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Mixup, as a technique for augmenting data within the feature space, operates by applying linear in-
terpolation to input instances and their associated modeling targets derived from randomly selected 
samples. The efficacy of this method in substantially enhancing the predictive accuracy of cutting-edge 
networks has been established across both image and text classification tasks. Despite its demonstrated 
success in various contexts, its application within the context of the Arabic language remains an un-
explored area of research. This study employed three strategies to adapt Mixup for application in Ar-
abic sentiment analysis. Experimental evaluations were conducted to assess the effectiveness of these 
strategies, utilizing a range of benchmark datasets. Our studies demonstrate that these interpolation 
strategies effectively function as domain-independent methods for augmenting data, in the context of 
text classification. Furthermore, these strategies have the potential to lead to enhancements in perfor-
mance for both convolutional neural network (CNN) and long short-term memory (LSTM) models.
Keywords: Text Classification, Sentiment Analysis, Data Augmentation, Mixup Augmentation.

 ABSTRACT

الملخص

تعمل تقنية Mixup، كونها تقنية لزيادة البيانات داخل فضاء السمات، من خلال تطبيق الاستيفاء الخطي على مثيلات الإدخال وأهداف النمذجة 
المرتبطة بها المستمدة من عينات مختارة عشوائياً. أثبتت فاعلية هذه الطريقة في تعزيز الدقة التنبؤية للشبكات المتطورة بشكل كبير عبر مهام 
تصنيف الصور والنصوص. وعلى الرغم من نجاحه الواضح في سياقات مختلفة، لا يزال تطبيقها في سياق اللغة العربية مجالًا غير مستكشف 
من البحث. استخدمت هذه الدراسة ثلاث استراتيجيات لتكييف Mixup للتطبيق في تحليل المشاعر العربية. وأجريت تقييمات تجريبية لتقييم 
فاعلية هذه الاســتراتيجيات، وذلك باســتخدام مجموعة من مجموعات البيانات المرجعية. توضح دراســاتنا أن اســتراتيجيات الاســتيفاء هذه تعمل 
على نحو فاعل بوصفها طرائق مستقلة عن المجال لزيادة البيانات، في سياق تصنيف النص. إضافة إلى ذلك، فإن هذه الاستراتيجيات لديها 
.)LSTM( والذاكرة القصيرة المدى المطولة )CNN( القدرة على أن تؤدي إلى تحسينات في الأداء لكل من نماذج الشبكة العصبية التلافيفية

INTRODUCTION
In recent years, deep learning models have 
exhibited remarkable performance in numerous 
Natural Language Processing (NLP) tasks, such as 
parsing [1], text classification [2], [3] and machine 
translation [4]. These models are typically 
characterized by their substantial parameter 
count, often reaching millions, necessitating 
extensive data for training to prevent overfitting 
and enhance generalization capabilities. 
However, collecting a sizable annotated dataset 
proves to be a laborious and costly endeavour. 
To mitigate the data-hungry nature of deep 
learning models, an approach known as automatic 

data augmentation has emerged. This technique 
involves generating synthetic data samples 
to augment the training dataset, effectively 
serving as regularization for the learning models.
Data augmentation has been actively and 
successfully employed in computer vision 
[5], [6], [7] and speech recognition tasks [8], 
[9]. In these domains, methods frequently 
rely on human knowledge to apply label-
invariant data transformations, such as image 
scaling, flipping, and rotation. However, 
natural language processing presents a different 
challenge, as there are no straightforward rules 
for label-invariant transformations in textual 
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data. Even slight changes in a word within 
a sentence can drastically alter its meaning.
Consequently, popular data augmentation 
techniques in NLP focus on transforming 
text through word replacements, either using 
synonyms from manually curated ontologies, such 
as WordNet [10] or leveraging word similarity 
measures [11], [12]. Nonetheless, this synonym-
based approach can only be applied to a limited 
portion of the vocabulary since finding words 
with precisely or nearly identical meanings is rare.
Furthermore, certain NLP data augmentation 
methods are specifically designed for particular 
domains, rendering them less adaptable to other 
domains [13]. As a result, developing more versatile 
and effective data augmentation techniques remains 
a significant research challenge in the field of NLP.
In recent researches, a straightforward yet highly 
impactful data augmentation technique called 
Mixup [7] has been introduced, demonstrating 
remarkable effectiveness in improving the 
accuracy of image classification models. This 
method operates by linearly interpolating the 
pixels of randomly paired images along with 
their corresponding training targets, thereby 
generating synthetic examples for the training 
process. The application of Mixup as a training 
strategy has proven to be highly effective in 
regularizing image classification networks, 
leading to notable performance improvements.
Mixup methodologies can be classified into input-
level Mixup [14], [15], [16] and hidden-level Mixup 
[17] depending on where the mix operation occurs. 
In the context of natural language processing 
(NLP), applying Mixup poses greater challenges 
compared to computer vision due to the discrete 
nature of text data and the variability in sequence 
lengths. As a result, prior efforts in Mixup for 
textual data [18], [19] have put forth two strategies 
for its application in text classification: one involves 
performing interpolation on word embedding, 
while the other applies it to sentence embedding.
This incentive drives us to explore Mixup 
text techniques for low-resource languages, 
specifically concentrating on Arabic sentiment 
classification. Our study involves a comparative 
analysis of basic LSTM classification models, 
both with and without the incorporation of 
Mixup techniques. Furthermore, we conduct 
experiments on diverse datasets, spanning sample 
sizes varying from hundreds to thousands per 
class. Additionally, we perform an ablation study 
to investigate the effects of different Mixup 

parameter values. To the best of our knowledge, 
this represents the pioneering research utilizing 
Mixup in the context of Arabic text classification. 

RELATED WORKS
Data augmentation is a methodology employed to 
enhance the diversity and quality of data without 
the need to collect additional samples directly. The 
concept of data augmentation was initially applied 
in computer vision [20], where the manipulation of 
individual pixels in an image allows for modifications 
such as adding noise, cropping, padding, or flipping 
without compromising the underlying information.
In various domains, such as image classification 
[21], [22]. [23] and sound classification [24], 
augmenting datasets with perturbed replicas 
of their samples has proven to be highly 
effective. However, the application of data 
augmentation techniques in Natural Language 
Processing remains relatively unexplored.
Unlike image-related techniques that can 
generate new images with preserved semantic 
information through flipping and rotation, such 
approaches cannot be directly applied to text 
due to potential disruptions in syntax, grammar, 
and changes in the original sentence's meaning. 
Moreover, while noise injection is commonly 
used to enhance audio signal data [8], [25], [26], 
its direct suitability for text is limited by the 
categorical nature of word and character tokens.
Text data augmentation can be categorized into two 
main approaches: Feature space including Mixup [7] 
and data space [27]. In the data space, augmentation 
involves transforming raw data into readable textual 
data. The data space, as described in [27], is further 
divided into four categories: Character Level, word 
Level, phrase sentence Level, and document Level.
In the feature space, Mixup opts for virtual 
embeddings rather than generating augmented 
samples in natural language form. This methodology 
leverages existing data to sample points in the virtual 
vector space, potentially resulting in sampled data 
with labels distinct from those of the original dataset.
The inception of Mixup traces back to the domain 
of image processing, which originated from the 
work of [7]. Expanding upon this foundation, 
two variations of Mixup tailored introduced 
specifically for sentence classification by [18].
Mixup has witnessed widespread adoption in recent 
Natural Language Processing (NLP) research. In the 
field of neural machine translation, [28] pioneered 
the construction of adversarial samples, utilizing the 
methodology introduced by [29]. They subsequently 
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implemented two Mixup strategies, namely Padv 
and Paut. Padv involves interpolation between 
adversarial samples, while Paut interpolates 
between the two corresponding original samples. 
Concurrently, [30] incorporated Mixup into 
Named Entity Recognition (NER), presenting 
both Intra-LADA and InterLADA approaches.
In [31] introduced Mixup-Transformer, a novel 
approach integrating Mixup with transformer-
based pre-trained architecture. The researchers 
evaluated its efficacy by assessing its performance 
across various text classification datasets. While 
the proposed method Saliency-Based Span Mixup 
in [32], SSMix, distinguishes itself by performing 
operations directly on input text rather than on 
hidden vectors, as seen in previous approaches.
From the available literature, it appears that only 
a limited number of recent Arabic research studies 
have primarily focused on data space. For instance, 
Duwairi et al. [33] employed a set of rules to 
modify or swap branches of parse trees according 
to Arabic syntax, generating new sentences 
with the same labels. Similarly, in Named Entity 
Recognition, Sabty et al. [34] explored various data 
augmentation techniques, such as Word random 
insertion, swap and deletion within sentences, 
sentence back-translation, and word embedding 
substitution, which have also been utilized in 
other research, like [35], for spam detection.

MATERIALS AND METHODS

Mixup Concept

Define abbreviations and acronyms the first time 
they are used in the text, even after they have 
been defined in the abstract. Abbreviations such as 
IEEE, SI, MKS, CGS, sc, dc, and rms do not have to 
be defined. Do not use abbreviations in the title or 
heads unless they are unavoidable. The concept of 
Mixup involves creating a synthetic sample through 
linear interpolation of a pair of training samples and 
their corresponding model targets. To elaborate, 
let us consider a pair of samples denoted as (xi, yi) 
and (xj, yj), where x represents the input data, and 
y is the one-hot encoding representation of the 
respective class label for each sample. The process 
of generating the synthetic sample is as follows:

     (1)

     (2)

where λ could be either fixed value in [0; 

1] or it is sampled from Beta distribution 
with a hyper-parameter Beta (α; α).

The synthetic data generated using this approach 
are subsequently introduced into the model during 
training, aiming to minimize the loss function, such 
as the cross-entropy function typically employed 
in supervised classification tasks. To achieve 
computational efficiency, the mixing process involves 
randomly selecting one sample and pairing it with 
another sample drawn from the same mini-batch.

Mixup for text classification

In contrast to images that comprise pixels, sentences 
are composed of sequences of words. Consequently, 
constructing a meaningful sentence representation 
involves aggregating information from this word 
sequence. In typical CNN or LSTM models, a 
sentence is initially represented as a sequence 
of word embedding and then processed through 
a sentence encoder. Commonly used sentence 
encoders include CNN and LSTM architectures. 
The resulting sentence embedding, generated 
by either CNN or LSTM, is subsequently passed 
through a softmax layer to generate the predictive 
distribution encompassing the possible target classes 
for making predictions. In [18], Guo introduced 
two variations of Mixup tailored for sentence 
classification. The first variant, referred to as 
wordMixup, employs sample interpolation within 
the word embedding space. The second variant, 
known as senMixup, performs interpolation on the 
final hidden layer of the network just before it is 
fed into the standard softmax layer to generate the 
predictive distribution across classes. Specifically, 
in the wordMixup technique, all sentences are first 
zero-padded to a uniform length. Subsequently, 
interpolation is performed for each dimension of 
every word within a sentence. Let us consider a 
given text, such as a sentence consisting of N words, 
which can be represented as a matrix B in an N × 
d form. Here, each row t of the matrix corresponds 
to an individual word, denoted as Bt, and is 
represented by a d-dimensional vector obtained 
either from a pre-trained word embedding table 
or randomly generated. To formalize the process, 
let (Bi, yi) and (Bj, yj) be a pair of samples, where 
Bi and Bj represent the embedding vectors of the 
input sentence pairs, and yi and yj correspond to 
their respective class labels, represented in a one-
hot format. For a specific word at the t-th position 
in the sentence, the interpolation procedure 
is applied. The process can be formulated as:
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     (3)

     (4)

The obtained novel sample〖(B ̃〗^ij;y ̃^ij) is 
subsequently employed for training purposes. 
As for senMixup, the hidden embeddings for 
both sentences, having identical dimensions, 
are initially generated using an encoder like 
CNN or LSTM. Following this, the pair of 
sentence embeddings, f(Bi) and f(Bj), is linearly 
interpolated. In more detail, let f represent the 
sentence encoder; thus, the sentences Bi and Bj are 
first encoded into their corresponding sentence 

embedding, f(Bi) and f(Bj), respectively. In this 
scenario, the mixing process is applied to each kth 
dimension of the sentence embedding as follows:

       (5)

                           (6)

The sentMixup usually applies Mixup directly 
before the softmax while we experimented 
with additional Mixup type that work on the 
hidden layers output similar to [17] applying 
Mixup before the final linear layer. Th proposed 
models structures are represented in Fig. 1. 

Figure. 1 Models structure: (a) Mix-embed (Mixup with word embedding), (b) Mix-
encoder (Mixup at the encoder level) and (c) Mix-output (Mixup at the output level)

Datasets
We performed experiments using 8 Arabic 
sentiment classification benchmark datasets: 
ArSarcasm v[36] 1 & v[37] 2, SemEval[38] 2017, 
ArSenTD-LEV [39], AJGT [40], ASTD-3C [41], 
MOV [42]. The training sets differ in size (from 
12548 to 1524), and in number of labels (2 to 
5). The used datasets are summarizedin Table 1.
Preprocessing
The effectiveness of sentiment analysis 
models greatly depends on the quality of data 

Table 1. The datasets distribution
Dataset Train Test Labels
ArSarcasmv1 8437 2110 3
ArSarcasmv2 12548 3000 3
SemEval2017 3353 6098 3
ArSenTD-LEV 4000 C 5
AJGT 1800 C 2
ASTD-3C 3315 C 3
MOV 1524 C 3
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preprocessing, which is equally critical as the 
model›s architectural design. Preprocessing 
involves cleaning and preparation of the text 
data for the classification process. Textual data, 
particularly when sourced from the internet, 
tends to be unstructured, necessitating additional 
processing steps for proper classification.
Experimental environment and hardware
The experiments were developed using 
Python 3.9.7. The experiments, including their 
development, implementation, execution, and 
analysis, were conducted on an ASUS ROG 
G531GT Notebook. This machine runs Windows 
11 and is equipped with a 9th generation 
Intel Core i7 processor, 32GB of RAM, a 
512GB NVMe SSD, and an NVIDIA GeForce 
GTX 4  1650GB graphics card. The software 
libraries used in this study include PyTorch, 
Scikit-learn, Pandas, Gensim, and NumPy.
Model
We conducted an evaluation of wordMixup 
and senMixup using both CNN and LSTM 
architectures for sentence classification. 
In our setup, we employ filter sizes of 4 ,3, and 5, 

each configured with 100 feature maps, and a dropout 
rate of 0.5 for the baseline CNN. For the LSTM 
model, we utilize 3 hidden layers, each comprising 
100 hidden state dimensions, with the activation 
function set to tanh. Additionally, the mixing 
policy parameter is set to the default value of one.
In cases where datasets lacked a standard test set, 
we adopted cross-validation with a k-fold value of 
5 and reported the average performance metrics. 
Our training process utilized the Adam optimizer 
[36] with mini-batches of size 32 with 30 epochs 
and learning rate of 1e-3. For word embedding, 
we employed 100-dimensional Aravec embedding. 

RESULTS
The four variations of models evaluated are 
None (without Mixup), Mix-embed (Mixup with 
word embedding), Mix-encoder (Mixup at the 
encoder level), and Mix-output (Mixup at the 
output level). Table 2 and Table 3 present the 
results of the different experiments using LSTM 
and CNN model respectively. We can observe 
a general improvement on the performance of 
different Mixup models on various datasets.

TABLE 2. The result of lstm model (results are formatted as accuracy/
macrof1); none is the basic model with no mixup

Acc/ 
MacroF1 LSTM

Dataset None wordMixup encoderMixup senMixup

ArSarcasmv1 61.8/56.8 60.8/55.5 62.5/58 62.9/58.3
ArSarcasmv2 53.5/48.5 51.3/47.1 55.4/50.4 54.8/50.8
SemEval2017 50.7/47.7 49.3/47.7 51/48.1 51.3/48.8

ArSenTD-LEV 47.4/44.3 46.8/43.3 48.8/45.7 48.9/45.8
AJGT 84.6/84.5 82.4/82.4 85.2/85.2 85.2/85.2

ASTD-3C 56.1/53.4 54.6/49.1 56.3/52.5 56.5/53.1
MOV 57.9/43.5 58/42.3 58.6/43.4 58.9/43.8

Table 3. The result of cnn model (results are formatted as accuracy/
macrof1); none is the basic model with no mixup

Acc/ 
MacroF1 CNN

Dataset None wordMixup encoderMixup senMixup

ArSarcasmv1 62.1/55.3 62.6/56.8 63.1/57.5 63.5/57.6
ArSarcasmv2 53.2/49.0 55.4/50.6 56.7/52.1 57.2/52.4
SemEval2017 51.5/47.4 51.4/50.3 52.0/49.3 52.2/49.5

ArSenTD-LEV 49.7/45.9 48.0/45.3 49.3/46.0 49.2/45.8
AJGT 85.6/85.5 85.3/85.3 84.0/83.9 83.9/83.8

ASTD-3C 58.6/52.6 57.7/51.6 60.6/51.4 60.2/50.9
MOV 70.7/43.4 71.0/43.2 69.2/40.2 68.8/39.4
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DISCUSSION
Across the datasets, it is evident that applying 
Mixup techniques generally leads to slight 
improvements in accuracy compared to the 
baseline None model. However, the effectiveness 
of Mixup varies depending on the dataset. For 
instance, on the AJGT dataset, all Mixup variants 
consistently outperform the None model, 
with Mix-encoder and Mix-output achieving 
the highest accuracy of %85.2. On the other 
hand, for the SemEval2017 and ArSenTD-
LEV datasets, Mixup provides only marginal 
gains, suggesting that the impact of Mixup 
might be more prominent in certain scenarios.
Additionally, while Mixup seems to be 
beneficial in some cases, it does not necessarily 
lead to performance improvements across all 
datasets. For instance, on the MOV dataset, the 
Mixup variants show comparable or slightly 
worse results compared to the None model.
Furthermore, it is worth noting that the Mix-
encoder and Mix-output models tend to perform 
better than the Mix-embed model in most 
cases. This could be attributed to the advantage 
of applying Mixup at the higher levels of the 
model architecture, which allows the model to 
capture more abstract and meaningful patterns.
Mixup augments data by interpolating sequences, 
which can create new variations that capture a 
broader range of sequential patterns. LSTMs, with 
their capability to understand and generalize 
sequences over long contexts, can leverage these 
variations more effectively than CNNs, which 
focus more on local patterns and may not fully 
utilize the sequential nature of the augmented data.
Overall, these results demonstrate that 
Mixup techniques can be advantageous for 
sentiment analysis tasks, but their effectiveness 
is influenced by the dataset characteristics 
and the specific Mixup strategy used. 

CONCLUSIONS AND RECOMMENDATIONS
Taking inspiration from the promising results of 
Mixup, a data augmentation technique based on 
sample interpolation used in image recognition 
and text classification, we conducted an 
investigation into three variations of Mixup for 
Arabic sentiment classification task which is the 
first study on Mixup in Arabic to our knowledge. 
Our experiments demonstrate that the application 
of Mixup leads to improvements in accuracy 
and Macro F1 scores for both CNN and LSTM 
text classification models. Notably, our findings 

highlight the effectiveness of interpolation strategies 
as domain-independent regularizer, effectively 
mitigating the risk of overfitting in sentence 
classification. These results underscore the potential 
of Mixup as a valuable tool in the field of NLP for 
enhancing model generalization and performance 
across various sentence classification tasks.
In our future research endeavors, we have outlined 
our intentions to explore and examine further 
proposed variations of Mixup. Among these 
variants are AutoMix [44], a method that adaptively 
learns a sample mixing policy by leveraging 
discriminative features, SaliencyMix [32], which 
synthesizes sentences while maintaining the 
contextual structure of the original texts through 
span-based mixing and EMTCNN [45], an 
Enhanced Mixup that leverage transfer learning to 
address challenges in Twitter sentiment analysis.
We are also interested by questions related to 
the visual appearance of mixed sentences and 
the underlying mechanisms responsible for the 
efficacy of interpolation in sentence classification. 
These inquiries will provide valuable insights 
into the potential applications and benefits 
of various Mixup techniques, contributing to 
the advancement of NLP tasks, particularly 
those focused on sentence classification.
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