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An unexpected bridge between chemical bonding
indicators and electrical conductivity through the
localization tensor†

Ángel Martı́n Pendás,* José Manuel Guevara-Vela, Daniel Menéndez Crespo,
Aurora Costales and Evelio Francisco

While the modern theory of the insulating state shows that the conducting or insulating properties of a system can

be extracted solely from the ground state properties via the so-called localization tensor (LT), no chemical reading

of this important quantity has ever been offered. Here, a remarkable link between the LT and the bond orders as

described by the delocalization indices (DIs) of chemical bonding theory is reported. This is achieved through a real

space partition of the LT into intra- and interatomic contributions. We show that the convergence or divergence of

the LT in the thermodynamic limit, which signals the insulating or conducting nature of an extended system,

respectively, can be nailed down to DIs. This allows for the exploitation of traditional chemical intuition to identify

essential and spectator atomic groups in determining electrical conductivity. The thermodynamic limit of the LT is

controlled by the spatial decay rate of the interatomic DIs, exponential in insulators and power-law in conductors.

Computational data of a few selected toy systems corroborate our results.

1 Introduction

As the technological demand of smart, functional, or tailored
materials increases, so does the need for understanding the
basic physics behind their sought-after properties. In many
cases this search has led to explore the new dimension that the
dependence of physical properties on size introduces at the
nanoscale. For instance, the predicted demise of Moore’s law1

has stirred up the development of new quantum-mechanically
operated devices like the single electron transistor.2 Similarly,
new fields such as molecular electronics have become hot topics
producing thousands of specialized papers.3 Despite much work,
the building of new physical or chemical intuition that may
guide future research beyond that coming from brute force case-
by-case simulations has proven to be much more difficult. In
crystal engineering, as an example, although the situation is now
much better than 20 years ago, we are still far from mastering the
rules to synthesize on-demand crystal structures.4

Regarding electrical conductivity at the nanoscale, much work
has been devoted in molecular electronics to quantitatively
simulating electron transport in single-molecule junctions,5 and
some rules regarding the factors that govern their conductivity

have emerged. However, despite the efforts, no simple chemical
rules linking the molecular structure and molecular conductivity
have been found to date.3 Since, in the end, all newly developed
nanodevices depend on the chemical synthesis of tailored mole-
cular fragments, we believe that finding simple chemical indica-
tors of facile electronic transport or conductivity is an important
goal with possibly major outcomes.

A guiding principle in this quest may be taken from the
naı̈ve chemical association between conductivity, and electron
localization and delocalization. Key concepts in chemistry like
conjugation, resonance, aromaticity, etc. are nothing but different
incarnations of electron localizability. However, standard approaches
coming from the theory of chemical bonding (TCB) are almost
inevitably linked to the one-particle molecular orbital (MO)
theory,6 and molecular conductivity tends to be interpreted in
terms of excitation gaps, i.e. HOMO–LUMO energetic differences,
instead of as a ground state property that could be transformed
into the sought conductivity indicators. Fortunately, a new para-
digm in TCB has emerged in the last few decades7 that defines
(and explores) chemical objects in real space from orbital invar-
iant densities (or density matrices). These techniques, collectively
known as quantum chemical topology (QCT),8 analyze the wave
function of a system, and use meaningful fields to partition the
physical space into regions or domains associated with: atoms,
through the one particle density in the quantum theory of atoms
in molecules7 (QTAIM); cores, lone, and bonding pairs, through
the electron localization function9 (ELF) or the electron localiz-
ability indicator10 (ELI), etc. Once the real space objects are
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defined, indicators are obtained at well-defined points, usually
the critical points of the defining field, and the global expectation
values of operators are divided into domain contributions. This
allows, for instance, for a rigorous real space partitioning of the
energy into intra- and interatomic components (the interacting
quantum atoms (IQA) approach11) much in the spirit of the
atomistic ansatz. QCT, well-known in quantum chemistry, is
slowly entering condensed matter physics.

Early attempts that tried to link the conductivity features of a
molecular system with its electron density failed.12 This comes
as no surprise, since conductivity leaves no simple scars on the
density. Fortunately, QCT domain expectation values are based
on physical observables, so QCT provides an open door to
connect the physicist’s and the chemist’s intuitions, which
tend to live in separate worlds. This is not easy to do in other
TCB approaches. In this regard, a rigorous formalism coupling
the insulating or conducting nature of an extended system with
ground state properties exists.13 Although not well known in the
chemical literature, Kohn’s theory of the insulating state does
the job. It is electron (de)localization that explains conductivity,
quantified by an object called the localization tensor (LT).

Thanks to QCT and its rigorous partitioning of quantum
mechanical expectation values into atomic or functional group
contributions, we find and explore here a remarkable bridge
between the LT and the standard bond orders of chemistry, as
defined in their real space manifestation known as delocalization
indices (DIs). It is the rate at which bond orders decrease with the
distance that determines whether a system will or will not be
conducting in the static thermodynamic limit. Since we can
examine straightforwardly the behavior of DIs among atoms or
functional groups in several dimensions, we expect our results to
be useful in building new conductivity chemical rules.

2 The modern theory of the insulating
state and the assessment of
conductivity via the localization tensor

A seminal work by W. Kohn in 196413 showed for the first time
how the insulating nature of a system could be understood as a
consequence of electron localization in the ground state, and not
only from the properties of its excitation spectrum. However
important, this line of reasoning remained largely unexplored
until the end of the 1990’s, when Resta revisited and generalized
it.14–16 As emphasized by this author,17 it is the organization of
electrons in the ground state that renders a system insulating or
conducting. A central object that quantifies Kohn’s localization
in an N electron system is the localization tensor, k or LT. It is
defined as the second cumulant moment, per electron, of the

total electronic position operator R̂ ¼
PN
i

r̂i:

k ¼ 1

N
C R̂� R̂
���

���C
D E

� C R̂
���
���C

D E
� C R̂

���
���C

D En o
: (1)

We will use in this work bold fonts to indicate vectors or
tensors, depending on the context, and the # symbol for

tensor or cartesian products. As an example, the Cartesian
components of the r # r tensor are (r # r)ab = xaxb.

One of the most important results of Resta’s reformulation
lies in the link between the behavior of k in the thermodynamic
limit and the electrical conductivity: the k tensor, that measures
the quadratic fluctuations of the polarization of the system, and
that was initially used by Kudinov,18 has a well-defined thermo-
dynamic limit, diverging for conductors while remaining finite
for insulators.

We will just provide, for consistency, a few ideas that may
guide the informed reader about the origin of such a unique
property. It stems from the fluctuation–dissipation theorem19

that allows proving17 first that

k ¼ �h

pe2N

ð1
0

doImaðoÞ; (2)

where a(o) is the frequency dependent linear polarizability
tensor. From this, if periodic boundary conditions are imposed,
it can also be proven that

lbg ¼ dbg
�hV

pe2N

ð1
0

do
ResðoÞ

o
; (3)

with s being the frequency dependent electric conductivity. For
conducting systems, with non-vanishing Res at zero frequency,
the diagonal components of k diverge. These diagonal values
can also be understood as localization lengths,19 and they are
related to the optical gap Eg by laa r �h2/(2meEg).

Simple manipulations, already put forward by Resta,17 allow
recasting the LT in terms of the first order, r(r1), and the
second order, r2(r1,r2), spinless densities, which are also known
as the electron density and the pair density, respectively:

r r1ð Þ ¼ N
X
si

ð
dx2 � � � dxNC�C;

r2 r1; r2ð Þ ¼ NðN � 1Þ
X
si

ð
dx3 � � � dxNC�C:

(4)

In the above expressions C = C(x1,. . .,xN) and we sum over all the
si spin components of the xi space-spin electron coordinates.

Using the exchange–correlation density, the part of the pair
density containing the quantum mechanical effects due to the
antisymmetry of the wavefunction, rxc(r1,r2) = r(r1)r(r2) � r2(r1,r2),
and defining the interparticle position vector r12 = r1� r2, k may be
written in an explicitly origin independent, symmetrical form. As
we show in the ESI,† after some algebraic manipulations,

k ¼ 1

2N

ð
dr1dr2 r12 � r12ð Þrxc r1; r2ð Þ: (5)

3 A bridge between conductivity and
the theory of chemical bonding

Chemistry being the science of the interactions among electrons
(or atoms, made from them and nuclei), it is not surprising that
rxc, which collects all non-classical behaviour in the pair-density,
is emerging, slowly but steadily, as one of the pillars in the
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modern TCB. Similarly, having shown that electrical conductivity is
related to how electrons localize or delocalize, it is also expectable
that the former is related to chemical bonding measures of electron
delocalization. Undoubtedly, the latter have a rather long history
in TCB.

In the present context, Bader and Stephens20 already proposed
in 1974 that the interatomic integration of rxc measures the
number of pairs of electrons shared between two atomic regions,
and named this quantity the delocalization index (DI)

dAB ¼ 2

ð
A

dr1

ð
B

dr2rxc r1; r2ð Þ: (6)

Here A, B are the spatial regions associated with the two atoms
(or fragments) under scrutiny. A similar A,A integral, the localization
index, determines the number of localized electrons in a region. The
DI provides the fluctuations of the electron population in the A,B
regions, also being a real space generalization of the standard MO
Wiberg–Mayer bond order,21,22 which physicists still use, in their
majority, in its even cruder Mulliken flavor. In energetic terms, the
interatomic exchange–correlation energy

EAB
xc ¼

ð
A

dr1

ð
B

dr2
rxc r1; r2ð Þ

r12
(7)

has been shown to correspond to the covalent part of the
interaction between the regions.23 Besides these two direct links,
a growing body of evidence shows the relevance of rxc-based
indices in TCB,24 explaining facts as the nature of chemical
interactions from DI profiles,24 or rationalizing stereoelectronic
effects.25 As we are going to show, it is the innocent concept of
bond order, a must in every freshman chemistry course, that
stores information about electrical conductivity.

A couple of recent studies26,27 had already started to show
that DIs encode information about the insulating or conducting
nature of a system through their spatial decay rate: in metals
we find an algebraic oscillatory decline with the interatomic A�B
distance, while in insulators their fall off is exponential. Con-
sideration of strongly correlated cases27 evidences that DIs are
also suitable generalizations of the double occupation order
parameter D used in Hubbard models to signal metal–insulator
transitions, and that they reveal how mesomeric effects in alternant
hydrocarbons are deeply linked to the oscillatory pattern that leads
to conductivity in the thermodynamic limit. An increase in the
electron correlation strength (by increasing the Hubbard U/t para-
meter or equivalently by substituting carbon by heavier elements)
eventually destroys the oscillations, pointing toward an active effect
of electron correlation in chemistry, e.g. to smaller mesomeric effects
in the heavier analogues of alternant hydrocarbons. Even more
importantly, the decay of these indices may be followed along
specific bond chains, directions, or along a combination of both.
One needs to only choose appropriately the domains in the A,B pairs.
This provides a quantitative tool in the discovery of low dimensional
conductors.

3.1 The localization tensor in finite molecules

In the last few years, several works by Leininger, Evangelisti and
coworkers28,29 have examined the role of k in molecular instead

of extended systems. To that end, these authors have preferred
to use the total second cumulant, which they have called the
total position-spread tensor, K or TPS, and not the per electron
quantity. Even a spin resolved version has also been studied.30

It has been shown that the TPS is very sensitive to bond
stretching, becoming large in the case of increased electron
mobility. In simple diatomics, for instance, its parallel component
is small at equilibrium, it increases as the interatomic distance is
enlarged before achieving a maximum value close to the bond
breaking region, and it decreases again towards the free atomic
value at dissociation.

Although the TPS has been welcome, adding to the battery of
new chemical bonding indicators at hand, its global character
partially limits its applicability. Its evolution in a possibly
complex process will just average out the total response of
the system, even though some very restricted atomic or bond
resolution might be achieved by following a particular component or
projection that isolates an important direction in space. In order to
become a useful TCB descriptor, this barrier needs to be overcome to
understand the origin of convergence/divergence and the onset of
conductivity as we approach the thermodynamic limit.

3.2 An atomic partition of the TPS

Being the expectation value of a two-electron operator, QCT
offers an immediate solution to the problem: provided that a
chemically meaningful division of the space exists, we can
space partition k or K, just as it is done in the IQA approach.
Without loss of generality, we present an atomic partition of the
TPS using the QTAIM. This can be made coarser (scaling it up
to the functional group or molecular level) or finer (to the level
of atomic core, bond and lone pair domains) at will. Another
important point regards origin dependency, which may bring
trouble in the partitioning if direct use of eqn (1) is made. This
difficulty is eluded by using manifestly origin independent
eqn (5).

Let us start with an exhaustive partition of the physical space
R3 =

S
A into atomic regions. A rigorous, physically sound

possibility is provided by the QTAIM. Each of these regions or
domains harbors a nucleus, at position RA. Given the one-to-
one correspondence between domains and nuclei, we will label
them interchangeably. Then,

K ¼
X
A�B

KAB;

KAA ¼ 1

2

ð
A

dr1

ð
A

dr2 r12 � r12ð Þrxc r1; r2ð Þ;

KAB ¼
ð
A

dr1

ð
B

dr2 r12 � r12ð Þrxc r1; r2ð Þ:

(8)

Notice that the above expressions provide a chemical partition
of the TPS (or the LT if we divide by N).

The intra-atomic KAA terms must tend to their free atomic
values KAA

0 as the molecular system is pulled apart into atoms.
Recalling that

Ð
dr1dr2rxc r1; r2ð Þ ¼ N; it is well known that the

localization index of region A, NAA ¼
Ð
Adr1

Ð
Adr2rxc r1; r2ð Þ;

defines the number of localized electrons in region A, so that
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KAA measures the interelectron spread of these localized electrons
in the atomic region, behaving grossly as KAA B (NAA/2)hr12

2iA. The
intra-atomic contributions to the TPS are thus additive and size
extensive, and their sum is clearly seen through this partition to
provide a term that scales linearly with the size of the system
(or the number of electrons) as we approach the thermodynamic
limit. An important corollary is that the root of any divergence in
the LT will not be found in these intra-atomic components
(see below). As it happens with other intra-domain expectation
values in QCT, DKAA = KAA� KAA

0 reflects the local change in inter-
electron spread due to chemical bonding and, except in very
specific cases, like those in which a large charge transfer occurs,
we expect these DKAA values to be small.

The interatomic KAB contributions are much more interest-
ing, for they directly measure the change in the interelectron
spread due to the delocalization associated with the formation
(or breaking) of a particular bond. From chemical intuition, two
spatially separated non-bonded atoms will display a vanishing
KAB value. Most, if not all, of the interesting behaviors of K are
then to be found in these terms. Notice that when two separated
entities interact, the KAA components are non-vanishing at full-
separation, changing upon interaction, but that the KAB value is
zero at infinite separation, sensing directly the interaction
process.

3.3 How does KAB decay with distance?

Taking into account that A and B are two non-overlapping
regions of space, the behavior of KAB as the two centers move
away from each other is determined by the decay rate of rxc with
the interelectron distance and the RAB = RA � RB distance itself.
Provided that the two electron coordinates satisfy r1 A A and
r2 A B, we may refer them to their local nuclear reference frames,
respectively: r1 = RA + u1 and r2 = RB + u2. With the above, the
dependency of KAB on the internuclear distance is explicitly
separated. Let us define u12 = u1 � u2, and the local integrals

I ¼
ð
A

du1

ð
B

du2 u12 � u12ð Þrxc r1; r2ð Þ;

J ¼
ð
A

du1

ð
B

du2u12rxc r1; r2ð Þ;
(9)

that may also be written in terms of spatial moments of the domain
averaged Fermi holes introduced by R. Ponec,31 which have been
successfully used in the last few years to reveal many interesting
effects in chemical bonding.32 With these, we may write

KAB = I + RAB # J + J # RAB + 1
2(RAB # RAB)dAB. (10)

The first term contains only local distances, roughly decaying as
dAB itself, and out of the three remaining terms, the one leading the
long-range behavior is the third. Thus, at large interatomic
distances KAB B (RAB # RAB)dAB/2, and the parallel component
of K along the bond direction will scale as

LAB
J B 1

2RAB
2dAB. (11)

This last important relation provides a new bridge between TCB
descriptors in the ground state and the Kohn–Resta theory of
the insulating state.

3.4 The chemical bonding origin of the convergence/
divergence of k

We can now turn to the convergence/divergence of k in the thermo-
dynamic limit. An explicit effective one-center expansion of K
may be immediately written from our previous partition as

K ¼
X
A

KA; KA ¼ KAA þ 1

2

X
BaA

KAB: (12)

Notice that the atomic additivity of KA allows us to write

k ¼ 1

N

XNat

A

KA ¼ Nat

N
KA
� �

¼
KA
� �
n

; (13)

where hKAi is the average of KA over all the atoms comprising
our system, and n is the average number of electrons per atom. The
divergence of k in the thermodynamic limit is equivalent to that of
the average atomic-additive hKAi. Remarkably, the divergence of the
LT can thus be nailed down to an atomic property.

Further analysis opens new avenues in understanding the
onset of conductivity from a chemical perspective. Several paths
may lead to a divergent hKAi. For instance, all the KA terms may
diverge themselves, or only one or a few. This analysis will
identify essential and spectator atoms or functional groups in
complex conducting systems. Essential groups for conductivity
will be those for which KA diverges, while spectator groups will
be characterized by convergent KA. We think that this classifi-
cation scheme can help identify replaceable groups that will
not change the basic conductivity properties of a system while
tuning their fine conductive properties.

For each divergent KA, our previous comments show that it
will be the interatomic sum,

P
BaA

KAB; not the intra-atomic KAA,

that will add to an infinite result. It is the interplay between the
dimensionality of the system and the decay rate of dAB that
determines convergence. This binds the behavior of k to the
decay rate of DIs as already explored.26,27

To keep our discussion as simple as possible, we will now
continue our reasoning in one-dimensional systems, where
these ideas are most easily apprehended. In 1D, whenever dAB

decreases faster than dAB C R�d
AB , with d = 2, the

P
BaA

KAB term

will converge, and the contrary will make it diverge. Similarly,
the limiting d exponent is 3, 4 for 2- and 3-dimensional
conductivities to occur, respectively. These results perfectly
match the findings relating the decay rate of the non-
diagonal elements of the first order density in tight binding
models of metals, as shown by Taraskin.33,34 In contrast,
exponentially decaying interatomic delocalization indices dAB

will always lead to insulating behavior, i.e. to convergent k

values. We would like to stress that the transition from expo-
nential to power-law dAB decay rates has already been found to
occur in computational studies of model systems.27
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The following expressions summarize the core of our findings
in the thermodynamic limit:
� If dAB decays exponentially with RAB, k converges.
� In a d-dimensional system, k converges/diverges if dAB decays

faster/slower than R�(d+1)
AB .We propose that low-dimensional as

well as bulk conductivity can be spotted by examining the
behavior of KAB along the appropriate directions, planes, or
3D regions, respectively.

4 Exemplifying the usefulness of the K
partition

We are now in a position to show the new insights at work in a
few toy systems. We will first discuss two simple dissociation
processes, H2 - H + H and H2O - OH + H, where we will see how,
and why, the final localization of electrons in the products leads to a
convergent k, i.e. to insulating-like behavior. This will also make the
essential role of electron correlation in correctly capturing the
physics of the system. Finally, the early stages in the birth of a
divergence, thus the switch towards metallic-like behavior, will be
succinctly analyzed in a linear chain of equally spaced hydrogen
atoms. The electronic structure calculations have been performed
using the GAMESS package,35 and the TPSs have been obtained for
QTAIM atomic partitions through our PROMOLDEN36 code, which
is able to handle quite a number of correlated and non-correlated
wave functions and several QCT partitions, not only the one
provided by the QTAIM. Details of the implementation of the TPS
in PROMOLDEN can be found in the ESI.†

4.1 The dissociation of H2

First we discuss the H2 molecule (A = H, B = H0), a paradigm of
covalent interactions. We have computed K at the Hartree–Fock
(HF) and configuration active space (CASSCF) levels with the
aug-cc-pVTZ basis set along with its dissociation coordinate.
The results are presented in Fig. 1. Notice that the K tensor is
diagonal in any reference frame in which the internuclear
distance coincides with one of the coordinate axes, and that
rotational invariance equalizes the other two orthogonal eigenvalues
of K. We will call these two different components of K LJ

and L>, respectively. As already put forward by Resta17 and
Leininger et al.,28 mean-field and correlated descriptions of the
dissociation process differ essentially. Interestingly, these qualitative
differences are also observed when the delocalization index is
examined by itself.37

Failure to consider electron correlation leads to a parabolic
divergence of LJ as the internuclear distance increases. Its
origin cannot be grasped by solely examining the full tensor,
but its partitioning shows that, as expected, it is the interatomic
component, LAB

J , that diverges. Through the eyes of our findings,
the parabolic behavior is due to an artificial non-vanishing dAB at
infinite separation (the HF dissociation error). It may be instruc-
tive to recall that at the Hartree–Fock level we may write for
closed-shell systems

dAB ¼ 4
X
ij

SA
ij S

B
ij ; (14)

where the sum runs over all pairs ij of occupied orbitals and SA
ij is

an atomic overlap integral

SA
ij ¼

ð
A

drfiðrÞfjðrÞ: (15)

As in H2 we have only one occupied HF orbital fulfilling SA
11 =

SB
11 = 1/2 by symmetry considerations, and the bond order dAB = 1 at

any RHH in this model. This can also be interpreted as a result of
the two opposite spin electrons being statistically independent if
no Coulomb correlation is added. The wrong constant dAB leads to
infinite-range delocalization, with an overall probability of finding
the two electrons in any one of the H atoms (the so-called ionic
weight in quantum chemical approaches) equal to 1/2.38 Eqn (11)
does the rest.

Proper inclusion of Coulomb correlation makes dAB decrease
exponentially at large distances,39 so that the bond breaks
appropriately. Thus, in the correct correlated description, the
intra-atomic KAA components start at low values close to
equilibrium, increasing to the free atom limit. From eqn (1),
it is clear that in this limit KAA is also diagonal and that each of
its three components is equal to hf|r2|fi, where f is the

Fig. 1 Total, intra-atomic, and interatomic components of K in the H2

molecule at the HF (top) and CASSCF//aug-cc-pVTZ (bottom) levels along
the internuclear dissociation coordinate. The parallel and perpendicular
labels correspond to the internuclear and orthogonal directions, respectively.
All data are in a.u.
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hydrogenic atomic orbital in the state of interest. For the 1s
ground state, hr2i = 3 a.u, so that hz2i = 1, which is also the
appropriate KAA limit at dissociation.

Many other features of the behavior of the intra-atomic
components are easy to rationalize. For instance, the lower
value of KAA at small interatomic distances is understood
straightforwardly, for the number of localized electrons in each
atom under these conditions is about 0.5, vide supra. It is also
interesting to notice that the intra-atomic LAA

J value is smaller
than its LAA

> counterpart, reflecting the compression of the
atomic density along the internuclear axis as we approach the
two atoms from infinity. As also expected, it is the interatomic
KAB component that accounts for the sharp maximum in the
total K tensor. This maximum has been interpreted28 as a
signature of bond breaking. Under our present formalism, it
is a simple consequence of the shift from a power-law to an
exponential decay in rxc or dAB, i.e. from a quasi-independent
electron pair being stretched (as in the HF case) to the strongly
correlated, localized dissociation limit. This transition, scaled
by RAB

2/2, gives rise to the maximum that is found very close to
the internuclear distance at which the inflection point of dAB

has been repeatedly described.24,27

4.2 The power of partitioning K: H2O - OH + H

We can now show how the global behavior of K, that contains
the total response of the system to a chemical process, may be
split up into chemically meaningful terms. To that end we have
chosen the H2O - OH + H dissociation, with the OH1 distance
taken as an intrinsic reaction coordinate. Fig. 2 shows the
evolution of LAB

J along R(OH1) at the complete active space
CASSCF[8,8]//aug-cc-pVTZ level. This exemplifies the power of
partitioning L. As the OH1 distance is stretched, we see how
there is a simple jump in LOH2

J , while it is LOH1
J that behaves

much as in the H2 case. The step from lower to higher LOH2
J can

be understood by taking into account that in the final OH
radical the number of delocalized electrons between the O and
the H2 atoms has increased. In other words, since the OH2

bond order increases as the H1 atom dissociates, DdOH2 4 0, so
does LOH2

J . Only a partitioning of the TPS, like the one devised
here, will be able to isolate the main actors in complex
scenarios. With our tools, this seems to be at hand, and the
strong link between the essential interatomic KAB terms and the
DIs is unveiled.

4.3 Recognizing the onset of conductivity: the H10 chain

Our next example will be a linear chain of 10 equally spaced H
atoms computed at the HF and full valence CASSCF levels with
the 6-311G* basis set. At the inter-hydrogen distance selected,
R = 3.5 Bohr, the HF model starts to fail, but it still provides a
reasonable description of the electron system. We examine how
the interelectron spread propagates along a quasi-1D system,
and our goal is put on eqn (12). Fig. 3 shows how LAB

J changes
for all pairs in which one of the atoms is fixed to be an end H.
The first interesting point is that in the mean-field HF approxi-
mation, LAB

J decays with distance in a well-developed slow
oscillatory pattern. We have found a similar behavior examining
DIs.26,27

Fig. 2 Interatomic components of LJ in the H2O molecule at the
CASSCF[8,8]//aug-cc-pVTZ level along the internuclear O–H1 dissociation
coordinate. All data are in a.u.

Fig. 3 LAB
J along the internuclear direction in a H10 linear chain of equally

space atoms at the HF//6-311G* (top) and CASSCF//6-311G* (bottom)
levels. A labels one of the end H atoms, and B runs over all the others.
Nearest neighbors are 3.5 Bohr apart. In each plot, the dashed curve
corresponds to RAB

2dAB/2. All data are in a.u.
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Notice that, from the chemical point of view, these oscillations
signal a clear bond order alternation or mesomerism, precursor of
a Peierls distortion (or H2 dimerization). This has also been
repeatedly described in previous literature:24 delocalization indices
in geometrically constrained systems inform about the expected
distortions when the constraints are released. As we find here, the
localization tensor yields similar sensible chemical information.

A power law fit of dAB to R�d
AB gives d E 2.5, close to the tight

binding value (d = 2.0). The sum in eqn (12) achieves a very
large value. The oscillatory pattern in LAB

J , as in the case of the
DI, is a clear indicator of conducting-like behavior. A second
point regards the very quick saturation of KAB to the RAB

2dAB/2
leading term in the long range. Fig. 3 shows that our previous
theoretical insights are fully realized from actual computations.
It is the decay rate of DIs (i.e. the inter-center electron deloca-
lization) that determines conductivity in the thermodynamic
limit. Inclusion of electron correlation does not make the
oscillations disappear at this interatomic distance, but reveals
how the electrons are now much more localized, with a con-
siderably smaller spread. A similar fit now gives d E 4.1, well
above the metallic limit. We have shown that the oscillations

disappear when we enter the dissociating, localized regime,
and that the DI decays exponentially in that case.27

4.4 Insulating-like and conducting-like chains

We will finish our discussion by considering two real life one-
dimensional linear chains of equidistant atoms: (LiH)15 and Li10,
with the nearest neighbor distances set to 3.0 and 5.818 bohr,
respectively. We have used a HF/6-311G* level that provides a
simple, yet reasonable description for both systems. Fig. 4 shows
relevant values for LAB

J , which provide clear grounds for compar-
ison: the small values and the very quick decay of the interatomic
LAB
J values in an insulator like lithium hydride, and their much

larger magnitude, slow decay, and oscillatory behavior in the
metallic-like chain.

5 Conclusions

In summary, we have shown in this article that a remarkable
bridge exists between the Kohn–Resta theory of the insulating
state, through the localization tensor (or its total position
spread tensor version in molecular systems), and well known
indicators used in the modern theory of chemical bonding as
bond orders. This has been achieved by partitioning the
localization tensor in intra- and interatomic components. An
orbital invariant way to do so starts by writing the LT in terms
of reduced densities and then partitioning the space into
atomic regions according to quantum chemical topology. Con-
vergence or divergence of the LT in the thermodynamic limit,
associated with insulating or conducting electrical properties,
depends exclusively on the decay rate of its interatomic com-
ponents. The latter are dominated by the chemical delocaliza-
tion index, a modern form of bond order. The chemistry of
ground states and the physics of conductivity become inter-
twined in this way. We expect this new link to be useful in the
search and design of low dimension conductors or insulators,
for the total LT can be written as a sum of atomic (or functional
group) components. Each atom or functional group in a system
may thus be classified as essential, if its contribution to the LT
diverges, or a spectator, if it converges, as electrical conductivity
is regarded. We expect that this categorization can be used
advantageously in the rational design of new materials.
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