
Global-to-Local Protein Shape Similarity System
driven by Digital Elevation Models

Daniela Craciun∗, Jeremy Sirugue∗ and Matthieu Montes∗
∗Conservatoire National des Arts et Métiers, Laboratoire GBA, EA 4627
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Abstract—We are currently developing a bio-shape similarity
system for supplying high-throughput protein shape similarity
applications within massive datasets. The proposed system is pow-
ered by a global-to-local shape similarity system which exploits
shape elevation and local convexity attributes. In the first step,
a global similarity is computed between the shape descriptors
associated to each protein input. The procedure outputs best N

similarities chosen by the user, within a query-to-cluster approach.
The second stage is a patch-based local similarity computation
method which is designed to find the best similar target from the
cluster for supplying query-to-target protein retrieval applications.
The local patch-based similarity comparison benefits of a multi-
CPU implementation, offering thus fast query search capabilities
within massive datasets. Experimental results on the SHREC
2017 BioShape dataset [4] composed of 5484 models, illustrate
the effectiveness of the proposed system.

I. INTRODUCTION AND MOTIVATION

Structural biologists face a rapid growing of the number

of protein structures in the Protein Data Bank [1] (130000

structures in 2017) which induces a considerable need for

fast protein similarity search methods able to screen such

large databases in a reasonable amount of time. Since protein

3D structures are more conserved during evolution than their

respective amino acid sequences [7], sequence-based protein

similarity search methods fail to retrieve structural homologs

that share low sequence homology. Protein structural similarity

search methods such as DALI [11], CE [12], FAST [13]

or FATCAT [14] that use different methods to align protein

structures and compute their similarity, notably using the Root

Mean Square Deviation of their alpha carbons. Most of the ex-

isting protein comparison methods share the major limitation

that they are too computationally expensive to search a large

protein structure database in a reasonable amount of time [15].

In this paper, we introduce a shape-based method which

allows to perform high-throughput protein classification with-

out relying on human operator intervention. In addition, the

proposed method is designed to perform fast query search

within massive datasets. The present research work introduces

a global-to-local framework designed in a complementary

fashion, along with a multi-CPU implementation, in order to

cope with rapidity constraints. Our paper is organized as fol-

lows: Section II describes the proposed global-to-local Protein

Shape Similarity Search System (PS4), followed by Section

III which presents experimental results and the performance

evaluation on the SHREC 2017 (SHape REtrieval Contest)

BioShape dataset [4]. Finally, Section IV concludes the present

research work and gives main perspectives.

II. PROPOSED PROTEIN SHAPE SIMILARITY SEARCH

SYSTEM (PS4)

The proposed Protein Shape Similarity Search System

(PS4) is composed of two main stages: the first stage is

performed for each shape and consists in the Macromolecular

Shape (MS) representation as a Digital Elevation Model

(DEM), encoded over a 2D grid. The second stage corresponds

to the shape comparison phase which is supplied via a global-

to-local framework relying on the MS-DEMs descriptors. Both

stages are summarized through the following two sections.

A. Representing Macromolecular Shapes as Digital Elevation

Models

Macromolecular triangular surface computation. The

shape representation algorithm applies the EDTSurf [2] tech-

nique to generate the macromolecular surface (MS) from

the input data. The algorithm exploits the Vertex Connected

Marching Cubes and the Euclidean Distance Transform to gen-

erate the triangular mesh which is kept for further processing.

Digital Elevation Model descriptor computation. The

present work exploits the DEM concept traditionally employed

in cartography for representing Earth’s surface from terrain

elevation data [8]. The algorithm starts by applying the mesh

flattening procedure introduced in [3], which maps the mesh

onto the unit sphere using the Laplace-Beltrami operator [10].

The spherical mapping provides a valid solution for any genus-

0 triangle meshes, being adapted in our current research work.

In the second step, the unit sphere is projected onto a 2D

spherical panoramic grid and the elevation values of the input

mesh are assigned to each 2D location of the panoramic grid.

This results in a global descriptor which encodes shape’s

elevation, while providing topology and fast comparison over

a 2D grid space. The DEM descriptor is stable under rotations

and translations variations of the input mesh and varies in

presence of scale transformations. A detailed description of the

algorithm can be found in [5]. The final output is the digital

elevation model associated to the macromolecular surface,

noted MS-DEM. Figures 1 (a)-(d) illustrate the results obtained

for a target belonging to the protein pool of the SHREC 2017

BioShape track [4].
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Fig. 1. Overview of the global descriptor computation stage (input model: m10001) and the integration within the global-to-local similarity computation
framework of the PS4 prototype: (a) input data Np = 187866 points, Nt = 357840 triangles; (b) macromolecular mesh generated by EDTSurf [2]:
Np = 86079 points, Nt = 172154 triangles; (c) spherical mapping output [3]: Np = 86079 points, Nt = 172154 triangles; (d) MS-DEM output:
Np = 86089 points, bounding box dimensions: [472, 257, 36.112], (e) Gradient Gx computed for the MS-DEM illustrated in Figure (d); (f) Gradient Gy

computed for the MS-DEM illustrated in Figure (d); (g) Convexity map result corresponding to the MS-DEM illustrated in Figure (d).

B. Global-to-Local Protein Shape Similarity Computation

The proposed protein similarity search system relies on a

global-to-local shape similarity search framework designed in

a complementary fashion. The global similarity stage allows to

perform fast comparisons, being therefore employed as a first

stage to search for best similar candidates w.r.t. the query. In

exchange, the local stage provides a finer comparison, being

suitable for selecting the best rank similarity among targets

clustered at the global comparison stage.

Global Comparison of MS-DEMs. The MS-DEM shape

descriptor is used along with different global distances for

supplying the protein shape similarity computation stage. The

present research work evaluates the Mean Absolute Differ-

ences (dMAD) and the Root Mean Square Deviation (dRMSD)

distances. They are measured over the points belonging to

the 2D grids. For input meshes with different number of

points, distances are computed over the minimum number of

points computed between the query and the target meshes.

In absence of scale variation, the similarity score is valid for

meshes with a similar number of points, belonging to the same

class. In this configuration, the global comparison stage was

compared w.r.t. state-of-the-art shape retrieval algorithms and

a detailed peformance evaluation can be found in [5]. In the

present research work, the shape comparison stage outputs the

dissimilarity matrix which is exploited for extracting the best

N similarities chosen by the user w.r.t. the query. Figure 2

illustrates an example of the query-to-cluster procedure output

which provides the best N = 4 similar targets w.r.t. the query

q11.

Patch-based Local Comparison of MS-DEMs via Con-

vexity Maps. The local shape comparison stage takes as input

the best N = 4 similarities output by the global comparison

stage and finds the best rank similarity w.r.t. the query. The

local similarity computation is performed through the use of

convexity maps which are computed from each MS-DEM

descriptor. The MS-DEMs are exploited for computing the

gradient along X and Y directions, noted Gx and Gy , respec-

tively. The convexity coefficients are computed by identifying

gradient extremum values (minimas and maximas) and by

assigning convexity labels to each point belonging to the MS-

DEM descriptor. Figures 1 (e), (f) and (g) illustrate an example

of the Gx, Gy and the associated convexity map, noted Cmap,

respectively.

The pairwise patch-based comparison is performed by ex-

tracting patches from the convexity maps corresponding to the

query and the target meshes. For each patch extracted in the

query, a local dissimilarity measure is computed w.r.t. each

patch extracted from the target mesh. The dMAD distance is

computed between each query patch and all patches belonging

to the target. Similar patches selected w.r.t a threshold value

are further considered for computing the overall dissimilarity

score between the query and the target meshes. In our exper-

iments, it was observed that a patch ray of 7 pixels provides

accurate results in a reasonable amount of time. Moreover,

the results let us concluded that higher patch ray values lead

to a computationally expensive framework without improving

considerably the accuracy. Selected similar patches have less

than 20% dissimilarity compared to the maximum dMAD

distance computed over all the compared patches.

In order to avoid the computational burden of the local

comparison stage, the convexity maps are computed from MS-

DEMs with a reduced resolution (by a factor of 2). In addition,



Fig. 2. Output generated by the query-to-cluster procedure for query q11: Global similarity output obtained using the dMAD distance. The procedure outputs
N = 4 best similarities (illustrated from left to right), the identity query (model: m10224) is found as the 2nd top similarity (contour emphasized in blue
color).

Fig. 3. Output generated by the query-to-target procedure for query q11 via
the patch-based local similarity comparison of convexity maps. Input: N = 4
top similarities generated by the global comparison stage (query-to-cluster)
via the dMAD distance. Output: best similar target obtained for q11: m10224.

the local patch-based comparison benefits of a multi-CPU

implementation. Figure 3 illustrates an example of the best

similarity output found at the local comparison stage for the

first query, q11. As shown in Figure 2, the global similarity

phase outputs the best N = 4 similar targets, with the identity

query found as the 2nd top-rank similarity (blue contour).

Figure 3 illustrates that the identity target of query q11, noted

m10224, was found as the best similar target by the local

similarity comparison phase.

III. RESULTS AND PERFORMANCE EVALUATION

This section presents the performance evaluation of the

proposed framework, PS4, on the dataset made available for

the SHape REtrieval Contest (SHREC 2017) BioShape track

[4]. We analyse the proposed system in terms of accuracy,

runtime and memory usage.

Dataset. The dataset consists in 10 queries (q11,...,q20)

(selected from the molecule of the Month collection [9]) and

5484 targets. In order to allow accurate validation, for two

queries (q11 and q14), identic protein were included in the

target set.

Evaluation measures. In the SHREC 2017 BioShape track,

the protein similarity evaluation relies on the 3DZM method

[6] which measures the accuracy by comparing the correlation

coefficients computed between the query and each target. More

details about the dataset and the evaluation protocol can be

found in the SHREC 2017 BioShape track [4].

A. Accuracy Evaluation

As presented in the SHREC 2017 BioShape track [4], the

accuracy of the proposed framework is evaluated w.r.t. the

correlation coefficients obtained by the 3DZM method [6]. In

order to analyse the behaviour of the local stage, we provide

an evaluation of the PS4 framework employed in both modes:

global similarity computation and global-to-local computation

mode. Figure 4 illustrates the results generated by the global

stage (employing the dRMSD distance) and the global-to-local

framework. It can be observed that for queries q11 and q14, the

global-to-local approach retrieved successfully identity shapes

as the best rank similarity.

The patch-based local comparison stage improves the av-

erage correlation coefficient, attaining 0.6598, compared to

0.6051 provided by the global comparison stage alone. In

addition, while for some queries (i.e. q12, q13, q17, q18) the

global minimum was lost by the local comparison stage, for

the remaining queries (q15, q16, q19, q20), the global minimum

was correctly maintained. While providing a rapid protein

retrieval framework, there is still room for improving the local

patch-based similarity computation stage by searching more

stable and intrinsic features w.r.t. the dataset (shape, size,

resolution).

B. Runtime and memory usage

The proposed algorithm is implemented in C/C++ and runs

on a 64b Linux machine equipped with 32Gb of RAM memory

and an Intel Xeon running at 2.3 GHz. Less computationally

expensive stages, i.e. the descriptors’ computation (MS-DEM,

Cmap) and the global comparison, are designed for simple-

CPU implementation. The most expensive stage, i.e. the pair-

wise patch-based local comparison of convexity maps benefits

of a multi-CPU implementation.

Simple-CPU global comparison of MS-DEMs. The first

row of Table I resumes the average runtime for extracting the

MS-DEM descriptor for one model belonging to the protein

pool of the SHREC 2017 BioShape track [4]. The computation

time for comparing one query against the entire protein pool



Fig. 4. Experimental results generated by the proposed system PS4 on the
SHREC 2017 BioShape dataset [4], results comparison: Global similarity vs.
Global-to-Local similarity computations; Global similarity output generated
by the dRMSD distance computed between MS-DEM descriptors.

TABLE I
AVERAGE RUNTIME (SECONDS) OBTAINED FOR SIMPLE-CPU

IMPLEMENTATION OF EACH MODULE COMPOSING THE SHAPE

DESCRIPTOR EXTRACTION PROCEDURE ILLUSTRATED IN FIGURE 1.

Module (b) (c) (d) (e), (f) (g)
CPU (s) 3.34 2.65 0.12 0.03 0.015

RAM (Mb) 8.08 6.6 1.47 2.3 1.14

takes is in average of 2.3502 seconds and 3.3518 seconds for

dMAD and dRMSD distances, respectively.

Multi-CPU Patch-based Local Comparison of Convexity

Maps. In order to avoid the computational burden, the pairwise

local comparison procedure is implemented on NCPU = 24

cores, taking in average 1 min 15 sec for providing the best

similar target. When compared to the simple-CPU imple-

mentation, the parallelization allows to reduce the runtime

by an average factor of 46. This result emphasizes the fast

query search capability detained by the proposed protein shape

similarity search system, PS4.

Memory usage. The average memory usage for storing the

MS-DEM descriptor is 1.058 kb. The second row of Table I

illustrates the memory usage for the target m10001 depicted

in Figure 1. The overall memory usage required by the MS-

DEM descriptor and the associated convexity map Cmap is

2.61 Mb. When compared to the input mesh storage, (Figure

1 b)), the proposed descriptors reduce the memory usage by

a factor of 3, being therefore suitable for processing massive

datasets.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented the Protein Shape Similarity Search

System, (PS4), a global-to-local geometric-based protein sim-

ilarity framework designed for supplying fast query search

within massive datasets. The main features which ensure

the rapidity of the proposed system operate at two levels:

(i) software architecture: global and local shape similarity

computation for fast query-to-target computation, and (ii)

software implementation: multi-CPU optimization of local

comparison. This gives rise to a protein similarity system

designed in a complementary fashion: the global comparison

stage allows rapid selection of best candidates, while the local

stage provides best target selection among them. Experimental

results on the SHREC 2017 BioShape dataset [4], containing

5484 models, demonstrate that our approach detains fast

query search capabilities for supplying high-throughput query-

to-target protein retrieval applications. Nevertheless, while

solving the rapidity issue, there is still room for improving the

accuracy of the local similarity stage. Research perspectives

are concerned with the accuracy improvement of the local

stage, in presence of various shape types, while still maintain-

ing the fast query search capability detained by the proposed

system, PS4.
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