute su ′(n1) and su ′(n2). Let mx = maxi {su(ni)}, so
thatmx equals themaximumnumber of simultaneously live
registers at any time during the evaluation of π . Then,

su′(π) =




1 +mx ni ∈ Nmem & label (ni) ∈ out (n)

mx otherwise

In case 2, if n1 ∈ Nop , or if n1 ∈ Nmem but label (n1) < out (n),
then the result of the computation can reuse the register of
n1 (similarly for n2). However, in case 1, where both n1 and
n2 are leaf nodes in Nmem and both must be live after evalu-
ating n, we need an additional register to hold the result.
For an accumulation node with k operands, consider per-

mutation π = 〈n1,n2 . . . ,nk 〉. Suppose we have all su ′(ni)
and let mx = maxi {su(ni)}. Then,

su′(π) =





mx su′(n1) = mx & n1 ∈ Nmem & label (n1)

< out (n1) & su′(nj) , mx, 2 ≤ j ≤ k

mx su′(n1) = mx & n1 ∈ Nop &

su′(nj) , mx, 2 ≤ j ≤ k

1 +mx otherwise

Just like the generalization of su(n) for accumulation nodes
in Section 3.1, su′ = mx when the following two condi-
tions hold: (1) n1 requires the maximum number of simul-
taneously live registers, and the rest of the nodes in π are
completely evaluated using the registers released by n1, and
(2) the register holding n1 can be reused by n, i.e., either
n1 ∈ Nop (case 2), or n1 is a leaf node that is not live beyond
this point (case 1). In all other scenarios, we need mx + 1
registers (case 3).
The computation of su ′(n) for a tree without an evalua-

tion context is shown in Figure 3b, and with an evaluation
context is shown in Figure 4a. For the same tree, Figure 4b
shows the permutation with minimum su ′. In all three �g-
ures, the children are ordered left-to-right, which de�nes
the corresponding permutation.
In some cases, exhaustively exploring all permutations of

the children may be unnecessary. In the tree of Figure 4a,
there are two subtree operands of the accumulation node
that share no data. Therefore, even though the scheduling
within those two subtrees may be in�uenced by the evalua-
tion context, they do not in�uence each other’s scheduling.
Let passthrough denote the set of labels that are live both

before and after the evaluation of node n: passthrough(n) =

(a) Tree with context at root (b) Optimal schedule

Figure 4. Example: computing su ′(π)

in(n) ∩ out (n). Then, for a k-ary node n, any two of its chil-
dren ni and nj do not in�uence each other’s scheduling if

(uses(ni) ∩ uses(nj)) \ passthrough(n) = ∅ (3)

In such a scenario, for a node n we can create maximal clus-
ters of its children that share data: for example, if children
t1 and t2 share label l1, and children t2 and t3 share label l2,
then {t1, t2, t3, t4} must belong to the same cluster. The chil-
dren belonging to di�erent clusters cannot in�uence each
other’s schedule. Then, for each cluster ci , we can indepen-
dently compute su′(ci) with in(ci) = in(n). We only need to
explore all permutations within the non-singleton clusters.

Theorem 3.1. For k clusters ci 1 ≤ i ≤ k such that |in(ci) | ≤
|out (ci) |, the one with larger su′(ci) − |out (ci) | will be priori-
tized for evaluation over others in the optimal schedule.

This result is a direct consequence of the Sethi-Ullman
algorithm. The cluster with larger su′(ci) − |out (ci) | will re-
lease more registers, which can be reused by the next cluster.

Theorem 3.2. For two clusters c1 and c2 such that |in(c1) | >
|out (c1) | and |in(c2) | ≤ |out (c2) |, c1 must be evaluated before
c2 in the optimal schedule.

We prove the result by contradiction. Suppose that c2 is
evaluated before c1 in the optimal schedule. Since the sched-
ule is optimal, su′(c2) ≥ su′(c1). Now we change this opti-
mal schedule by moving the evaluation of c1 before c2. Eval-
uating c1 earlier will release |in(c1) | − |out (c1) | (i.e., ≥ 1) reg-
isters, which can then be used in the evaluation of c2. Based
on the previous equations, the su′(c2) will either decrease or
remain the same, depending on whether the number of reg-
isters released by c1 is greater than, or equal to 1. This modi-
�ed schedule therefore either has the same, or has lower su′

than the optimal schedule, making it an optimal schedule.

Theorem 3.3. For two clusters c1 and c2 such that |in(c1) | >
|out (c1) | and |in(c2) | > |out (c2) |, the one with smaller su′

must be prioritized for evaluation in the optimal schedule.

Again, we prove the result by contradiction. Suppose that
su′(c1) < su′(c2), and c2 is scheduled before c1 in the optimal
schedule.We change this schedule bymoving the evaluation
of c1 before that of c2. From Theorem 3.2, su′(c2) after this
change will either remain the same, or decrease. Thus, su′

for the new schedule will either be the same, or reduce if
su ′(c2) was the maximum, making it an optimal schedule.

5

Conference’17, July 2017, Washington, DC, USA

Algorithm 1: Schedule-Tree (n, in, out)
Input :A tree rooted at n with live-in/out contexts in and out

Output :An optimal schedule S for the tree
1 sched_cost← ∅, S ← ∅;

2 C ← create_maximal_cluster s (n); (Sec. 3.2)

3 for each cluster c in C do

4 if |c | is 1 then

5 in(c) ← in(n);

6 out (c) ← computed using equation 2;

7 sched_cost[c]← su′(c);

8 else

9 compute in and out for each tree in c ; (Sec. 3.2)

10 π ← all permutations of the trees in c ;

11 sched_cost[c]← su′(π);

12 P ← sequence clusters using sched_cost and Thms. 3.1, 3.2, 3.3;

13 for each subtree ts in the sequence described by P do

14 append the schedule for ts in S ;

15 return S ;

Based on these theorems, Algorithm 1 summarizes the
evaluation an optimal schedule for a tree with data sharing.

3.3 Heuristics for Tractability

For a non-singleton cluster c , the algorithm presented in
Section 3.2 can become prohibitively expensive if |c | is large.
For example, going from |c | = 7 to |c | = 8, the permu-
tations explored increase from 5040 to 40320. In this sec-
tion, we present some heuristics that trade o� optimality
for tractability, and a caching technique to further speed up
the algorithm.
Pruning Heuristics We begin by establishing, for any

node n, the bounds on su ′(n). When n is evaluated with non-
empty contexts in and out , the bounds are:

su ′(n, ∅, ∅) ≤ su ′(n, in,out) ≤ su ′(n, ∅, ∅) + |in ∪ out |

Simply put, the bounds imply that su ′(n) with context is al-
ways greater than su ′(n) without context, but only by, at
most, the number of registers required to maintain the con-
text. We prove the lower bound by contradiction. The proof
for upper bound is similar, but omitted due to space con-
straints.
su ′(n, ∅, ∅) ≤ su ′(n, in,out): Assume to the contrary that

su ′(n, in,out) < su ′(n, ∅, ∅). We will modify the schedule S
corresponding to su ′(n, in,out) as follows: prepend a stage
to S that loads the labels ∈ in(n) into |in | registers, andmake
in(n) = ∅. Append a state to S that stores all the labels
∈ out (n) from the respective registers into memory, and
make out (n) = ∅. This modi�ed schedule corresponds to
su ′(n, ∅, ∅), and hence, su ′(n, ∅, ∅) = su ′(n, in,out).

With the bounds established, instead of exploring all per-
mutations, we can sacri�ce optimality and stop further ex-
ploration when we are close to the optimal schedule. We use
a tunable parameterd , and stop trying the permutations any
further when su ′(n, in,out) − su ′(n, ∅, ∅) ≤ d .

For a cluster c with |c | > 8, we also apply a partitioning
heuristic, which recursively partitions the subtrees in c into

sub-partitions where each sub-partition can be of a maxi-
mum size p, with p < 8. The partitioning is based on either
of the two criteria:
• on “label a�nity": the subtrees that share the max-
imum labels are greedily assigned to the same sub-
partition as long as the size of the sub-partition is less
than p. Such partitioning is based on the notion that
evaluating subtrees with maximum uses together will
potentially reduce passthrough labels, and MAXLIVE.
• on “release potential": the subtrees that have the last
uses of some labels are placed in a sub-partition, and
that sub-partition is eagerly evaluated. This partition-
ing is based on the notion that the released registers
can be reused by the next partition.

Once the sub-partitions are created, we only exhaustively
explore all permutations of subtrees within a sub-partition.
If the number of sub-partitions created is less than 8, then
we also try all the permutations of the sub-partitions them-
selves. For example, if |c | = 8, and the partitioning heuristic
creates two sub-partitions p1 and p2 of size 4 each, then our
exploration space will be {p1,p2} and {p2,p1}, while explor-
ing all 4! permutations of subtrees within p1 and p2 each – a
total of 2 × 4! × 4! permutations instead of 8! permutations.
We also let the user externally specify a threshold that

upper-bounds the total number of permutations for a tree.
Memoization For a node n, a lot of permutations of its

children will di�er in only a few positions. In such cases,
we end up recomputing su ′ for a child multiple times, even
when the live-in/out context for the child remains unchanged.

These recomputations can be avoided by a simple mem-
oization, where for a node n, we map su ′(n) as a function
of a minimal context. The minimal context strips away la-
bels that are not in uses (n), but are in passthrouдh(n). The
su ′(n) with minimal context can be suitably adjusted to get
su ′(n) with a di�erent context that has some passthrough
labels added to the minimal live-in/out. For example, sup-
pose that su ′(n) is 3 when the minimal in(n) = {a,b} and the
minimal out (n) = ∅. Then su ′(n) when evaluating it with
in(n) = {a,b, c}, out (n) = {c} and c < uses (n) will be 2+1=3,
and the optimal schedule will remain unchanged.
Memoization greatly reduces the total evaluation time,

and signi�cantly speeds up the exploration of a large num-
ber of permutations.

3.4 Scheduling a DAG of expression trees

For each stencil statement that is mapped to an expres-
sion tree, Section 3.2 described a way to schedule it. This
section ties everything together for a multi-statement sten-
cil by describing how to schedule a DAG of expression trees.
For optimal scheduling, one needs to explore all topological
orders for the trees in the DAG, and then evaluate all the
trees independently for each topological order. This may be
practical if the size of DAG is small. Otherwise, we must sac-
ri�ce optimality for tractability, and �x the evaluation order

6

Register Optimizations for Stencils on GPUs Conference’17, July 2017, Washington, DC, USA

Algorithm 2: Schedule-DAG (D,R)
Input :D : DAG of expression trees, R: Per-thread register limit
Output :An optimal schedule S for the D

1 D′ ← D ; fusion_feasible← true ; tree_order← ∅; S ← ∅;

2 while fusion_feasible do

3 for each pair of transitive dep-free nodes ti ,tj in D
′ do

4 M ∪ = compute_metr ic (D′, ti , tj); (sec. 3.4)

5 sor t_descendinд (M);

6 (tp, tq, fusion_feasible) ← f ind_f usion_candidate (M);

7 fuse tp and tq ;

8 update_dependence_edдes (D′, tp, tq);

9 for each node d in D′ do

10 append the tree sequence of d in tree_order ;

11 split_versions← create_split_versions (tree_order);

12 for each split in split_versions do

13 S ′ ← ∅;

14 for each kernel k in split do

15 for each tree t in k do

16 compute in and out for t ;

17 append output of Schedule-Tree(t, in, out) to S ′;

18 execute S ′ after compiling it with register limit R;

19 S ← S ′if S ′ is a faster schedule than S , or if S is ∅;

20 return S ;

of the trees in the DAG before the trees are individually eval-
uated.
We use the greedy heuristic described by Rawat et al. [44]

to �x the evaluation order of trees in the DAG. At each step,
the heuristic tries to �x the evaluation order of two nodes in
the DAG.We begin by computing, for each pair of transitive
dependence-free trees pi in the DAG, a metric Mi that en-
codes: (a) the number of labels shared between them, and (b)
the number of common input arrays read by them. Among
the computed Mi , we choose the one that has the highest
non-zero value, and �x the evaluation order of its tree pair to
be contiguous to enhance reuse proximity in the �nal sched-
ule. The DAG is updated by fusing the nodes corresponding
to the two trees into a “macro node". Post fusion, we update
the dependence edges to and from the macro node, and re-
compute the metrics for the next step. The algorithm termi-
nates when no more nodes can be fused.
Once the algorithm terminates, we perform a topological

sort of the �nal DAG, and expand the DAG macro nodes to
their tree sequences. For these ordered trees, we can gen-
erate code versions with di�erent degree of splits. One ex-
treme would be a version where all the trees are in a sin-
gle kernel (max-fuse), and another extreme would be a ver-
sion where each tree is a distinct kernel (max-split) [8, 54].
For compute-intensive stencils with many-to-many reuse,
a single kernel can have extremely high register pressure,
sometimes causing spills despite allowing for the maximum
permitted registers per thread. For such cases, performing
kernel �ssion instead of generating a single kernel for the
entire computation might improve performance. The split
kernels will incur additional data transfers from globalmem-
ory, but the register pressure per kernel will be much lower,

(a) Original tree (b) Interleaving expressions

Figure 5. Example: interleaving to reduce MAXLIVE

giving the user an opportunity to further enhance register-
level reuse via unrolling. Note that none of the production
GPU compilers are capable of performing kernel fusion/�s-
sion optimizations. For each split version created, the tree
sequence in it is evaluated using Algorithm 1. The returned
schedule is the one that gives maximum performance. Algo-
rithm 2 outlines the entire process.

4 Interleaving Expressions

At this point, we have a schedule for the entire DAG of
trees, but with atomic evaluation enforced. However, inter-
leaving within/across trees can be instrumental in reducing
MAXLIVE. For example, in the unrolled stencil of Listing 1,
there is no reuse within a stencil statement, but plenty of
reuse across stencil statements. We will see later in Section
5 that relaxing the constraint of atomic evaluation, and per-
forming interleaving is imperative for performance in such
stencils. A compiler optimization that performs some inter-
leaving is common subexpression elimination (CSE). How-
ever, we require a more general interleaving that works at
the granularity of common labels instead of common subex-
pressions. For example, Figure 5a shows an expression tree
where su ′(S) is the largest, and the operands of the accu-
mulation node are evaluated in order from left to right in
the �nal schedule. Also, {c[i],b} < uses (S). The fact that
{c[i],b} ∈ passthrouдh(S) adds to su ′(S). By slicing the ex-
pression (e[i] ∗ b)/c[i] and placing it after the expression
b ∗ c[i] as shown in Figure 5b, c[i] and b will no longer
be in in(S). Instead of those two labels, a temporary label
holding the value of the sliced expression will be added to
in(S), and hence su ′(S) will reduce by 1. Note that this is
not CSE, but a more general optimization aimed to reduce
MAXLIVE. This slice-and-interleave optimization slices an
target expression, and interleaves it with a source expres-
sion, so that su ′ at a program point reduces. It subsumes
CSE if the source and target expressions are the same.
We perform the slice-and-interleave at two levels: (a) within

an expression tree, where the source and target expressions
belong to the same tree; and (b) across the expression trees
in the DAG, where source and target expressions belong to
di�erent trees. For a chosen source expression es rooted at
node n, we compute a set of labels, Lilv , which is a union

7

Conference’17, July 2017, Washington, DC, USA

Algorithm 3: slice-and-interleave (T , in,out)
Input :T : an input tree with schedule S and contexts in and out
Output :S : The schedule after applying slice-and-interleave

1 Lilv ← ∅;

2 min_exprs← sequence of minimal expressions extracted from S

whose operands are leaf nodes;

3 for each expression s in min_exprs do

4 Lilv ← all the labels seen in the schedule till s ∪ labels with

single occurrence in T;

5 for each expression t appearing after s in min_exprs do

6 if t only operates on the labels in Lilv then

7 t ′ ← maximal expression obtained by growing t until

it operates on the labels in Lilv ;

8 if live ranges reduced by placing t ′ after s then

9 slice and place t ′ after s in S ;

10 move t after s in min_exprs;

11 return S ;

of all the labels that were observed in the schedule till now,
with the labels that have a single occurrence in the DAG.

We now try to �nd a set of target expressions operating
on just the labels from Lilv . To �nd the target expressions,
we start with minimal expressions, i.e., the simplest expres-
sions whose operands are leaf nodes ∈ Nmem . Once we �nd
a minimal expression em that operates only on the labels
∈ Lilv , we �nd the root node r of em , and grow em to the
expression rooted at parent (r). We continue to grow the ex-
pression till we have a maximal expression that only oper-
ates on the labels ∈ Lilv . For each target expressions thus
discovered, we check if slicing and placing it between the
source expression es and subtree ts immediately following
es in the schedule decreases |in(ts) |. If it does, then slice-and-
interleave is performed.
Illustrative Example Let b ∗ c[i] be the source expres-

sion in the tree of �gure 5a. One of the explored target ex-
pressions will be e[i] ∗ b, since it only uses nodes ∈ Lilv .
Now we try to grow the target expression by changing the
root from ∗ to /, making (e[i]∗b)/c[i] the new target expres-
sion. All the labels used in the grown target expression also
belong to Lilv . A further attempt to growwill change the tar-
get expression to ((e[i]∗b)/c[i])∗ f [i]. However, f [i] < Lilv .
Therefore, we backtrack and �nalize (e[i] ∗ b)/c[i] as a tar-
get expression, since it is the maximal expression with all
the labels in Lilv . Indeed, placing the target expression after
the source expression decreases in(S) by 1. Therefore, we
perform the slice-and-interleave optimization. Algorithm 3
outlines the slice-and-interleave algorithm that tries out dif-
ferent source expressions, and continuously �nds the target
expressions within the tree to interleave in order to reduce
the live ranges. The slice-and-interleave across the trees in
a DAG is similar.

5 Experimental Evaluation

Our framework parses codes written in a subset of C (list-
ing 1). For the stencils where unrolling is required to explore

reuse across stencil statements, we let the user specify the
unrolling factor along di�erent dimensions.
Since source-level frameworks operate at a higher level of

abstraction whereas register optimizations work on a low-
level IR, several prior e�orts on guiding register allocation
or instruction scheduling implemented their optimizations
as a compiler pass integrated into research/prototype com-
pilers [7, 15, 20, 41, 45], or open-source production com-
pilers [29, 46]. This ensured that the transformations per-
formed by them were more tightly coupled to the compiler
passes. However, like many recent works [6, 28, 49], we pro-
totype our reordering optimization at source level for the
following four reasons: (1) it allows external optimizations
for closed-source compilers like NVCC; (2) it allows us per-
form transformations like exposing FMAs using operator
distributivity, and performing kernel fusion/�ssion, which
can be performed more e�ectively and e�ciently at source
level; (3) it is input-dependent, not machine- or compiler-
dependent – with an implementation coupled to compiler
passes, one must adapt it across compilers with di�erent
intermediate representation; and (4) the smaller number of
variables and temporaries at source level makes the reorder-
ing algorithm more scalable. Our framework massages the
input to a form that is more amenable to further optimiza-
tions by any GPU compiler, and we use appropriate compi-
lation �ags whenever possible to ensure that our reordering
optimization is not undone.
We evaluate our framework for the benchmarks listed in

Table 1 on a Tesla K40c GPU (peak double-precision perfor-
mance 1.43 TFLOPS, peak bandwidth 288 GB/s) with NVCC-
8.0 [38] and LLVM-5.0.0 compiler (previously gpucc [56]).
The �rst �ve benchmarks are stencils typically used in it-
erative processes such as solving Partial Di�erential Equa-
tions [26]. The remaining three are representative of com-
plex arithmetic operations applied in real-world physical
systems. hypterm is a routine from the ExpCNS Compress-
ible Navier-Stokes mini-application from DoE [16]; the last
two stencils are from the Geodynamics Seismic Wave SW4
application code [50]. For each benchmark, the original ver-
sion is as written by application developers without any
loop unrolling; the unrolled version has the loops unrolled
explicitly; and the reordered version is the output from our
code generator. All stencils are double-precision, compiled
with NVCC �ags ‘–use_fast_math Xptxas "-v -dlcm=ca"’, and
LLVM �ags ‘-O3 -�ast-math -�p-contract=fast’. We explore
di�erent instruction schedulers implemented in LLVM (de-
fault, list-hybrid, and list-burr) for the original and unrolled
code, and report numbers for the best performing version.
To minimize instruction reordering for our reordered code,
we use LLVM’s default instruction scheduler, and do not use
the -�ast-math option during compilation.
Loop Unrolling For the experiments, we unroll the it-

erative kernels along a single dimension to expose spatial
reuse. Loop unrolling o�ers the compiler an opportunity to

8

Register Optimizations for Stencils on GPUs Conference’17, July 2017, Washington, DC, USA

Benchmark N UF k F R A U

2d25pt 81922 4 2 33 2 104 44
2d64pt 81922 4 4 73 2 260 92
2d81pt 81922 4 4 95 2 328 112
3d27pt 5123 4 1 30 2 112 58
3d125pt 5123 4 2 130 2 504 204
hypterm 3003 1 4 358 13 310 152

rhs4th3fort 3003 1 2 687 7 696 179
derivative 3003 1 2 486 10 493 165

N: Domain Size, UF: Unrolling Factor, k: Stencil Order, F: FLOPs per Point R: #Arrays,
A: Total Elements Accessed per Thread, U: Unique Elements Accessed per Thread

Table 1. Benchmark characteristics

exploit ILP, but scheduling independent instructions con-
tiguously may increase register pressure. Consider an un-
rolled version of 2d25pt , compiled with 32 registers. From
table 1, it is clear that the unrolled code has a high degree of
reuse. Listing 2 shows the SASS (Shader ASSembler) snippet
generated using NVCC for the unrolled version of 2d25pt af-
ter register allocation. The instructions not relevant to the
discussion are omitted in Listing 2 (and 3), leading to non-
contiguous line numbers. The lines highlighted in red show
the instructions involving the same memory location – line
1 loads a value from global memory into register R4, and
spills it in line 2 without using R4 in any of the intermedi-
ate instructions. Such wasteful spills are a characteristic of
register-constrained codes. The same value is reloaded from
local memory into R4 in line 4, and R4 is subsequently used
in lines 5 and 8. The uses of R4 are placed far apart in SASS,
adding to the register pressure. Interspersed with these in-
structions are the load (line 3) and subsequent uses of regis-
ter R12. The interleaving increases ILP, but the uses of R12
are also placed very far apart. A better schedule can perhaps
achieve the same ILP with less register pressure and spills.
Listing 3 shows the SASS snippet for the reordered code

generated by our code generator. Using operator distribu-
tivity, the multiplication of the coe�cient to the additive
contributions is converted by our preprocessing pass into
fused multiply-adds. Notice that all the uses of register R20
(highlighted in red) are tightly coupled. The same holds for
registers R22,R30, and rest of the instructions. Independent
FMAs are scheduled togetherwithout increasing theMAXLIVE.
This reduces register pressure without compromising the
ILP. Therefore, even though the unrolled version performs
lesser FLOPs than the reordered version, we incur lesser
spill LDL/STL instructions per thread (101 for unrolled vs.
7 for reordered).

Listing 2. SASS snippet for the unrolled code
1 106 /*0328*/ @P0 LDG.E.64 R4, [R24];

2 144 /*0458*/ @P0 STL [R1+0x10], R4;

3 332 /*0a38*/ @P0 LDG.E.64 R12 , [R8];

4 350 /*0ac8*/ @P0 LDL.LU R4 , [R1+0x10];

5 354 /*0ae8*/ @P0 DADD R16 , R16 , R4;

6 358 /*0b08*/ @P0 DADD R16 , R12 , R10;

7 376 /*0b98*/ @P0 DFMA R6 , R12 , c[0x2][0 x40], R14;

8 374 /*0b88*/ @P0 DADD R16 , R6, R4;

9 436 /*0d78*/ @P0 DADD R12 , R12 , R24;

Listing 3. SASS snippet for the reordered code

Version reg IPC inst.
exec.

ld/st
exec.

FLOPs L2
reads

tex txn tex
GB/s

Original 128 1.76 2.74E+9 5.28E+8 1.73E+10 5.27E+8 4.19E+9 899.53
Unrolled 255 1.12 1.36E+9 2.14E+8 1.72E+10 2.94E+8 1.67E+9 457.23
Reordered 64 2.00 1.41E+9 2.14E+8 3.34E+10 1.55E+8 1.67E+9 791.16

Table 2. Metrics for 3d125pt for tuned con�gurations

1 163 /*04f0*/ @P0 DFMA R14 , R22 , c[0x2][0x8], R14;

2 164 /*04f8*/ @P0 DFMA R8 , R22 , c[0x2][0 x18], R8;

3 166 /*0508*/ @P0 DFMA R12 , R22 , c[0x2][0 x30], R12;

4 175 /*0550*/ @P0 DFMA R8 , R20 , c[0x2][0 x30], R8;

5 176 /*0558*/ @P0 DFMA R12 , R20 , c[0x2][0 x18], R12;

6 178 /*0568*/ @P0 DFMA R8 , R30 , c[0x2][0 x38], R8;

7 183 /*0590*/ @P0 DFMA R22 , R20 , c[0x2][0x8], R10;

8 184 /*0598*/ @P0 DFMA R10 , R20 , c[0x2][0 x18], R14;

9 187 /*05b0*/ @P0 DFMA R16 , R30 , c[0x2][0 x20], R12;

10 191 /*05d0*/ @P0 DFMA R10 , R30 , c[0x2][0 x20], R10;

For the 3d125pt stencil, table 2 shows some pro�ling met-
rics gathered by Nvprof with NVCC. The texture through-
put for the original code indicates that the stencil perfor-
mance is bounded by the texture cache bandwidth. Loop un-
rolling halves the accesses to texture cache and the executed
load instructions, but results in a signi�cant drop in IPC due
to lowered occupancy. To better expose reorder opportuni-
ties post unrolling, the preprocessing pass of our reorder-
ing framework exploits operator distributivity and converts
all the contributions in an individual statement to FMA op-
erations. Therefore, instead of 130 FLOPs per stencil point,
the reordered version performs 250 FLOPs. As measured by
Nvprof, we incur a 2× increase in the �oating point opera-
tions, but achieve signi�cant reuse in registers at a higher
occupancy, which consequently improves the IPC and per-
formance.
Register Pressure Sensitivity In GPUs, the number of

registers per thread can be varied at compile time by trading
o� the occupancy. Many auto-tuning e�orts have recently
been proposed to that end [24, 32]. Table 4 shows the per-
formance, and the local memory transactions reported by
Nvprof with varying register pressure. Due to space con-
straints, we only present the numbers for NVCC compiler.
We make the following observations: (a) our optimization
strategy reduces the register pressure for all the thread con-
�gurations; (b) increasing registers per thread for codes ex-
hibiting very high spills results in better performance, e.g.,
8× for rhs4th3f ort ; and (c) for small spills, better perfor-
mance can be achieved by either increasing occupancy (e.g.,
reordered code for 3d125pt and hypterm), or maximizing
registers per thread (e.g., all the codes for rhs4th3f ort).
Finding a right balance between register pressure and oc-

cupancy is non-trivial, and an active research �eld [24, 32,
52, 57]. We do a simple auto-tuning by varying the tile sizes
by powers of 2, and varying registers per thread as discussed
in [32]. The best performance in GFLOPS for the auto-tuned
code with NVCC and LLVM compilers is shown in �gure
6. Unlike the case with 32 and 64 registers per thread, the
unrolled code outperforms the original code for all bench-
marks, highlighting the importance of loop unrolling and
register-level reuse. Our reordering optimization improves
the performance by (a) producing a code version that uses

9

Conference’17, July 2017, Washington, DC, USA

Metrics rhs4th3f or t hypterm der ivative
maxfuse split-3 maxfuse split-3 maxfuse split-2

Inst. Exec. 8.52E+9 8.25E+8 7.48E+8 7.71E+8 8.79E+8 8.96E+8
IPC 1.07 1.11 0.97 1.06 1.02 1.14

DRAM reads 9.07E+7 1.65E+8 1.57E+8 1.77E+8 1.34E+8 2.47E+8
ldst exec. 1.55E+8 1.08E+8 1.27E+8 1.46E+8 1.45E+8 1.30E+8
FLOPs 1.73E+10 1.81E+10 9.66E+9 9.36E+9 1.28E+10 1.34E+10
tex txn. 1.11E+9 8.24E+8 9.72E+8 1.06E+9 1.14E+9 1.01E+9

l2 read txn. 4.64E+8 3.79E+8 6.52E+8 5.90E+8 4.97E+8 4.51E+8
GFLOPS 237.16 274.52 140.71 155.02 168.27 182.83

Table 3. Metrics for reordered max-fuse vs. split versions

fewer registers, and hence can achieve higher occupancy;
and (b) helping expose and schedule independent FMAs to-
gether for simple accumulation stencils, thereby hiding la-
tency.
Kernel �ssion From table 1, we select the last threemulti-

statement, compute-intensive stencils for which we antici-
pate high volume of spills in the max-fuse form, and expect
kernel �ssion to be bene�cial. For these three stencils, we
generate versions with varying degree of splits (Section 3.4).
Some splits require promoting the storage from scalars to
global arrays, while others require recomputations due to
dependence edges in the DAG. Table 3 shows the Nvprof
metrics with NVCC for two reordered codes: a version with
maximum fusion (max-fuse), and a version with spilt ker-
nels. Note that in each case, even though the DRAM reads
increase going from max-fuse to split version, the IPC also
increases. This is because the register pressure per kernel
is much lower in the split version, and hence we can unroll
the computation to further exploit register-level reuse. This
increase in register-level reuse is re�ected in the reduced L2
read transactions. We observe nearly 10% performance im-
provement for the split version over max-fuse version for
all three stencils. Prior works have noted the importance of
kernel fusion for bandwidth-bound stencils [22, 44, 53], and
trivial kernel �ssion to aid fusion by reducing shared mem-
ory usage [54]. Such a kernel �ssion has very limited appli-
cability in stencils with many-to-many reuse across state-
ments. However, our motivation for kernel �ssion is orthog-
onal to prior e�orts – we use kernel �ssion as a means to re-
duce the register usage of the max-fuse kernel, and then im-
prove the register reuse for split kernels by ample unrolling
and instruction reordering.
With our reordering optimizations applied to the bench-

marks, we achieve speedups in the range of 1.22×–2.34× for
NVCC, and 1.15×–2.08× for LLVM. We �nally discuss the
e�ect of optimizations discussed in Section 3.3. The bench-
mark derivative has a large number of independent trees;
each tree is an accumulation. The framework takes 7.71 secs
to generate code for it, and the memoization function is in-
voked 1.42E+05 times. Without memoization, the code gen-
eration time increases to 19.39 secs. Our framework is well
suited to enhance the performance of “optimize once, exe-
cutemultiple times" stencils found in production codeswhere
the compilation/optimization time is amortized over the sten-
cil execution.

Bench. Reg Original Unrolled Reordered
LMT GFLOPS LMT GFLOPS LMT GFLOPS

2d25pt 32 1.83E+7 144.56 1.18E+8 57.34 4.21E+6 302.12
48 0 127.35 0 289.03 0 357.76
64 0 115.03 0 261.43 0 369.09

2d64pt 32 3.39E+7 111.75 7.17E+8 18.07 6.74E+6 315.49
48 0 191.17 4.04E+8 26.03 0 393.90
64 0 198.95 2.76E+8 38.89 0 420.61
128 0 146.64 1.31E+7 231.72 0 303.02

2d81pt 32 3.94E+7 101.72 8.2E+8 19.49 4.62E+6 426.87
48 0 202.73 5.13E+8 25.12 0 466.03
64 0 204.73 3.96E+8 30.67 0 478.95
128 0 151.38 7.11E+07 161.00 0 415.30
255 0 83.58 0 223,17 0 340.90

3d27pt 32 4.28E+7 126.07 2.24E+8 37.93 1.65E+7 182.53
48 0 167.23 2.01E+7 149.51 0 229.01
64 0 160.55 0 172.37 0 269.69
128 0 160.93 0 180.49 0 211.78

3d125pt 32 5.04E+7 99.77 2.13E+9 19.06 1.85E+7 327.64
48 0 96.26 1.42E+9 21.65 0 339.16
64 0 107.61 1.35E+9 25.62 0 336.77
128 0 143.12 5.25E+8 64.00 0 282.68
255 0 93.64 0 188.36 0 173.738

hypterm 32 9.14E+8 21.82 - - 4.51E+7 83.83
48 1.04E+8 74.33 - - 0 100.63
64 0 100.66 - - 0 138.12
128 0 102.27 - - 0 155.02
255 0 74.92 - - 0 141.52

rhs4th3fort 32 2.10E+9 19.93 - - 1.37E+9 31.47
48 1.21E+9 28.76 - - 4.30E+8 87.82
64 8.73E+8 38.26 - - 9.99E+7 171.01
128 1.60E+8 166.59 - - 0 241.16
255 0 182.67 - - 0 274.52

derivative 32 1.63E+9 13.54 - - 6.56E+8 34.25
48 1.16E+9 17.04 - - 1.29E+8 84.69
64 8.90E+8 20.91 - - 0 116.02
128 3.60E+8 53.15 - - 0 153.61
255 0 149.95 - - 0 182.83

LMT: Local Memory Transactions

Table 4. Spill metrics and performance in GFLOPS with
NVCC on K40c device for di�erent register con�gurations

6 Related Work

Register allocation has been extensively studied: from the
seminal work of Chaitin [10] on using graph coloring, to
the more recent SSA based schemes that exploit the pos-
sible decoupling of the allocation phase to the assignment
phase [12, 34]. Many extensions/improvements have been
applied [33, 42, 48], but almost all the existing work are re-
stricted to the register allocation for �xed schedule. How-
ever, it is folk knowledge that improvements to register allo-
cation alone does not bring much performance gain. The in-
terplay of register allocation and scheduling becomes quite
important for architectureswith ILP, since there is a tradeo�
between increasing ILP and exposing locality. Hence, prior
work on hyper/super-block list or modulo pre-pass schedul-
ing [11, 35, 55] were extended to account for register pres-
sure. Other works proposed a reverse scheme where regis-
ter allocation was made sensitive to not change the min-
imum initiation interval for the scheduler to expose su�-
cient ILP [51]. Most of the current mainstream open-source
compilers [18, 31] have adopted the �rst approach: when
the register pressure is too high, the pre-pass list scheduling
heuristics prioritize scheduling instructions that reduce the
register pressure. However, such algorithms lack a global
view, focusing only on the local register pressure at the cur-
rent scheduled point. The associated optimization problem

10

Register Optimizations for Stencils on GPUs Conference’17, July 2017, Washington, DC, USA

2d25pt
2d64pt

2d81pt
3d27pt

3d125pt
hypterm

rhs4th3fort
derivative

0

200

400
14
5 19

9

20
5

16
7

12
5

10
2

18
3

15
0

28
9

26
7

22
3

18
9

15
8

36
9 42

1

47
9

24
0 27
7

15
5

27
5

18
3

P
er
fo
rm

an
ce

(G
FL

O
P
S)

NVCC

Original Unrolled Reordered

2d25pt
2d64pt

2d81pt
3d27pt

3d125pt
hypterm

rhs4th3fort
derivative

0

200

400

21
0

18
0 20
6

15
9

12
0

90

17
7

15
6

24
2

22
7

22
9

12
8

12
5

36
3 41

3

47
3

23
7 26
9

16
2

22
6

18
0

LLVM

Figure 6. Performance on Tesla K40c with benchmarks tuned for tile size and register limit

is NP-hard, and it is known that heuristics implemented in
production compilers perform quite poorly on long straight
line code [30], such as loop-body of highly unrolled loops.

This observation motivated developers of auto-tuned li-
braries [17, 19] to consider speci�c properties of the compu-
tational DAG to generate codelets that expose good locality
for register reuse at source level: for certain domain-speci�c
applications like FFT, a scheduling that minimizes the spill
volume is well understood [27]. The problem addressed in
this paper belongs to a similar category, where one has to
optimize register reuse for long straight-line code arising
from domain-speci�c kernels. The main di�erence is that
for the computational DAGs considered by our framework,
optimal or nearly-optimal scheduling is unknown. Our pro-
posed heuristic is a solution to address the optimization of
such DAGs. Prior work on code generation for expression
trees [2, 3, 47] were discussed in details in Section 3.We now
discuss some related work on combined register allocation
and instruction scheduling, and register optimizations for
high-order stencils.
IntegratedRegisterAllocation and Instruction Sched-

uling Motwani et al. [35] show that integrated register al-
location and instruction scheduling is NP-hard. They pro-
pose a combined heuristic that provides relative weightages
for controlling register pressure and instruction parallelism.
For instructions where the register of an operand can be
used for the result, Govindrajan et al. [20] try to generate
an instruction sequence from data dependence graph that is
optimal in register usage. Berson et al. [7] use register reuse
DAGs to identify instructionswhose parallel schedulingwill
require more resources than available, and optimize them to
reduce their resource demands. Pinter [40] describes an al-
gorithm that colors a parallel interference graph to obtain
a register allocation that does not introduce false depen-
dences, and therefore exploits maximal parallelism. Norris
et al. [37] propose an algorithm that constructs an interfer-
ence graph with all feasible schedules, and then removes in-
terferences for schedules that are to be least likely followed.

While these e�orts consider integrated register manage-
ment and instruction scheduling, the goals are very di�er-
ent and the contexts quite dissimilar. Prior work in this cate-
gory has focused on maximizing parallelism without signif-
icantly increasing the MAXLIVE. In our context, the main
reason for reordering instructions is to e�ectively exploit
the signi�cant potential for many reuses of values held in
registers, while reducing the MAXLIVE.
Register Optimizations for High-Order Stencils Stock

et al. [49] identify a performance issue with register reuse
for iterative stencils by noting that even though the com-
putation becomes less memory-bound with increase in the
stencil order, their register pressure worsens. They use a
generalized version of [13] to interleave the additive contri-
butions in an unrolled computation. In away, their approach
removes the interference edges between input points, and
adds interference edges between output points in the in-
terference graph. However, their approach is only applica-
ble to Jacobi-like iterative stencils. Basu et al. [6] propose
a partial sum optimization implemented within the CHiLL
compiler [23]. The partial sums are computed over planes
for 3D stencils, and redundant computation is eliminated by
performing array common subexpression elimination (CSE)
[14]. This optimization is only applicable to stencils with
constant and symmetrical coe�cients.While theirwork does
not claim to reduce register pressure, it may do so as a con-
sequence of array CSE. Jin et al. [28] propose a code genera-
tion framework that trades o� recomputations for reduction
in register pressure. It uses dynamic programming to itera-
tively determine the minimum amount of recomputations
required to reduce the register consumption by one. This
approach is limited to the stencils described in [28], where
the recomputation of an expression does not increase the
live ranges of the values involved in it. The code generator
generates code versions for varying register-recomputation
con�gurations, and the auto-tuner chooses the best perform-
ing version.

11

Conference’17, July 2017, Washington, DC, USA

In summary, existing approaches targeting register opti-
mization for high-order stencils do not generalize well. Un-
like these approaches, our framework optimizes both itera-
tive and more general multi-statement stencils.

7 Conclusion

Despite a rich literature on register allocation and instruc-
tion scheduling, the e�cacy of current production compil-
ers to reduce register pressure for compute-intensive sten-
cil codes is lacking. For such codes, register spills are a ma-
jor performance limiter. Unfortunately, the compiler fails to
perform an instruction reordering that can relieve register
pressure, and the reordering it does perform to increase ILP
often increases register pressure.
This paper presents a register optimization framework

formulti-statement, compute-intensive stencils, which views
such computations as a collection of trees with signi�cant
data reuse across nodes, and systematically attempts to re-
duce register pressure by decreasing the simultaneously live
ranges. Just as pattern-speci�c optimization techniques have
demonstrably beenmore bene�cial over traditional compiler
optimizations for stencil computations, we show through
thiswork that a specialized registermanagement framework
can be highly bene�cial for stencil computations.

A Artifact appendix

Submission and reviewing guidelines and methodology:
http://cTuning.org/ae/submission.html

A.1 Abstract

This section describes the artifact accompanying the PPoPP
2018 paperRegisterOptimizations for Stencils onGPUS.
The artifact is publicly available for download from the github
link https://github.com/pssrawat/ppopp-artifact. The
downloaded package comes with
• The code for the framework
• The benchmarks tested in the directory examples
• Documentation on how to add a new benchmark in
the directory docs
• Scripts to compile the reordering framework and run
the benchmarks

A.2 Artifact check-list (meta-information)

• Algorithm: register reordering framework
• Program: C++ code and CUDA input
• Compilation:CPU code: g++ (GCC 5.3.0 tested); GPU code:
NVCC (8.0 tested) and LLVM (5.0.0 tested)
• Transformations:The reordering framework performs low-
ering transformations on the input, and then reordering of
the lowered instructions to reduce register pressure
• Binary: Scripts and Make�les included in the package to
generate the binaries
• Data set: Included in examples directory
• Run-time environment: Tested on Ubuntu 16.04, and Red
Hat Enterprise Linux Server release 6.7 operating system

• Hardware: We recommend a linux platform, and a Kepler
K40c device
• Output: GFLOPS for all the input benchmarks
• Experiments: Performance measures for stencil computa-
tions
• Publicly available?: Yes

• Artifacts publicly available?: Yes
• Artifacts functional?: Yes
• Artifacts reusable?: Maybe
• Results validated?: Yes

A.3 Description

A.3.1 How delivered

The framework is open-source, and is available for download from
the git repository (https://github.com/pssrawat/ppopp-artifact).
The downloaded package comprises the source code, the bench-
marks, and the evaluation instructions and scripts.

A.3.2 Hardware dependencies

The framework has been tested on a Kepler K40c device with Red
Hat Enterprise Linux Server release 6.7 as the underlying operating
system. The generated code can be executed on any NVidia device
with compute capability >=3.5. However, for reproducibility, we
suggest using Kepler K40c device.

A.3.3 Software dependencies

For reproducibility, we mention the software versions used while
testing.
• �ex version >= 2.6.0 for scanner (2.6.0 tested)
• bison version >= 3.0.4 for parser (3.0.4 tested)
• cmake version >= 3.8 for GPUCC (3.8 tested)
• Boost version >= 1.58 (1.58 tested)
• GCC version 4 or 5 (4.9.2 and 5.3.0 tested) to compile the
reordering framework
• NVCC 8.0 for benchmarking
• LLVM version >= 5.0.0 for benchmarking

A.3.4 Data sets

All the benchmarks that are evaluated in the paper are packaged
in the examples directory. Additionally, make�les and scripts are
included for easy evaluation.

A.4 Installation

First clone the artifact source to a local machine:
$. git clone https://github.com/pssrawat/ppopp-artifact
Then compile the source code to create the executable test:
$. cd ppopp-artifact

$. make all

Now set some environmental variables that are necessary for
benchmarking. The �rst variable is to indicate the path to CUDA
installation, and the second variable is to identify the compute ca-
pability of the GPU device:

$. export CUDAHOME=path-to-CUDA-installation
$. export CAPABILITY=capability-of-GPU-card
The compute capability of the K40c device is 35; for a Pascal

device, it will be 60.
To run the benchmarks:
$. cd examples

$. ./run-benchmarks.sh

12

Register Optimizations for Stencils on GPUs Conference’17, July 2017, Washington, DC, USA

The computedGFLOPS for all the benchmarkswill be redirected
to the output �le output.txt in the examples directory.

A.5 Evaluation and expected result

The performance for each stencil benchmark in GFLOPS will be
in output.txt after the evaluation script successfully �nishes.

A.6 Experiment customization

One can vary the unrolling factors in the input .cu �le, and
regenerate the reordered versions by using the reorder.sh script
provided with each benchmark. docs contains information about
adding new benchmarks, and optimizing themwith the framework.

References

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. 2007. Compilers: Principles,

Techniques, and Tools (2nd ed). Pearson.
[2] A. V. Aho and S. C. Johnson. 1975. Optimal Code Generation for Ex-

pression Trees. In Proceedings of Seventh Annual ACM Symposium on

Theory of Computing (STOC ’75). ACM, New York, NY, USA, 207–217.
[3] A. V. Aho, S. C. Johnson, and J. D. Ullman. 1977. Code Generation for

Expressions with Common Subexpressions. J. ACM 24, 1 (Jan. 1977),
146–160.

[4] A. W. Appel and K. J. Supowit. 1987. Generalization of the Sethi-
Ullman Algorithm for Register Allocation. Softw. Pract. Exper. 17, 6
(June 1987), 417–421.

[5] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012.
Tiling Stencil Computations to Maximize Parallelism. In Proceedings

of the International Conference on High Performance Computing, Net-

working, Storage and Analysis (SC ’12). IEEE Computer Society Press,
Los Alamitos, CA, USA, Article 40, 11 pages.

[6] P. Basu, M. Hall, S. Williams, B. V. Straalen, L. Oliker, and P. Colella.
2015. Compiler-Directed Transformation for Higher-Order Stencils.
In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE

International. 313–323.
[7] David A. Berson, Rajiv Gupta, andMary Lou So�a. 1999. Integrated In-

struction Scheduling and Register Allocation Techniques. In Proceed-

ings of the 11th International Workshop on Languages and Compilers

for Parallel Computing (LCPC ’98). Springer-Verlag, London, UK, UK,
247–262.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A Practical Automatic Polyhedral Parallelizer and Local-
ity Optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’08). ACM,
New York, NY, USA, 101–113.

[9] Preston Briggs, Keith D. Cooper, and Linda Torczon. 1994. Improve-
ments to Graph Coloring Register Allocation. ACM Trans. Program.

Lang. Syst. 16, 3 (May 1994), 428–455.
[10] G. J. Chaitin. 1982. Register Allocation & Spilling via Graph Coloring.

In Proceedings of the 1982 SIGPLAN Symposium on Compiler Construc-

tion (SIGPLAN ’82). ACM, New York, NY, USA, 98–105.
[11] J. M. Codina, J. Sanchez, and A. Gonzalez. 2001. A uni�ed modulo

scheduling and register allocation technique for clustered processors.
In Proceedings 2001 International Conference on Parallel Architectures

and Compilation Techniques. 175–184.
[12] Q. Colombet, B. Boissinot, P. Brisk, S. Hack, and F. Rastello. 2011.

Graph-coloring and treescan register allocation using repairing. In
2011 Proceedings of the 14th International Conference on Compilers, Ar-

chitectures and Synthesis for Embedded Systems (CASES). 45–54.
[13] Raúl De La Cruz, Mauricio Araya-Polo, and José María Cela. 2010. In-

troducing the Semi-stencil Algorithm. In Proceedings of the 8th Inter-

national Conference on Parallel Processing and Applied Mathematics:

Part I (PPAM’09). Springer-Verlag, Berlin, Heidelberg, 496–506.
[14] Steven J. Deitz, Bradford L. Chamberlain, and Lawrence Snyder. 2001.

Eliminating Redundancies in Sum-of-product Array Computations.

In Proceedings of the 15th International Conference on Supercomputing

(ICS ’01). ACM, New York, NY, USA, 65–77.
[15] Lukasz Domagala, Duco van Amstel, Fabrice Rastello, and P. Sadayap-

pan. 2016. Register Allocation and Promotion Through Combined In-
struction Scheduling and Loop Unrolling. In Proceedings of the 25th In-
ternational Conference on Compiler Construction (CC 2016). ACM, New
York, NY, USA, 143–151.

[16] exact 2013. ExaCT: Center for Exascale Simulation of Combus-
tion in Turbulence: Proxy App Software. h�ps://exactcodesign.org/

proxy-app-so�ware/. (2013).
[17] M. Frigo and S. G. Johnson. 2005. The Design and Implementation of

FFTW3. Proc. IEEE 93, 2 (Feb 2005), 216–231.
[18] GCC 2014. GCC, the GNU Compiler Collection. h�ps://gcc.gnu.org/.

(2014).
[19] Kazushige Goto and Robert A. van de Geijn. 2008. Anatomy of High-

performance Matrix Multiplication. ACM Trans. Math. Softw. 34, 3,
Article 12 (May 2008), 25 pages.

[20] Ramaswamy Govindarajan, H. Yang, Chihong Zhang, José N. Ama-
ral, and Guang R. Gao. 2001. Minimum Register Instruction Sequence
Problem: Revisiting Optimal Code Generation for DAGs. In Proceed-

ings of the 15th International Parallel &Amp; Distributed Processing

Symposium (IPDPS ’01). IEEE Computer Society, Washington, DC,
USA, 26–33.

[21] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and
Sven Verdoolaege. 2014. Hybrid Hexagonal/Classical Tiling for GPUs.
In Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization (CGO ’14). ACM, Article 66, 10 pages.
[22] Tobias Gysi, Tobias Grosser, and Torsten Hoe�er. 2015. MODESTO:

Data-centric Analytic Optimization of Complex Stencil Programs on
Heterogeneous Architectures. In Proceedings of the 29th ACM on In-

ternational Conference on Supercomputing (ICS ’15). ACM, 177–186.
[23] Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy,

and Malik Murtaza Khan. 2010. Loop Transformation Recipes for
Code Generation and Auto-tuning. In Proceedings of the 22Nd Interna-

tional Conference on Languages and Compilers for Parallel Computing

(LCPC’09). Springer-Verlag, Berlin, Heidelberg, 50–64.
[24] Ari B. Hayes, Lingda Li, Daniel Chavarría-Miranda, Shuaiwen Leon

Song, and Eddy Z. Zhang. 2016. Orion: A Framework for GPU Oc-
cupancy Tuning. In Proceedings of the 17th International Middleware

Conference (Middleware ’16). ACM, New York, NY, USA, 18:1–18:13.
[25] TomHenretty, Richard Veras, Franz Franchetti, Louis-Noël Pouchet, J.

Ramanujam, and P. Sadayappan. 2013. A Stencil Compiler for Short-
vector SIMD Architectures. In Proceedings of the 27th International

ACM Conference on International Conference on Supercomputing (ICS

’13). ACM, 13–24.
[26] hpgmg 2016. High-Performance Geometric Multigrid. h�ps://hpgmg.

org/. (2016).
[27] Hong Jia-Wei and H. T. Kung. 1981. I/O Complexity: The Red-blue

Pebble Game. In Proceedings of the ThirteenthAnnual ACMSymposium

on Theory of Computing (STOC ’81). ACM, New York, NY, USA, 326–
333.

[28] Mengyao Jin, Haohuan Fu, Zihong Lv, and Guangwen Yang. 2016.
Libra: An Automated Code Generation and Tuning Framework for
Register-limited Stencils on GPUs. In Proceedings of the ACM Inter-

national Conference on Computing Frontiers (CF ’16). ACM, New York,
NY, USA, 92–99.

[29] David Ryan Koes and Seth Copen Goldstein. 2006. A Global Progres-
sive Register Allocator. In Proceedings of the 27th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI

’06). ACM, New York, NY, USA, 204–215.
[30] Stefan Kral, Franz Franchetti, Juergen Lorenz, Christoph W. Ueberhu-

ber, and Peter Wurzinger. 2004. FFT Compiler Techniques. In Com-

piler Construction: 13th International Conference, CC 2004. Springer
Berlin Heidelberg, 217–231.

[31] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong ProgramAnalysis & Transformation. In Proceedings

13

https://exactcodesign.org/proxy-app-software/
https://exactcodesign.org/proxy-app-software/
https://gcc.gnu.org/
https://hpgmg.org/
https://hpgmg.org/

Conference’17, July 2017, Washington, DC, USA

of the International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization (CGO ’04). IEEE Com-
puter Society, Washington, DC, USA, 75–.

[32] A. Li, S. L. Song, A. Kumar, E. Z. Zhang, D. ChavarrÃŋa-Miranda, and
H. Corporaal. 2016. Critical points based register-concurrency auto-
tuning for GPUs. In 2016 Design, Automation Test in Europe Conference

Exhibition (DATE). 1273–1278.
[33] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. 2000.

Fusion-based Register Allocation. ACM Trans. Program. Lang. Syst.

22, 3 (May 2000), 431–470.
[34] Hanspeter Mössenböck and Michael Pfei�er. 2002. Linear Scan Reg-

ister Allocation in the Context of SSA Form and Register Constraints.
Springer Berlin Heidelberg, 229–246.

[35] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen.
1995. Combining Register Allocation and Instruction Scheduling. Tech-
nical Report. Stanford, CA, USA.

[36] Ravi TejaMullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Poly-
Mage: Automatic Optimization for Image Processing Pipelines. In Pro-
ceedings of the Twentieth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS ’15).
ACM, 429–443.

[37] C. Norris and L. L. Pollock. 1993. A scheduler-sensitive global register
allocator. In Supercomputing ’93. Proceedings. 804–813.

[38] NVCC 2017. NVIDIA CUDA Compiler Driver NVCC. docs.nvidia.

com/cuda/cuda-compiler-driver-nvcc. (2017).
[39] NVprof 2017. NVIDIA Pro�ler. h�p://docs.nvidia.com/cuda/

profiler-users-guide. (2017).
[40] Shlomit S. Pinter. 1993. Register Allocation with Instruction Schedul-

ing. In Proceedings of the ACM SIGPLAN 1993 Conference on Program-

ming Language Design and Implementation (PLDI ’93). ACM, New
York, NY, USA, 248–257.

[41] Massimiliano Poletto and Vivek Sarkar. 1999. Linear Scan Register
Allocation. ACM Trans. Program. Lang. Syst. 21, 5 (Sept. 1999), 895–
913.

[42] Fernando Magno Quintão Pereira and Jens Palsberg. 2008. Register
Allocation by Puzzle Solving. In Proceedings of the 29th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (PLDI ’08). ACM, New York, NY, USA, 216–226.
[43] Mahesh Ravishankar, Justin Holewinski, and Vinod Grover. 2015.

Forma: A DSL for Image Processing Applications to Target GPUs and
Multi-core CPUs. In Proc. 8th Workshop on General Purpose Processing

Using GPUs. 109–120.
[44] Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod

Grover, Louis-Noel Pouchet, Atanas Rountev, and P. Sadayappan.
2016. Resource Conscious Reuse-Driven Tiling for GPUs. In Proceed-

ings of the 2016 International Conference on Parallel Architectures and

Compilation (PACT ’16). ACM, 99–111.
[45] Hongbo Rong. 2009. Tree Register Allocation. In Proceedings of the

42Nd Annual IEEE/ACM International Symposium onMicroarchitecture

(MICRO 42). ACM, New York, NY, USA, 67–77.

[46] Vivek Sarkar and Rajkishore Barik. 2007. Extended Linear Scan: An
Alternate Foundation for Global Register Allocation. In Proceedings

of the 16th International Conference on Compiler Construction (CC’07).
Springer-Verlag, Berlin, Heidelberg, 141–155.

[47] Ravi Sethi and J. D. Ullman. 1970. The Generation of Optimal Code
for Arithmetic Expressions. J. ACM 17, 4 (Oct. 1970), 715–728.

[48] Michael D. Smith, Norman Ramsey, andGlennHolloway. 2004. AGen-
eralizedAlgorithm for Graph-coloring Register Allocation. In Proceed-
ings of the ACM SIGPLAN 2004 Conference on Programming Language

Design and Implementation (PLDI ’04). ACM, New York, NY, USA, 277–
288.

[49] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fab-
rice Rastello, J. Ramanujam, and P. Sadayappan. 2014. A Framework
for Enhancing Data Reuse via Associative Reordering. In Proceedings

of the 35th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI ’14). ACM, New York, NY, USA, 65–76.
[50] sw4 2014. SeismicWaveModelling (SW4) - Computational Infrastruc-

ture for Geodynamics. h�ps://geodynamics.org/cig/so�ware/sw4/.
(2014).

[51] Sid Touati and Christine Eisenbeis. 2004. Early Periodic Register Allo-
cation on ILP Processors. Parallel Processing Letters 14, 2 (June 2004),
287–313.

[52] Swapneela Unkule, Christopher Shaltz, and Apan Qasem. 2012. Auto-
matic Restructuring of GPU Kernels for Exploiting Inter-thread Data
Locality. In Proceedings of the 21st International Conference on Com-

piler Construction (CC’12). Springer-Verlag, Berlin, Heidelberg, 21–40.
[53] Mohamed Wahib and Naoya Maruyama. 2014. Scalable Kernel Fu-

sion for Memory-bound GPU Applications. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis (SC ’14). IEEE Press, 191–202.
[54] Mohamed Wahib and Naoya Maruyama. 2015. Automated GPU

Kernel Transformations in Large-Scale Production Stencil Applica-
tions. In Proceedings of the 24th International Symposium on High-

Performance Parallel and Distributed Computing (HPDC ’15). ACM,
New York, NY, USA, 259–270.

[55] Jian Wang, Andreas Krall, M. Anton Ertl, and Christine Eisenbeis.
1994. Software Pipelining with Register Allocation and Spilling. In
Proceedings of the 27th Annual International Symposium on Microar-

chitecture (MICRO 27). ACM, New York, NY, USA, 95–99.
[56] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark He�ernan, Chris

Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng,
and Robert Hundt. 2016. gpucc: An Open-source GPGPU Compiler.
In Proceedings of the 2016 International Symposium on Code Generation

and Optimization (CGO ’16). 105–116.
[57] Xiaolong Xie, Yun Liang, Xiuhong Li, YudongWu, Guangyu Sun, Tao

Wang, and Dongrui Fan. 2015. Enabling Coordinated Register Alloca-
tion and Thread-level Parallelism Optimization for GPUs. In Proceed-

ings of the 48th International Symposium onMicroarchitecture (MICRO-

48). ACM, New York, NY, USA, 395–406.
[58] Jingling Xue. 1997. On Tiling as a Loop Transformation. Parallel

Processing Letters 07, 04 (1997), 409–424.

14

docs.nvidia.com/cuda/cuda-compiler-driver-nvcc
docs.nvidia.com/cuda/cuda-compiler-driver-nvcc
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/profiler-users-guide
https://geodynamics.org/cig/software/sw4/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Scheduling DAG of Expression Trees
	3.1 Sethi-Ullman Scheduling
	3.2 Scheduling a Tree with Data Sharing
	3.3 Heuristics for Tractability
	3.4 Scheduling a DAG of expression trees

	4 Interleaving Expressions
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	A Artifact appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected result
	A.6 Experiment customization

	References

