

ML Ops Solution Accelerator Transformation Journey

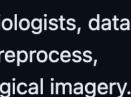
Representation learning for the BiolmageArchive

Craig Russell

bioimage_embed: Autoencoders for Biological Image Data

bioimage_embed is an all-in-one Python package designed to cater to the needs of computational biologists, data scientists, and researchers working on biological image data. With specialized functions to handle, preprocess, and visualize microscopy datasets, this tool is tailored to streamline the embedding process for biological imagery.

build presing bythen 2.7. licence MIT



Outline and Aims of Biolmage Embed Goal: Provide a model that can featurise bioimages

Outline

- BIA
- Autoencoders
 - AE,VAE,VQVAE,MAE
- Pretraining
 - Scale
- BioImage Embed
- More biological applications

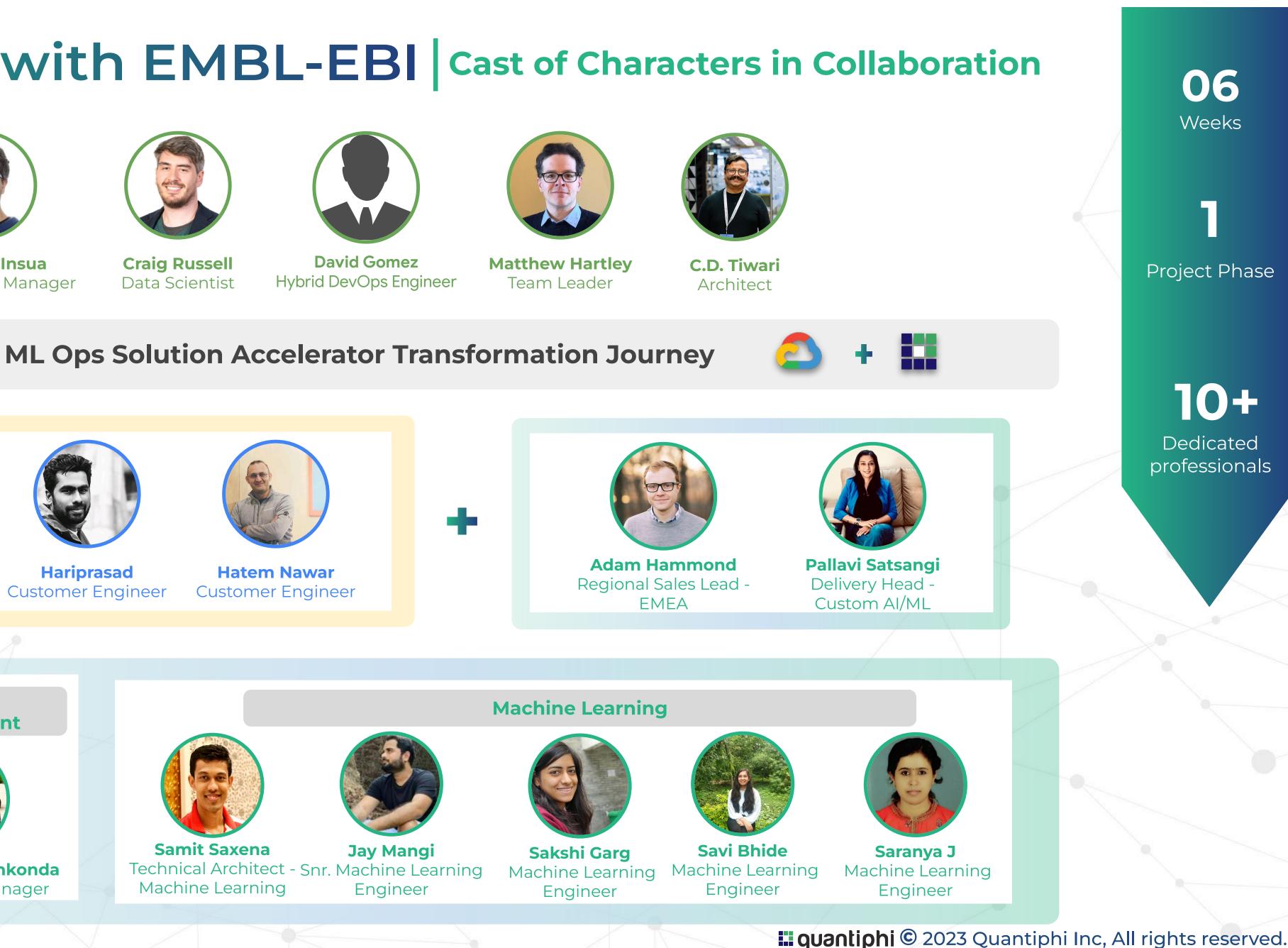
Aims

- Large scale pretraining on EBI data
- Model fine tuning
- Flexible configuration with a BioImage Focus
- HPC and Cloud native
- Automated MLOps
 - Model selection, validation

Partnership with EMBL-EBI Cast of Characters in Collaboration

Santiago Insua Hybrid Cloud Manager

Craig Russell Data Scientist



Project Oversight

Raymond Hounon Account Director

Hariprasad Customer Engineer

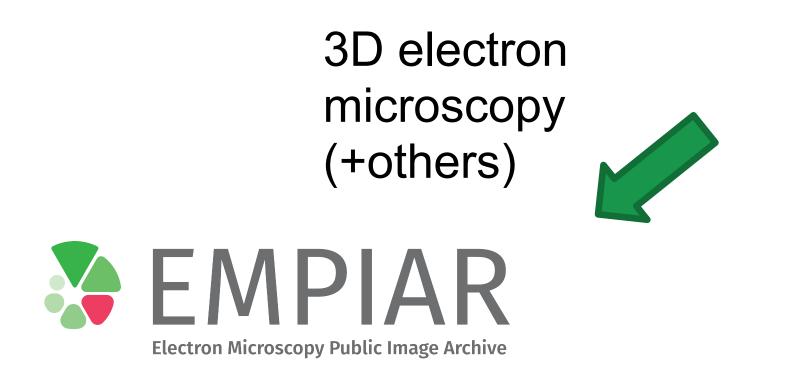
Hatem Nawar Customer Engineer

Project Management

Saicharan Gurramkonda Engagement Manager

Samit Saxena Technical Architect - Snr. Machine Learning Machine Learning

BiolmageArchive Summer 2019: Launch



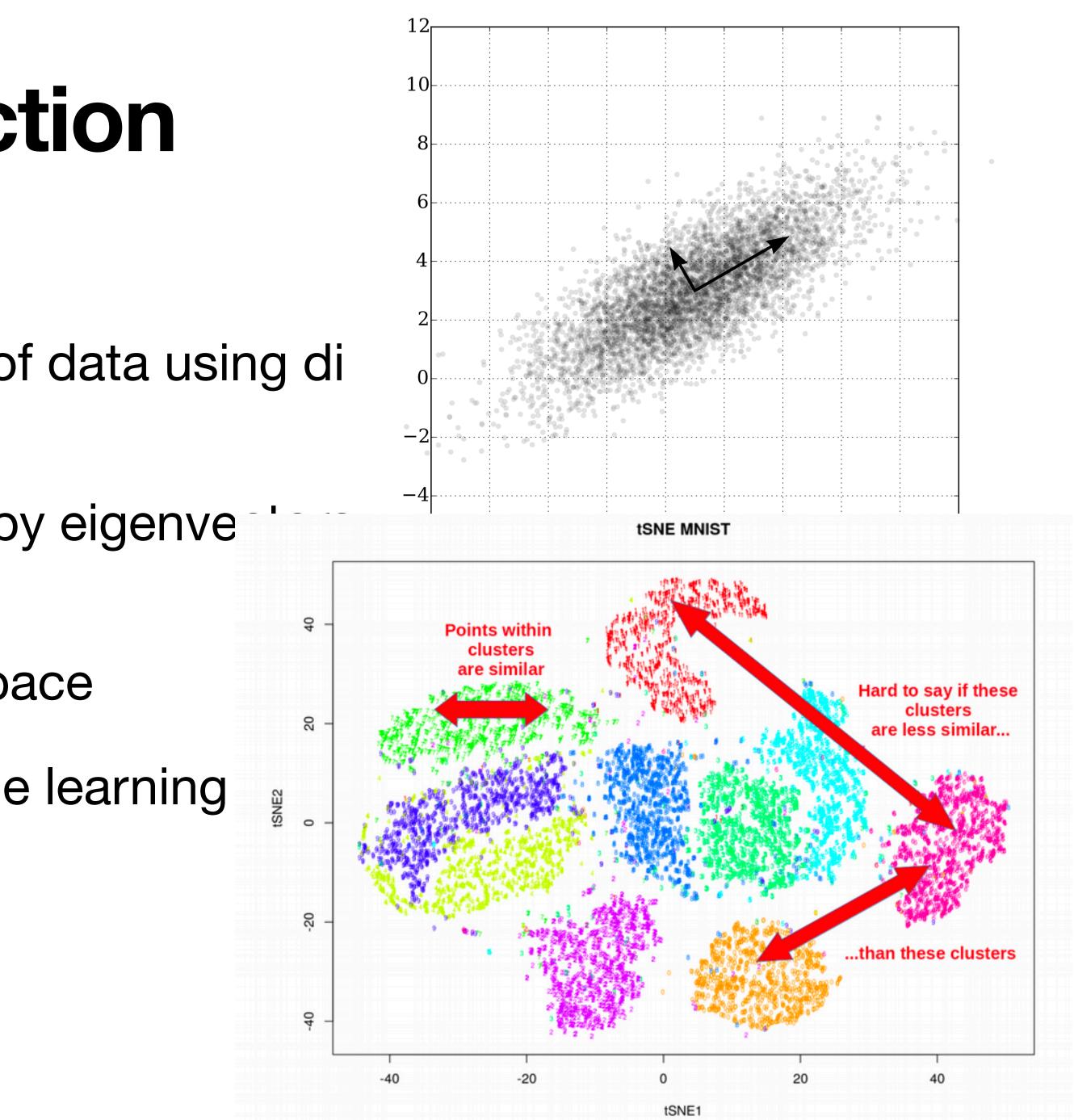
Biolmage Archive

All other imaging (e.g., light microscopy)

Selected reference datasets

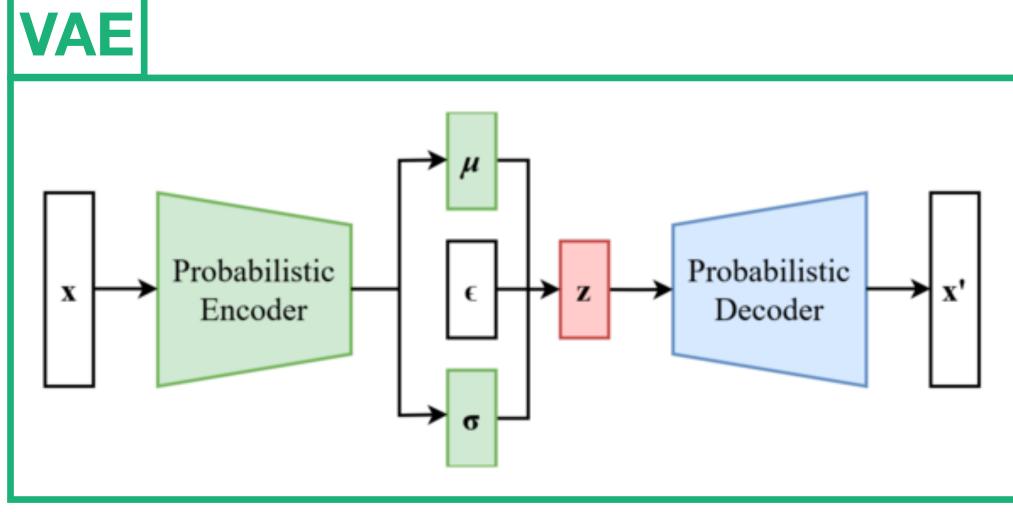
Dimensionality reduction

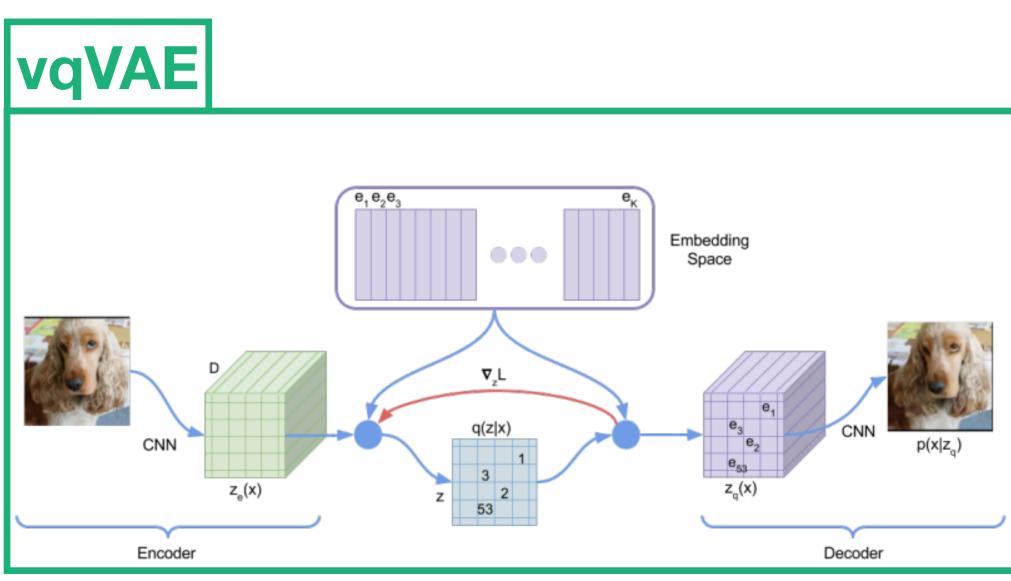
- We can represent the salient parts of data using di techniques
- PCA is a classical approach whereby eigenve axes of maximal variance
 - Rotation in higher dimensional space
- UMAP and t-SNE both use machine learning (manifold)



Flavours of AutoEncoders

- AutoEncoders' latent space is usually
 - Sparse
 - Unstructured
 - Nonsense between points (posterior collapse)
- Variational AutoEncoders (VAE)
 - add a gaussian prior to latent (embedding) space
 - No longer **sparse** or **unstructured**
- Vector quantised VAEs (vqVAE)
 - discretise the latent space
 - No longer **sparse** or **unstructured**
 - Helps with **posterior collapse**





https://arxiv.org/abs/1312.6114

Masked Autoencoders are Scalable Learners of Cellular Morphology

Oren Kraus* Kian Kenyon-Dean* Sabe

Jess Leung Vasudev Sharma Ayla

Maciej Sypetkowski Chi Vicky Che

Ben Mabey

er Saber	rian	Maryam F	allah	Peter McLean
la Khan	J	ia Balakrish	nan	Safiye Celik
eng	Kris	ten Morse	Ma	ureen Makes
	Be	rton Earnsh	aw	

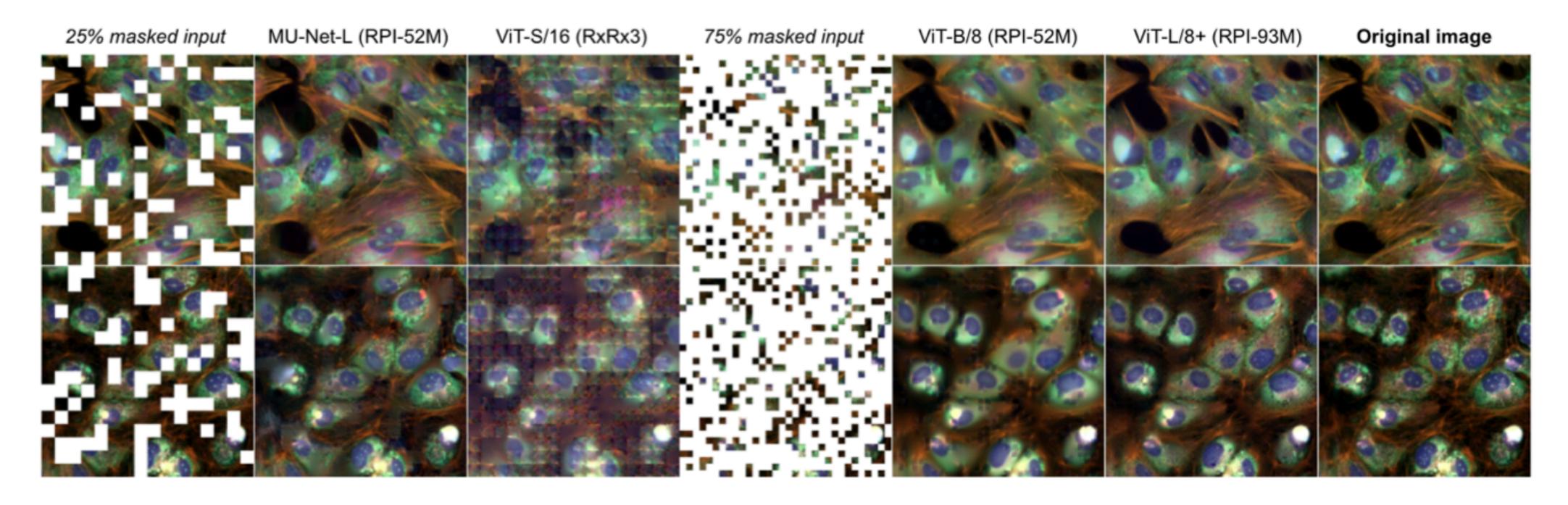


Figure 1: Visualizing reconstructions from masked random validation images for different MAEs.

Explore content ~ About the journal ~ Publish with us ~

<u>nature > nature protocols > protocol update > article</u>

Protocol Update | Published: 21 June 2023

Optimizing the Cell Painting assay for image-based profiling

Beth A. Cimini, Srinivas Niranj Chandrasekaran, Maria Kost-Alimova, Lisa Miller, Amy Goodale, Briana Fritchman, Patrick Byrne, Sakshi Garg, Nasim Jamali, David J. Logan, John B. Concannon, Charles-Hugues Lardeau, Elizabeth Mouchet, Shantanu Singh, Hamdah Shafqat Abbasi, Peter Aspesi Jr, Justin D. Boyd, Tamara Gilbert, David Gnutt, Santosh Hariharan, Desiree Hernandez, Gisela Hormel, Karolina Juhani, Michelle Melanson, ... Anne E. Carpenter 🗠 🔰 + Show authors

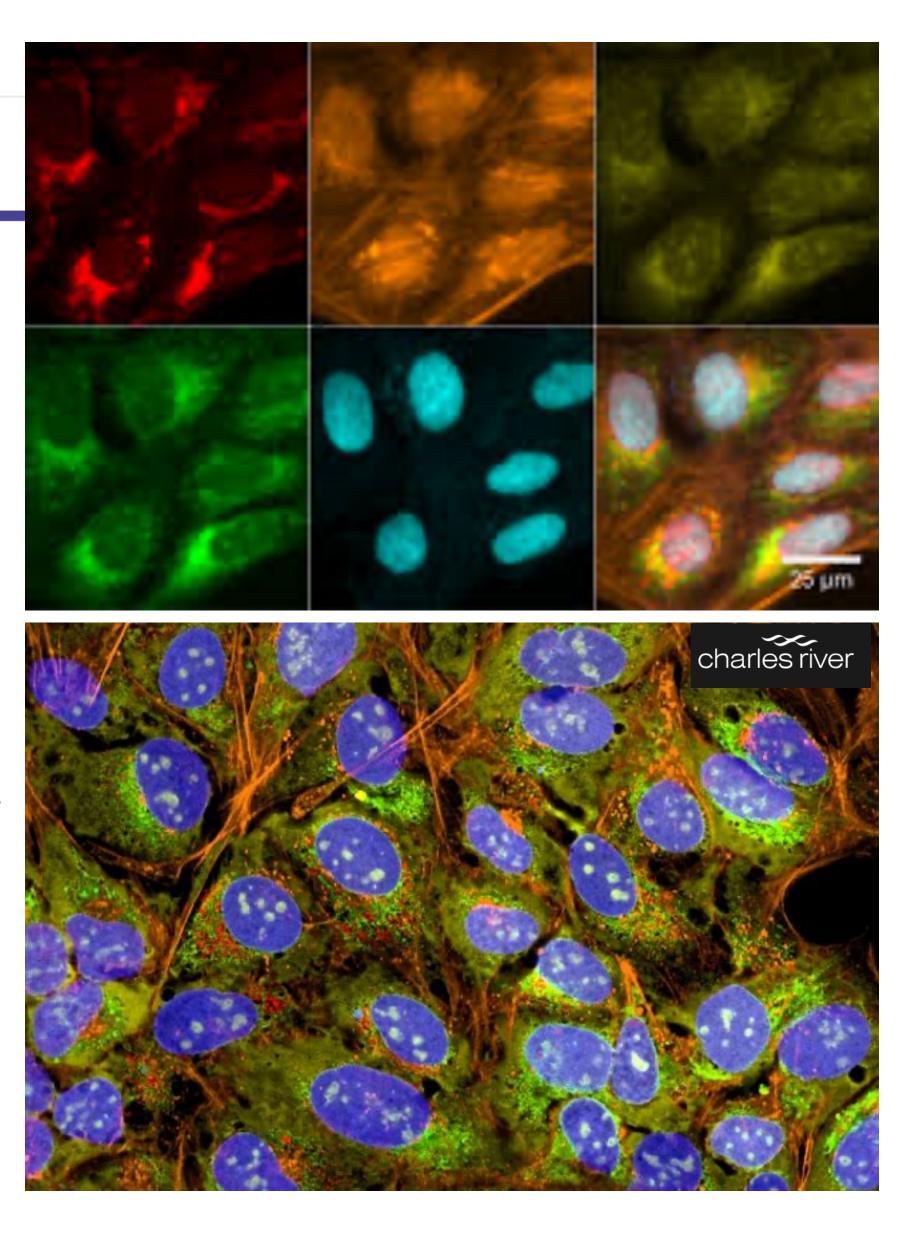
<u>Nature Protocols</u> **18**, 1981–2013 (2023) Cite this article

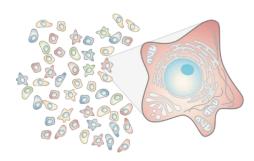
8825 Accesses | 13 Citations | 17 Altmetric | Metrics

Abstract

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used

Subscribe





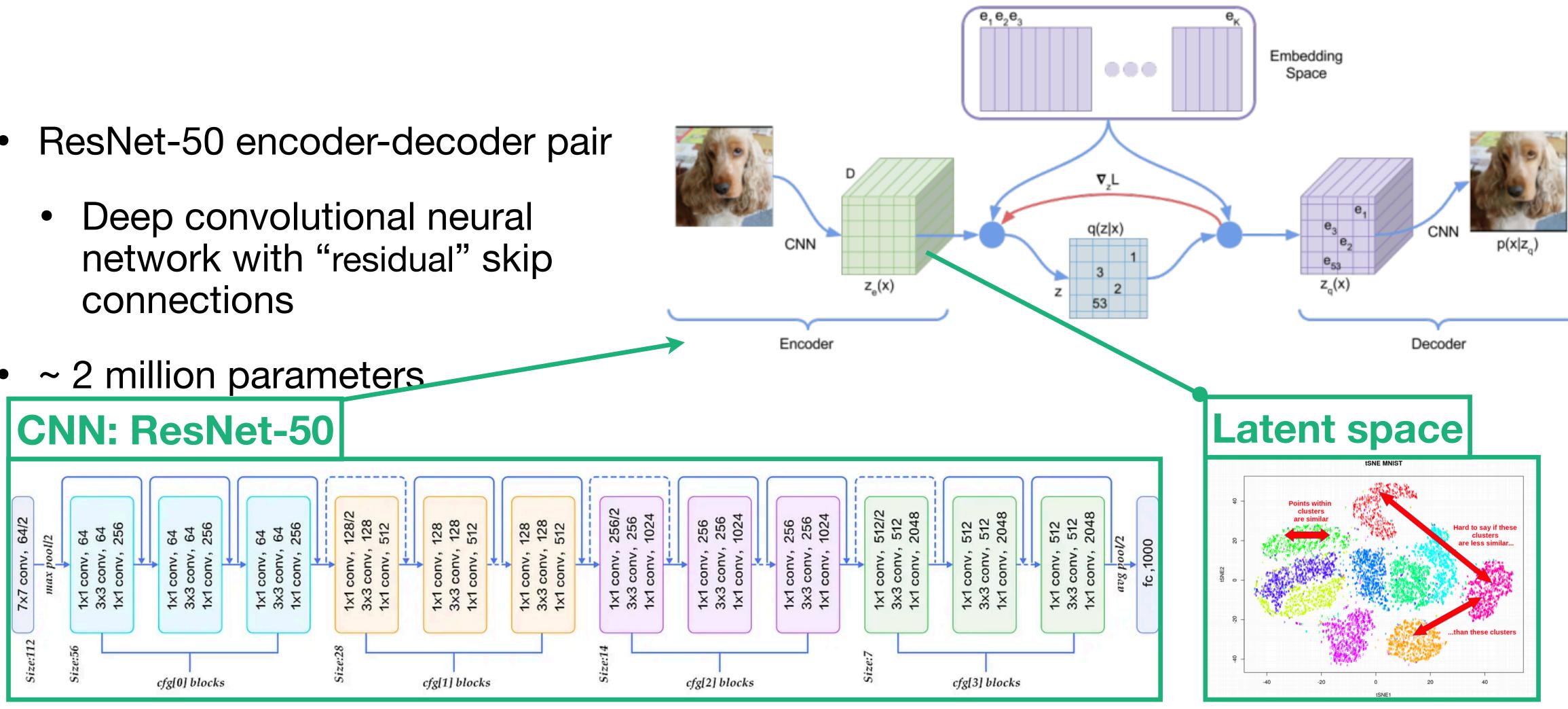
JUMP-Cell Painting Consortium Joint Undertaking in Morphological Profiling

Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology

Oren Kraus¹ Kian Kenyon-Dean¹ Saber Saberian¹ Maryam Fallah¹ Peter McLean¹ Jess Leung¹ Vasudev Sharma¹ Ayla Khan¹ Jia Balakrishnan¹ Safiye Celik¹ Dominique Beaini² Maciej Sypetkowski² Chi Vicky Cheng¹ Kristen Morse¹ Maureen Makes¹ Ben Mabey¹ Berton Earnshaw^{1,2} ¹Recursion ²Valence Labs

Vector quantised variational AutoEncoder (vqVAE)

- ResNet-50 encoder-decoder pair
 - network with "residual" skip connections



https://arxiv.org/abs/1312.6114

VQ-VAE loss

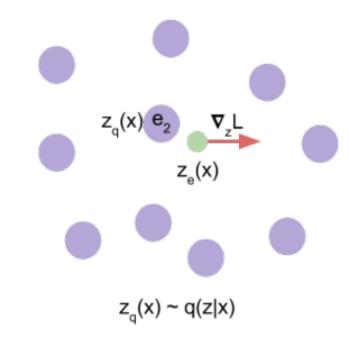
1.
$$\mathscr{L}_{\text{recon}}(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{n} (x_i - x'_i)^2$$

1/

Reconstruction loss

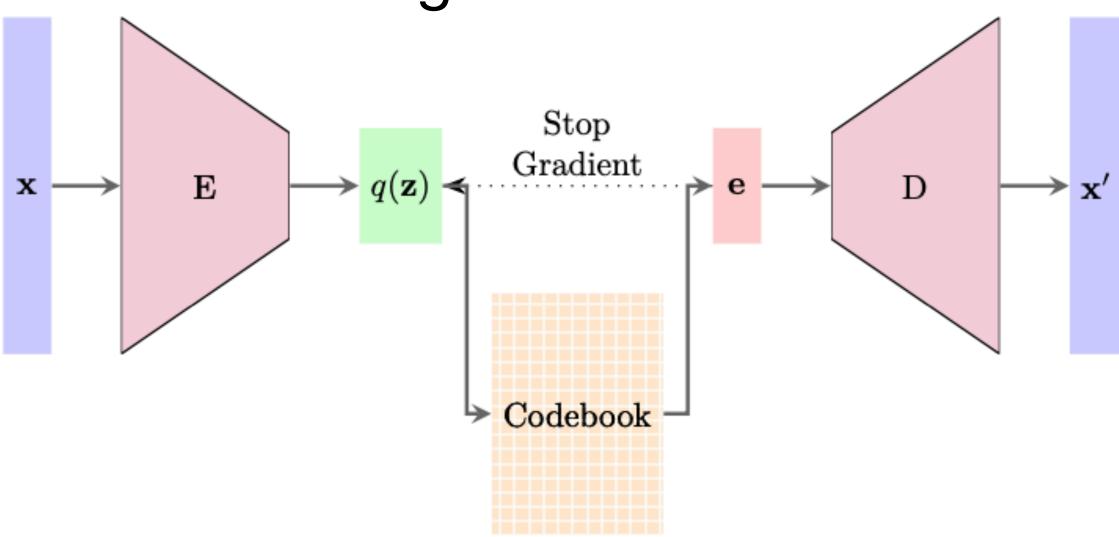
2.
$$\mathscr{L}_{vq} = ||sg[\mathbf{z}_e] - \mathbf{e}||_2^2$$

 As the codebook does not have a gradient, the model cannot learn to use the codebook embeddings without a special loss term.



3.
$$\mathscr{L}_{\text{commit}} = ||\mathbf{z}_e - sg[\mathbf{e}]||_2^2$$

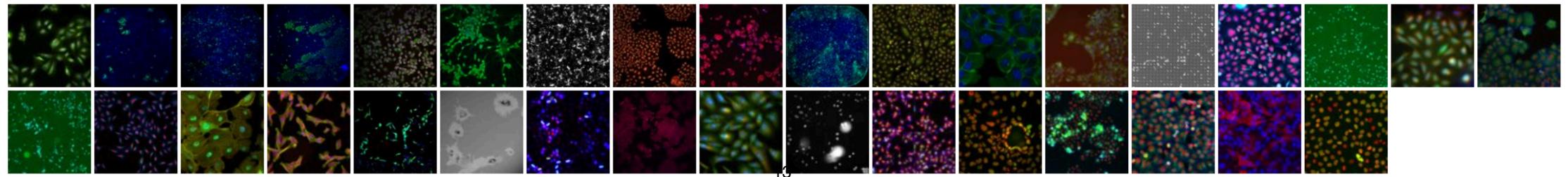
 The commitment loss enforces the encoder to tightly associate its outputs with the codebook embeddings

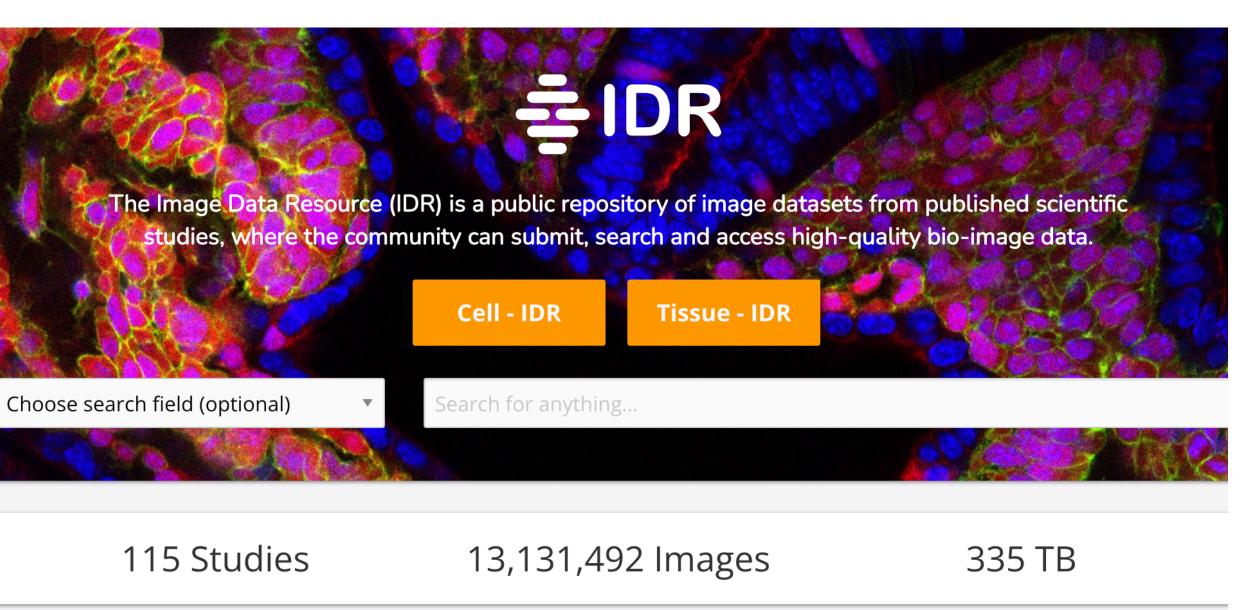


BioImage Archive Image Data Resource (IDR) https://idr.openmicroscopy.org/

- Reference database of published microscopy data
- Contains ~ 13 million biological images across 115 studies
- Spans multiple organisms, tissues, cell types, disease states, treatment conditions etc.

High-content screening (human)





Initial Pretraining scope Selected datasets

image classification problems

• Experiments	Image Dataset S
• IDR0006	[16.6 TB]
• IDR0036	[1.20 TB]
• IDR0093	[1.62 TB]
• IDR0094	[1.41 TB]

• Subset of human cell high-content screening IDR studies with interesting and simple

Size Associated metadata Genes (localisation) Cell states Genes (morphometric response) COVID Drug response

Technology stack
bioimage_embed

timm

- bioimage_embed generates the models
- Uses timm for optimiser+scheduler pair
- pydantic for configuration and configuration validation
- hydra for the CLI

Backbon

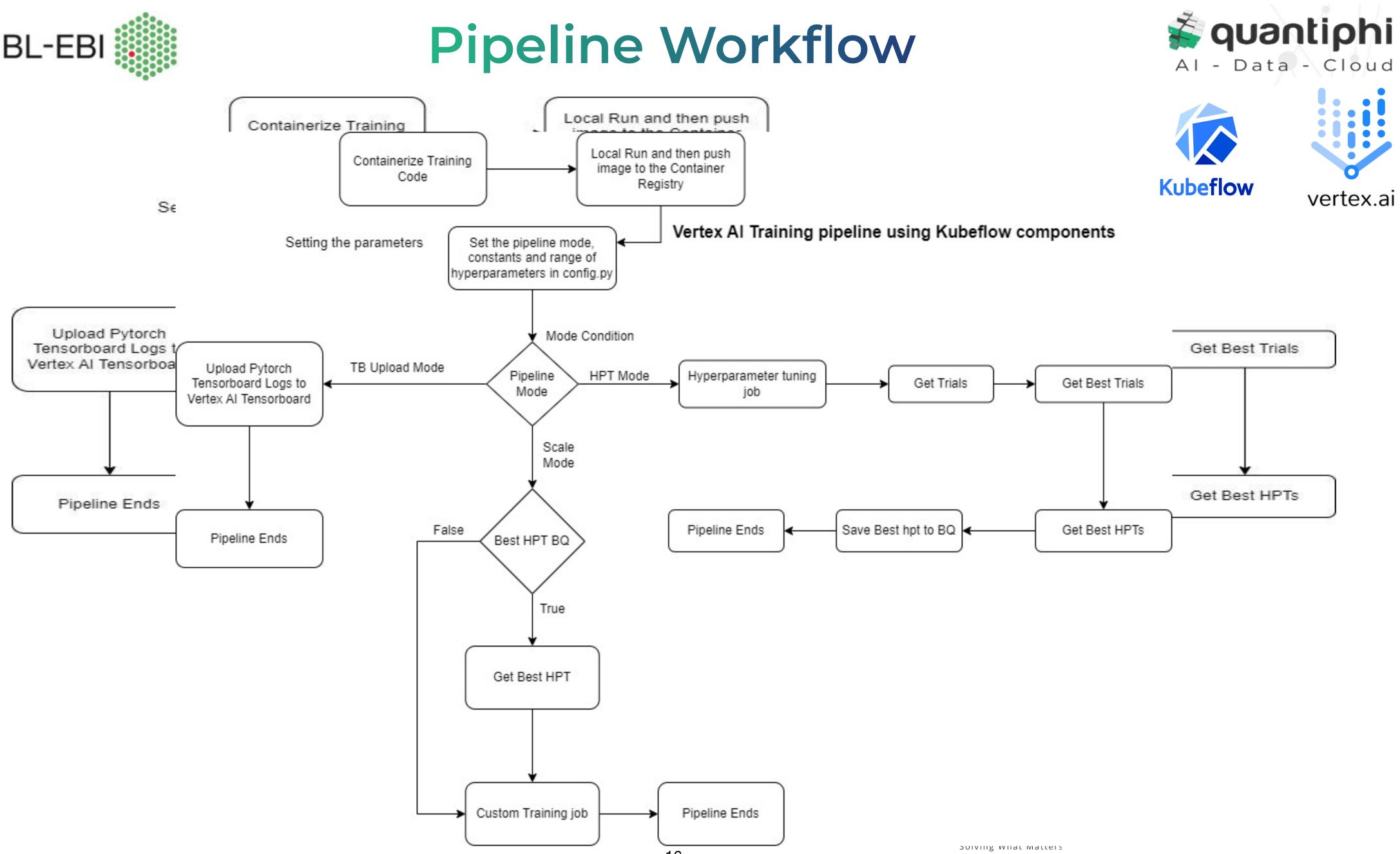
prod	ResNet18, ResNet50, ResI
beta	VIT-H, VIT-

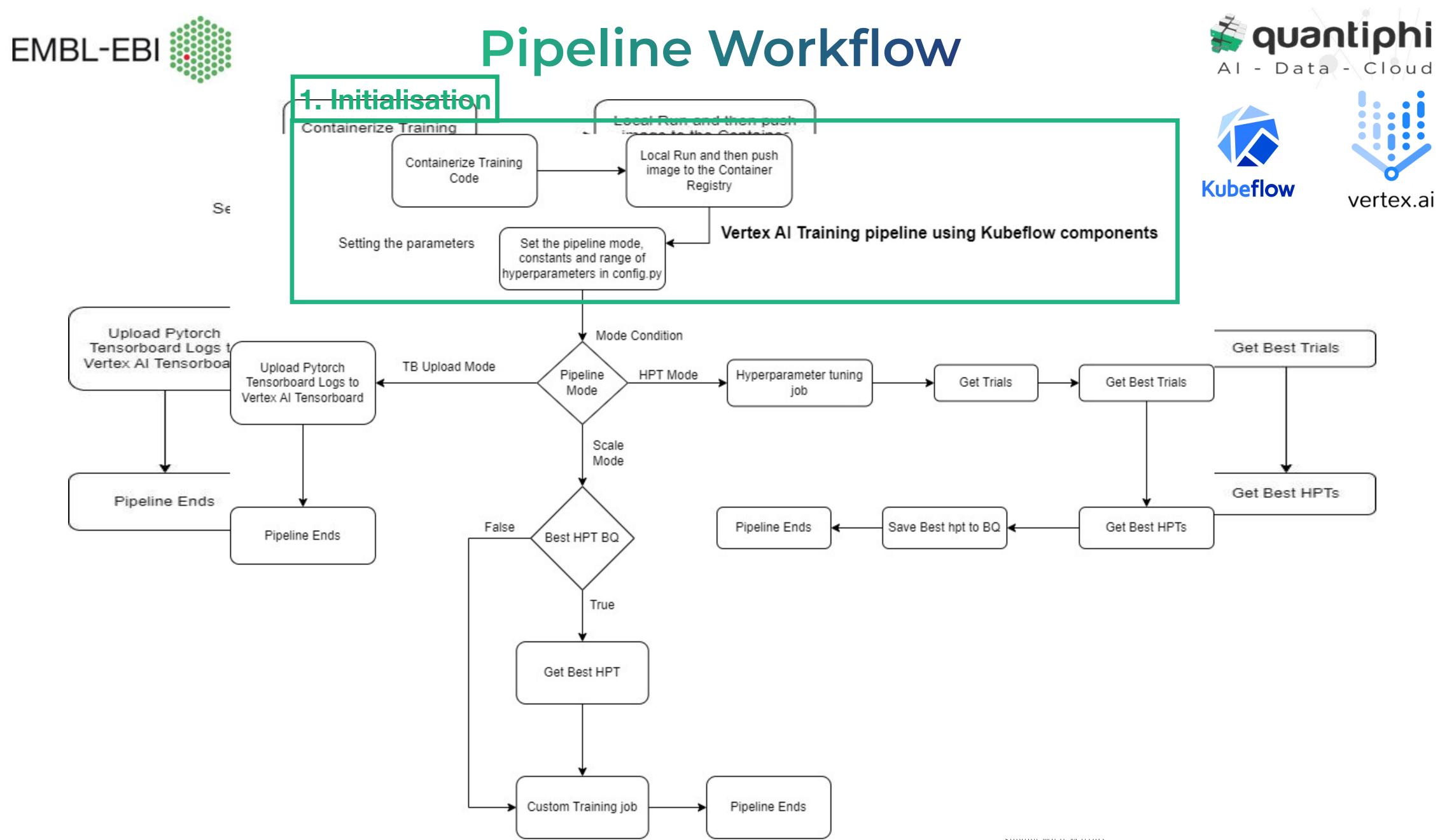
Ray for hyperparamter tuning

- Wraps this in pytorch lightning, handling
 - Data parallelisms, splitting
 - Checkpointing, logging
- Albumentations for augmentations

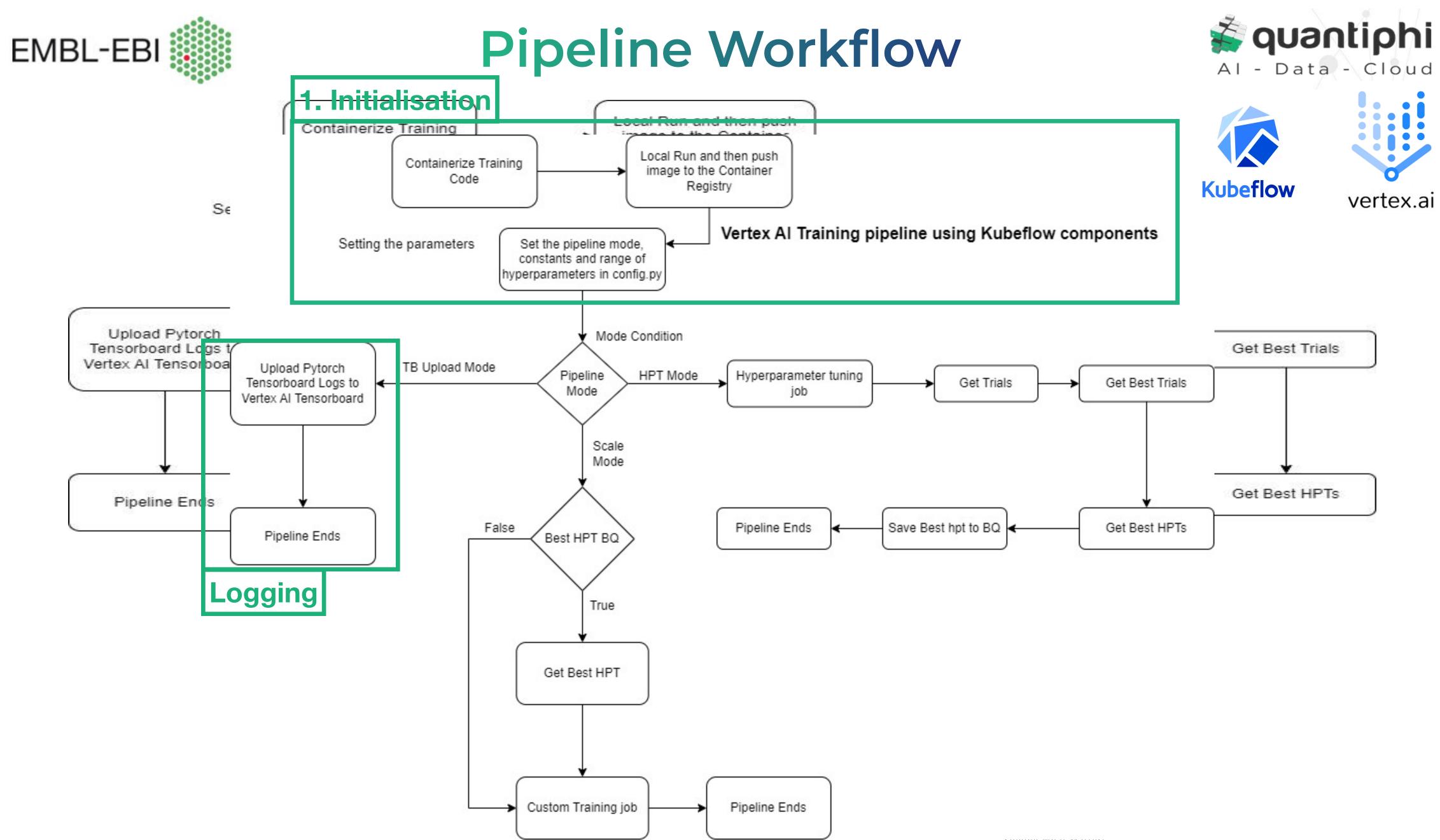
nes	Model
sNet101, ResNet152	VAE, VQVAE, AE
LL,	MAE



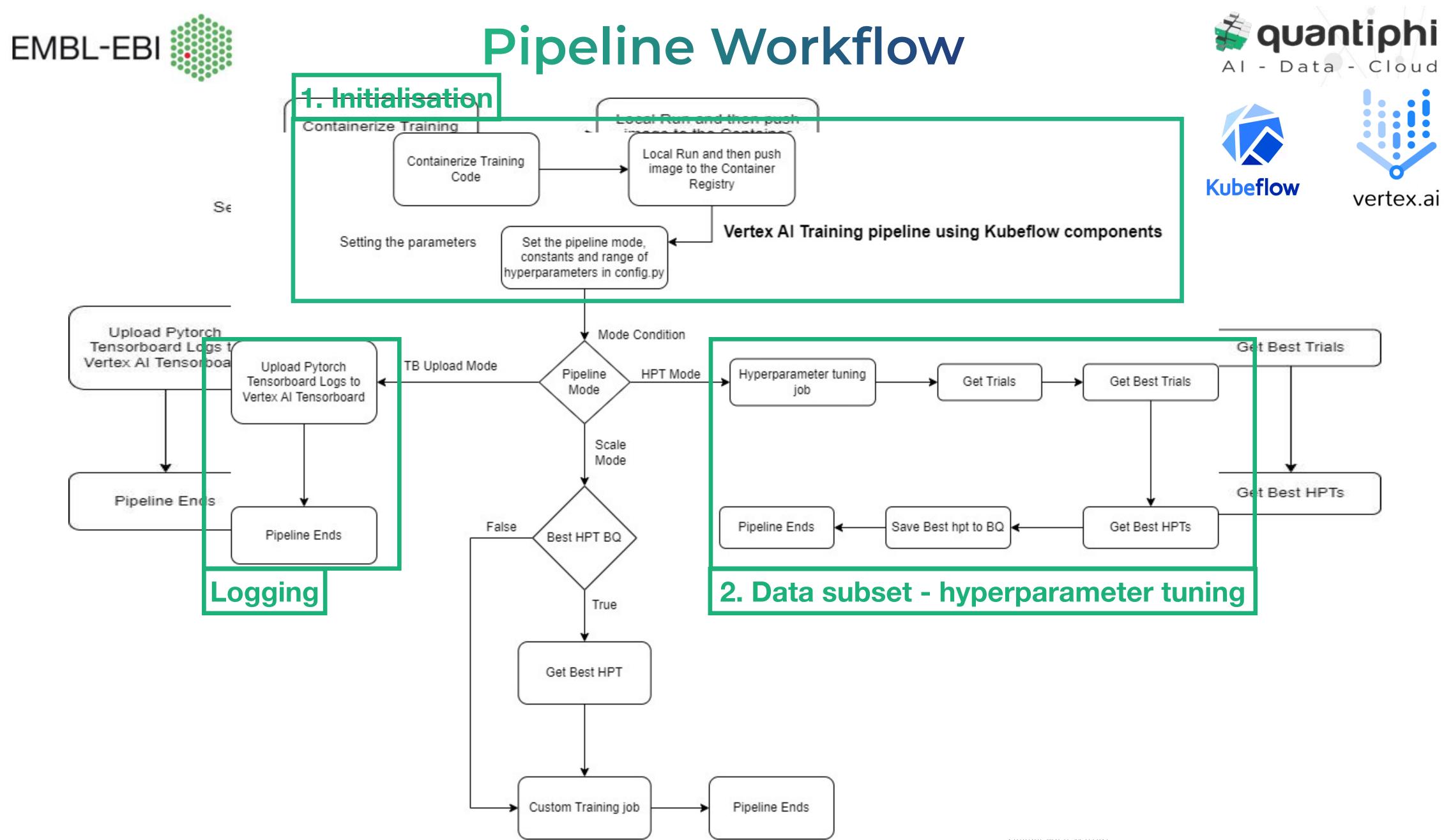




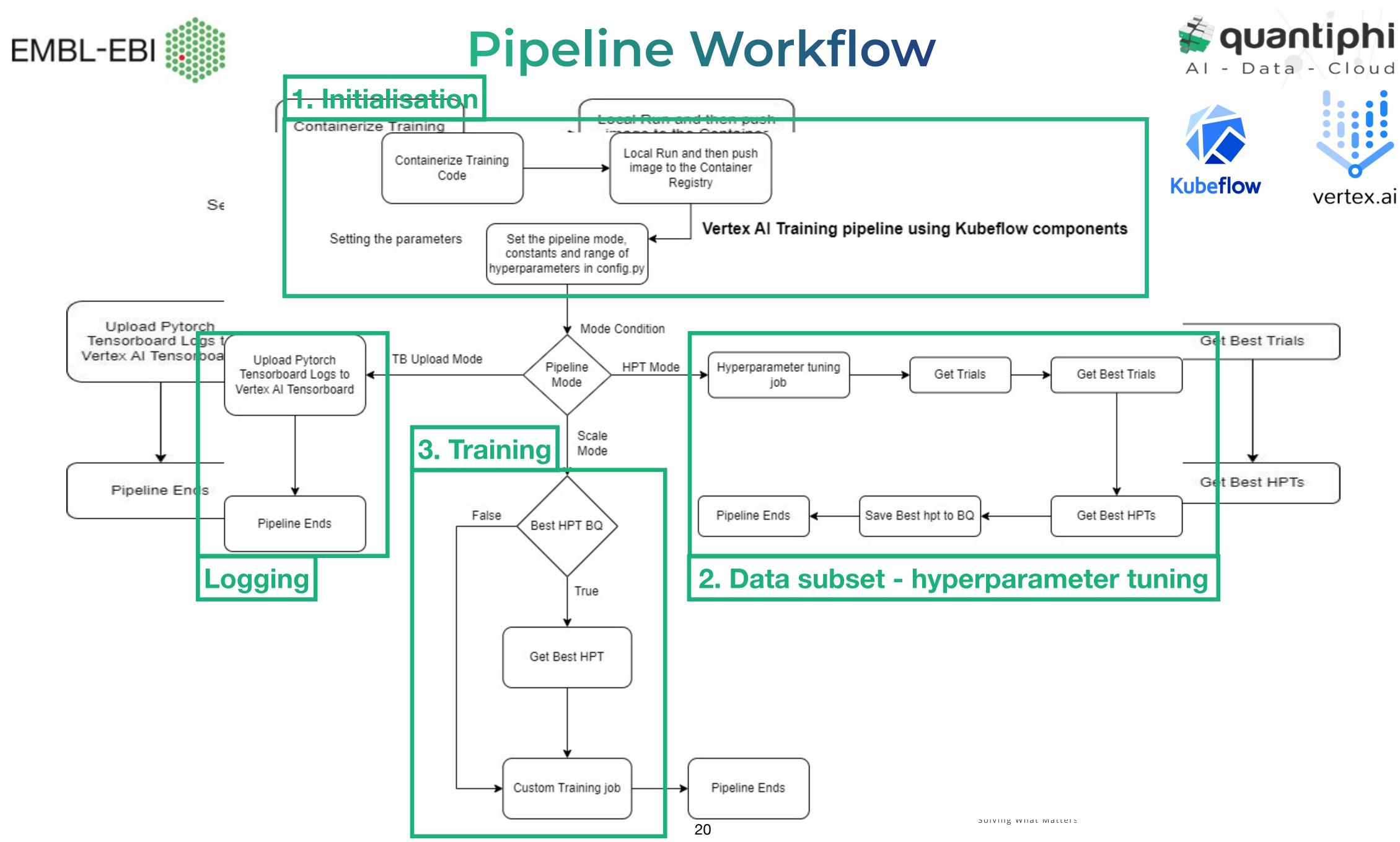
C		
>	Pipeline Ends	
L		

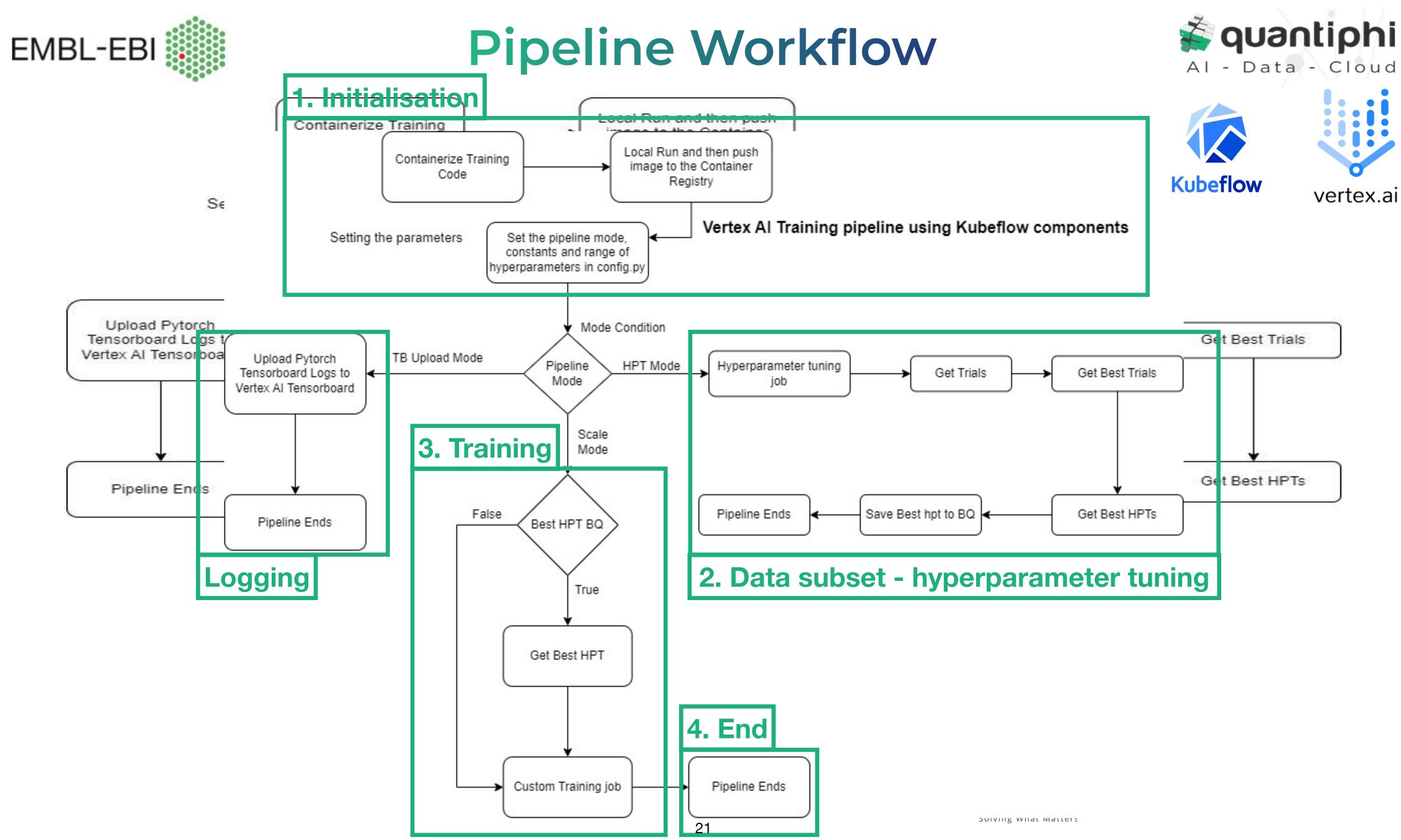


1		
	Pipeline Ends	



C		_
>	Pipeline Ends	





(j Overview	≡	Ctr26's v	vorkspa	ce 🍥 Pe	ersonal workspace		
는 Workspace	Rui	ns (121)					
workspace	Q	Search runs	6				
Runs	Ŧ	4 Filters	🗐 Group	LT So	rt ⊘ Tag 🕞	Move II	\$ c
لې Jops		≻~ Ni	[(▲	batc	model	latent_dir	lr
Ð		∽~ ●	0.03019	4	resnet50_vqvae_le	128	0.0001
Automat.	۰	×~ ●	0.3115	16	resnet50_vqvae_le	128	0.0001
Sweeps		∽~ ●	1.695	4	resnet18_vqvae	2048	0.0001
		\sim	1.966	4	resnet18_vqvae	2048	0.0001
Reports	٠	\succ	13.022	4	resnet18_vqvae	1024	0.0001
Artifacts		\sim	13.022	4	resnet18_vqvae	1024	0.0001
		\succ	19.437	4	resnet50_vqvae	128	0.0001
Weave	٠	∽~ ●	19.437	4	resnet50_vqvae	128	0.0001
		∽~ ●	19.437	4	resnet50_vqvae	128	0.0001

Method 19.437
 Method 1

128

0.0001

.*

Create Sweep

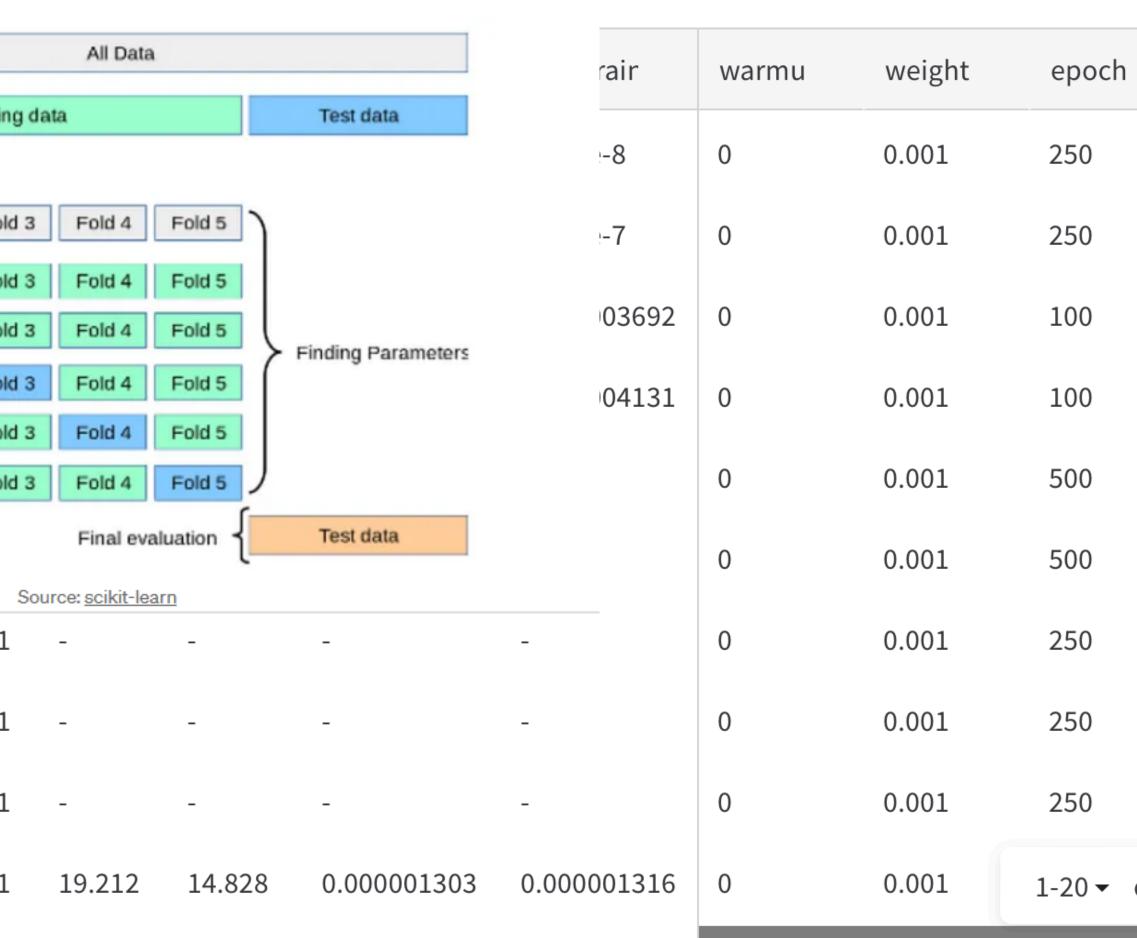
 \downarrow $\dot{}$ $\exists \equiv$ Columns

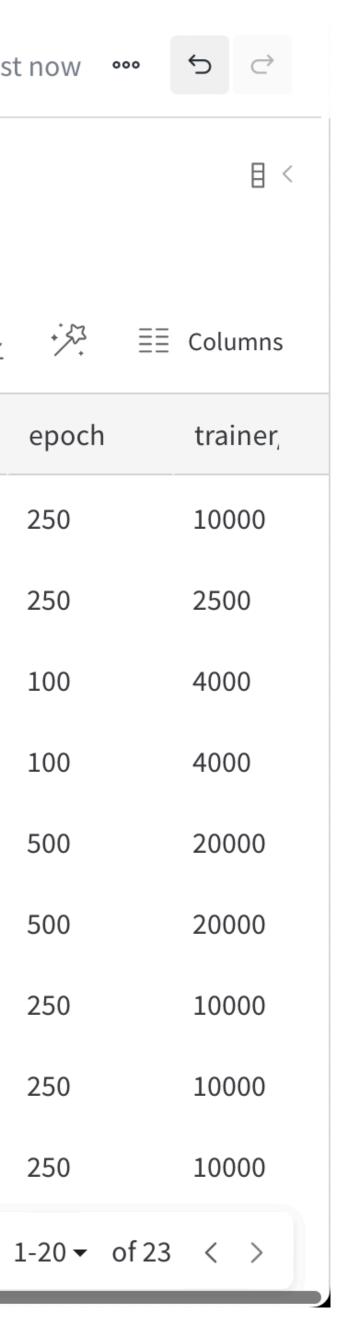
lossloss,mse/trainmse/trairwarmuweightepoch 0.0324 0.01421 $4.125e-8$ $3.613e-8$ 0 0.001 250 2.50 0.3257 0.1256 $1.042e-7$ $1.065e-7$ 0 0.001 250 2.50 1.376 1.077 0.00003659 0.00003659 0 0.001 100 2.50 1.647 1.268 0.00004106 0.00004131 0 0.001 100 2.50 1.647 1.268 0.00004106 0.00004131 0 0.001 500 2.50 1.647 1.268 0.00004106 0.00004131 0 0.001 500 2.50 1.647 1.268 0.00004106 0.0000 0.001 500 2.50 1.647 1.268 0.00001303 0.00001361 0 0.001 2.50 2.50 1.647 1.4828 0.00001303 0.00001361 0 0.001 2.50 2.50								
0.3257 0.1256 1.042e-7 1.065e-7 0 0.001 250 2 1.376 1.077 0.00003659 0.00003692 0 0.001 100 4 1.647 1.268 0.00004106 0.00004131 0 0.001 100 4 - - - - 0 0.001 500 2 - - - - 0 0.001 500 2 - - - - 0 0.001 500 2 - - - - 0 0.001 500 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2	loss	loss,	mse/train	mse/trair	warmu	weight	epoch	-
1.376 1.077 0.00003659 0.00003692 0 0.001 100 4 1.647 1.268 0.00004106 0.00004131 0 0.001 100 4 - - - - 0 0.001 500 2 - - - - 0 0.001 500 2 - - - 0 0.001 500 2 - - - 0 0.001 500 2 - - - 0 0.001 500 2 - - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2	0.0324	0.01421	4.125e-8	3.613e-8	0	0.001	250	-
1.647 1.268 0.000004106 0.000004131 0 0.001 100 4 - - - - 0 0.001 500 2 - - - - 0 0.001 500 2 - - - 0 0.001 500 2 - - - 0 0.001 500 2 - - - 0 0.001 250 2 - - - 0 0.001 250 2 - - - 0 0.001 250 2 - - - 0 0.001 250 2	0.3257	0.1256	1.042e-7	1.065e-7	0	0.001	250	
- - - 0 0.001 500 2 - - - - 0 0.001 500 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2	1.376	1.077	0.000003659	0.000003692	0	0.001	100	2
- - - 0 0.001 500 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2	1.647	1.268	0.000004106	0.000004131	0	0.001	100	2
- - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2 - - - - 0 0.001 250 2	-	-	-	-	0	0.001	500	2
0 0.001 250 - 0 0.001 250 -	-	-	-	-	0	0.001	500	2
0 0.001 250 2	-	-	-	-	0	0.001	250	-
	-	-	-	-	0	0.001	250	-
19.212 14.828 0.000001303 0.000001316 0 0.001 1-20 - of 23	-	-	-	-	0	0.001	250	-
	19.212	14.828	0.000001303	0.000001316	0	0.001	1-20 • of 23	

(i) Overview	≡ Ctr26's	workspa	ce 🤞	Personal workspace				
	Runs (121)							
Workspace	Q Search rur	าร						
Runs	च ∓ 4 Filters	🗐 Group	¢ ↓↑	Sort 🧷 Tag	[→] Move	11	Ì	L (
ራ	📃 🧺 Ni	l(▲	batc	model				
Jobs								Trainin
Ð	• >~ (0.03019	4	resnet50_v				
Automat.	• >~ (0.3115	16	resnet50_\		Fold 1	Fold 2	Fol
\sim					Split 1	Fold 1	Fold 2	Fol
Sweeps	• >_~ 🛑	1.695	4	resnet18_v	Split 2	Fold 1	Fold 2	Fol
	• >~ (1.966	4	resnet18_v	Split 3	Fold 1	Fold 2	Fol
					Split 4	Fold 1	Fold 2	Fol
Reports	• >~<	13.022	4	resnet18_v	Split 5	Fold 1	Fold 2	Fol
⊗ Artifacts	• >~<	13.022	4	resnet18_\				
	• >~ (19.437	4	resnet50_vqvae	128		0.	0001
, Weave	• >~ (19.437	4	resnet50_vqvae	128		0.	0001
	• >~<	19.437	4	resnet50_vqvae	128		0.	0001
	• >~<	19.437	4	resnet50_vqvae	128		0.	0001

Create Sweep

+ 53 $\underline{\downarrow}$





Model training bioimage_embed

	Parameter	Value
Model	epochs	100
	batch_size	64
	latent_dim	16
	$num_embeddings$	16
	num_hiddens	16
	num_residual_hiddens	32
	num_residual_layers	150
	$commitment_cost$	0.25
	decay	0.99
Optimizer	opt	LAMB
	lr	0.001
	$weight_decay$	0.0001
	momentum	0.9
LR scheduler	sched	cosine
	min_lr	1e-4
	$warmup_epochs$	5
	warmup_lr	1e-6
	$cooldown_epochs$	10
	t_max	50
	$cycle_momentum$	False

í Overview

Ē Workspace

> Runs

ራ Jobs

Ð Automat.

Ś Sweeps

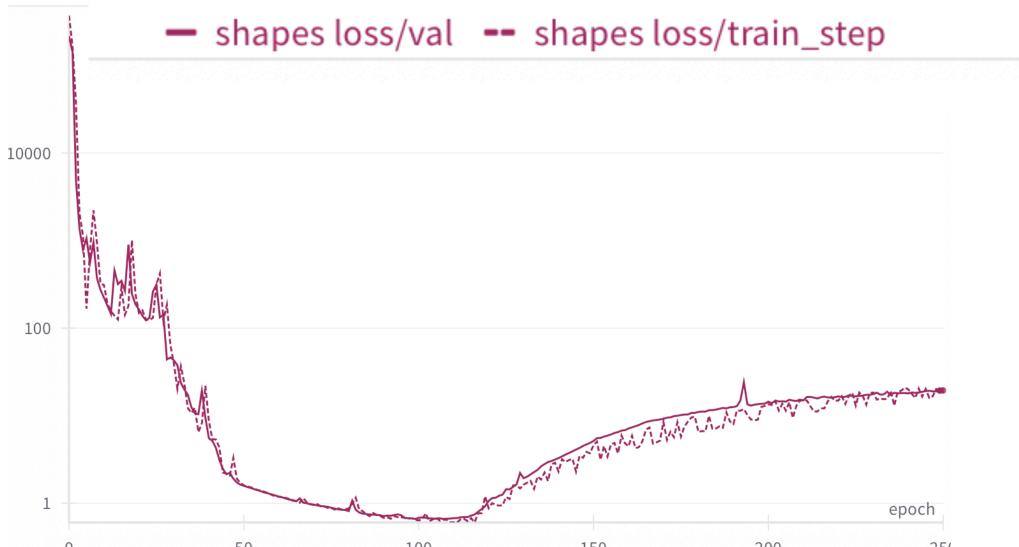
Ē Reports

 \otimes Artifacts

> </> Weave

≡ Ctr26's	E Ctr26's workspace Sersonal workspace										Autosaved ju	ist now 👓	Ċ Ċ
Runs (121)													∃ <
Q Search rur	าร					.*							
च ∓ 4 Filters	🗐 Group	↓ ↑ So	ort 🔿 Tag 🗦	Move III	S Cre	eate Sweep					7		Columns
≻∹ N;	lc 🔺	batc	model	latent_dir	lr	loss	loss	mse/train	mse/trair	warmu	weight	epoch	trainer,
• >~	0.03019	4	resnet50_vqvae_le	128	0.0001	0.0324	0.01421	4.125e-8	3.613e-8	0	0.001	250	10000
• >~ 🛑	0.3115	16	resnet50_vqvae_le	128	0.0001	0.3257	0.1256	1.042e-7	1.065e-7	0	0.001	250	2500
• >~ 🛑	1.695	4	resnet18_vqvae	2048	0.0001	1.376	1.077	0.000003659	0.000003692	0	0.001	100	4000
• >~ 🛑	1.966	4	resnet18_vqvae	2048	0.0001	1.647	1.268	0.000004106	0.000004131	0	0.001	100	4000
• >~ 🛑	13.022	4	resnet18_vqvae	1024	0.0001	-	-	-	-	0	0.001	500	20000
• >~	13.022	4	resnet18_vqvae	1024	0.0001	-	-	-	-	0	0.001	500	20000
• >~ ●	19.437	4	resnet50_vqvae	128	0.0001	-	-	-	-	0	0.001	250	10000
• >~ 🛑	19.437	4	resnet50_vqvae	128	0.0001	-	-	-	-	0	0.001	250	10000
• >~ 🛑	19.437	4	resnet50_vqvae	128	0.0001	-	-	-	-	0	0.001	250	10000
• >~ 🛑	19.437	4	resnet50_vqvae	128	0.0001	19.212	14.828	0.000001303	0.000001316	0	0.001	1-20 ▼ of 23	3 < >

loss/val, loss/train_step

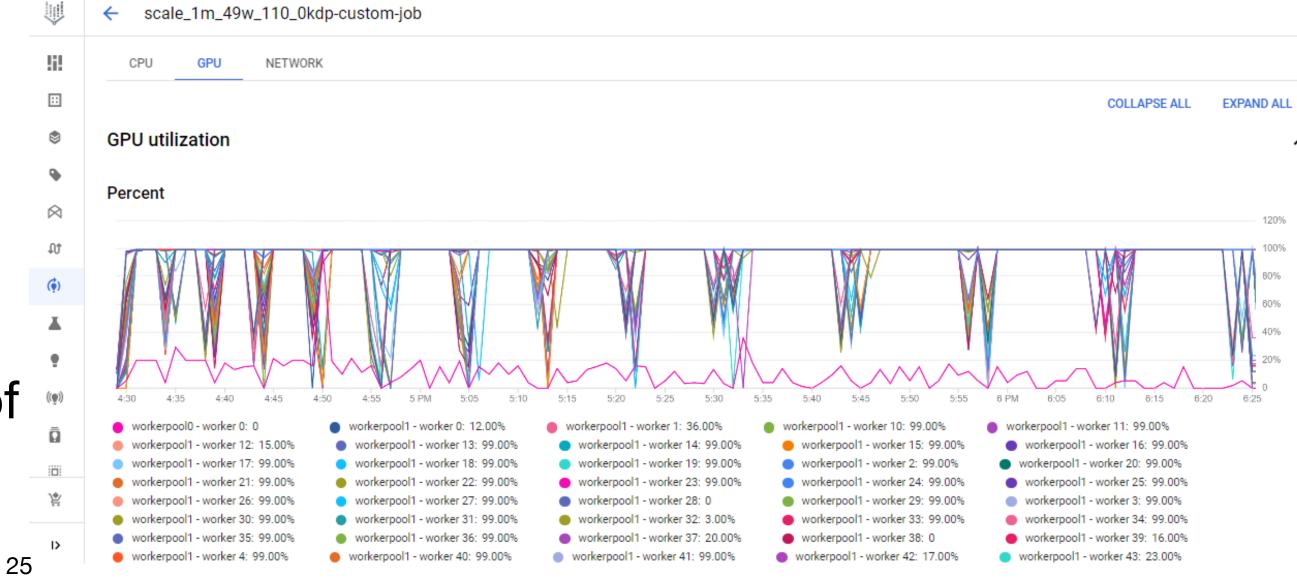


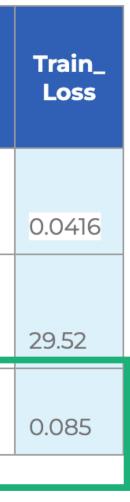
50 100 150 25(0 200

Experiments for scaling

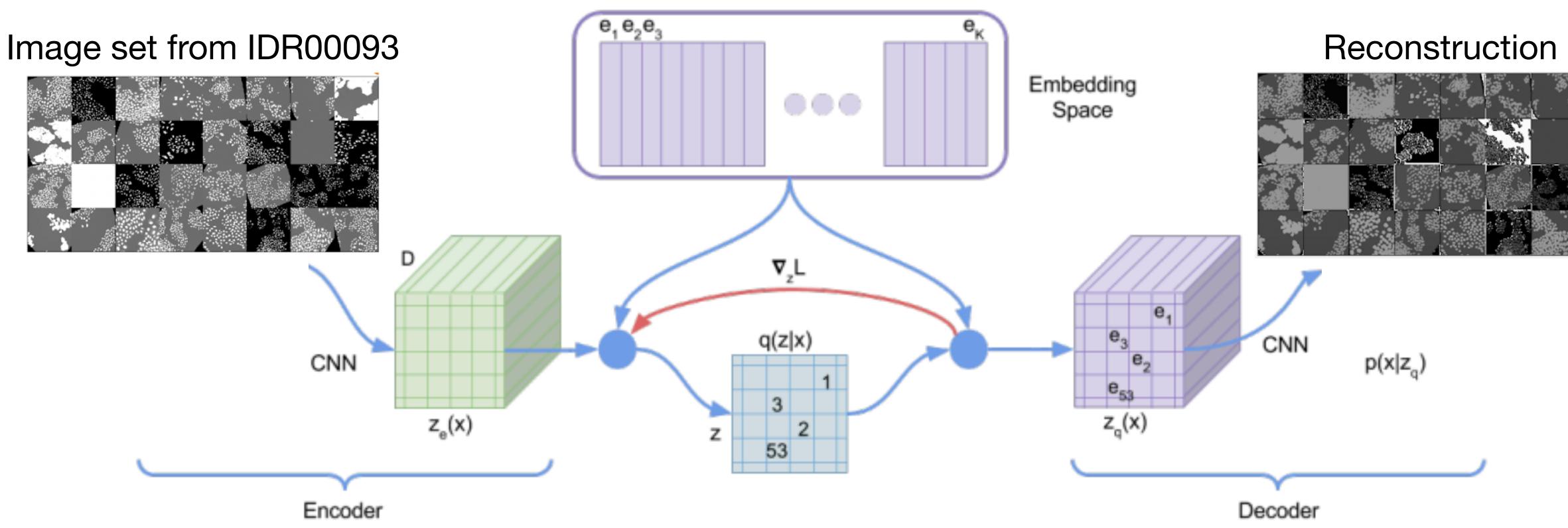
- CPU machine type used :n1-standard-16
- The accelerator used is **GPU**: NVIDIA_TESLA_T4
 - **50 concurrent GPUs**
 - Training time reduced due to early stopping
 - Training time is heavily reliant on hyperparameters
 - Decreasing learning rate yielded 7-fold improvement in training time
- Scale training of the model up to **110 000** lacksquare**images (1.2 TB)**, representing a large subset of study IDR00093.

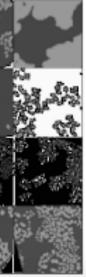
Training Data Size	Machine Configurations	GPU per Worker	Total GPUs	Total Training Time	Epochs	LR	Average Training time per epoch
32 k	6(chief -1, worker-5)	1	6	5 hours 19 minutes	9	le-3	35.44min
1.1 TB (100k)	1 Chief 49 Workers	1	50	7 hours 16 minutes	34	le-3	12.82 min
1.21 TB (110k)	1 Chief 49 Workers	1	50	53 minutes	7	3e ⁻⁵	7.5 min
Table 1 :Scaling experiments							





Visual assessment of model image reconstruction Input and output of trained model





Bioimage specific considerations and tricks

- 1. Tunable latent space size
 - Users want to choose how many features the model generates
- 2. ND Colour Channels
 - Most models by default are 3 colour channels
 - BioImages do not abide by this

- 3. Batch effects
 - Images from repeats should produce similar features
- 4. Mixed datasets
 - Variable size length of channels and dyes, time, depth

1. Tunable latent space size VQVAE as an example

- Issue:
 - Encoders vary in their feature size
 - Decoders expect a specific tensor size in
 - ResNetXX sizes:
 - 18,34,50: 512
 - 101,152: 2048
- Trick:
 - Adaptive averaging from *encoder* output
 - Tensor repeat (torch.expand) back to what the *decoder* expects

•••

```
def forward(self, x, epoch=None):
    z = self.model.encoder(x["data"])
    z = self.model._pre_vq_conv(z)
    proper_shape = z.shape
    z = self.avgpool(z)
    z = z.permute(0, 2, 3, 1)
    loss, quantized, perplexity, encodings = self.model._vq_va
    z = quantized.flatten(1)
```

```
quantized = quantized.permute(0, 3, 1, 2)
quantized = quantized.expand(-1, *proper_shape[-3:])
```

x_recon = self.model._decoder(quantized)



2. ND Colour channels Expand channels into batch

- *Issue:* Most image models take inputs of x.shape
 - Bioimage datasets can be
 - [batch,c,y,x] where $c \in \{n \in \mathbb{Z} \mid n \ge 1\}$
 - Most image models take inputs of x.shape
 - [batch,3,y,x]
- *Trick*: Put colour channels in batch_dim, then expand c_dim to 3
 - Possible because batch is allowed to vary during training

•••

```
def expand_channels(self, tensor):
    b, c, *dims = tensor.shape
    tensor = tensor.unsqueeze(1)
    tensor = tensor.transpose(1, 2)
    tensor = tensor.reshape(b * c, 1, *dims)
    return tensor
```

•••

```
def contract_channels(self, x,c):
    b_c, dims = x.shape
    x = x.reshape(b_c // c, c, *dims)
    x = x.transpose(1, 2)
    x = x.squeeze(1)
    return x
```

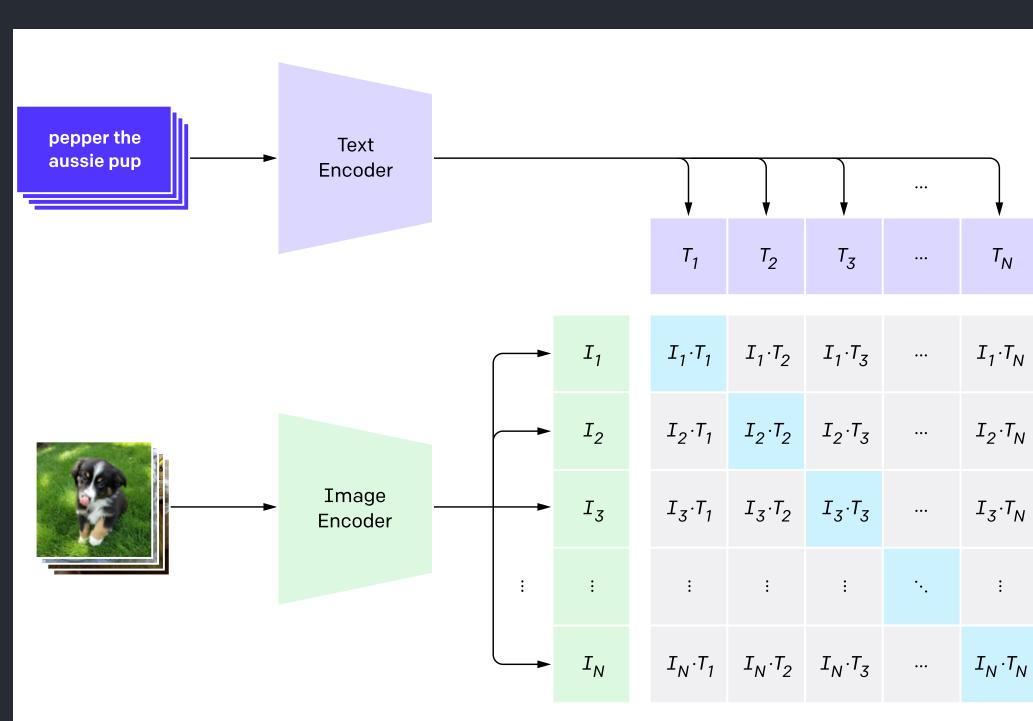
3. + 4. Mixed data Full process

- Issue: Due to previous tricks the model doesn't know that additional dimensions are related, (z,c,t,plate,well,batch etc)
- *Trick:* Use contrastive learning to make sure their latent representations are similar

•••

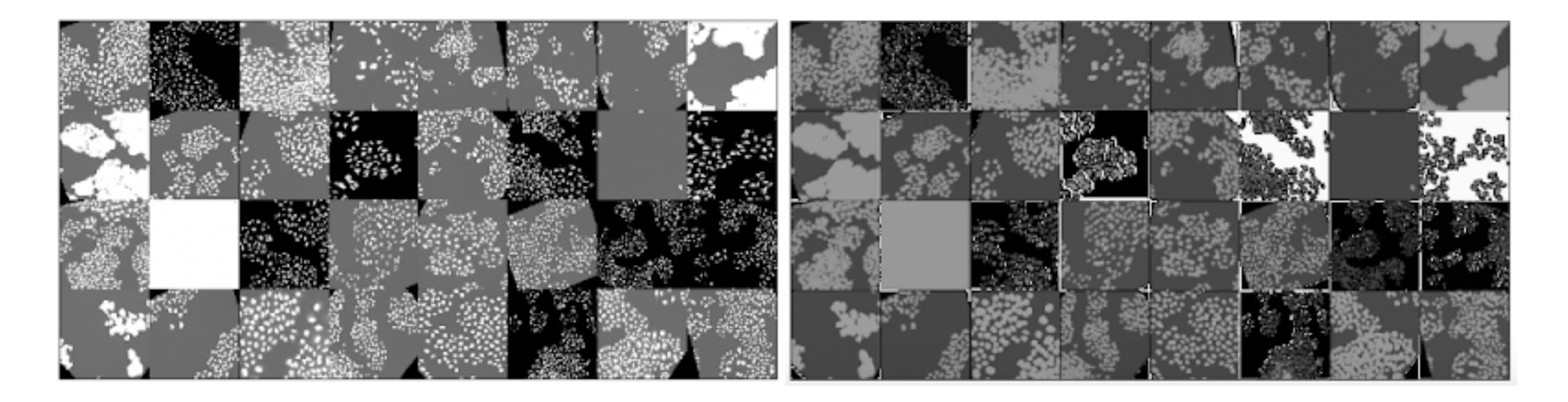
```
def channel_loss(self, x):
    model_output = self.model(x)
    b,c,dims = x.shape
    z = model_output.z.mean(dim=1, keepdim=True)
    z = self.contract_channels(z,c)
    channel_loss = euclidean_z_channel(z)
    # TODO clever mean across batches with a larger were
```

return channel_loss.sum(dim=(1, 2)).mean(dim=0)



Visual assessment of model image reconstruction Input and output of trained model

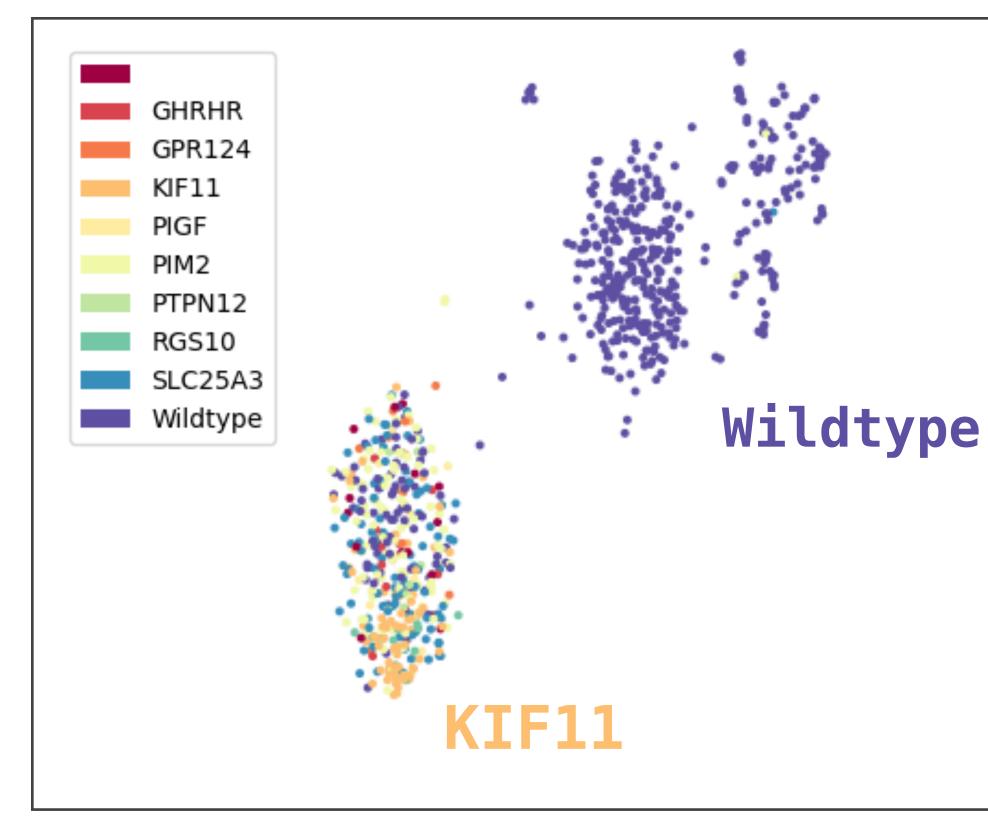
Image set from IDR00093



Reconstruction

Model inference of gene labels in IDR00093 Using best model

UMAP of embeddings



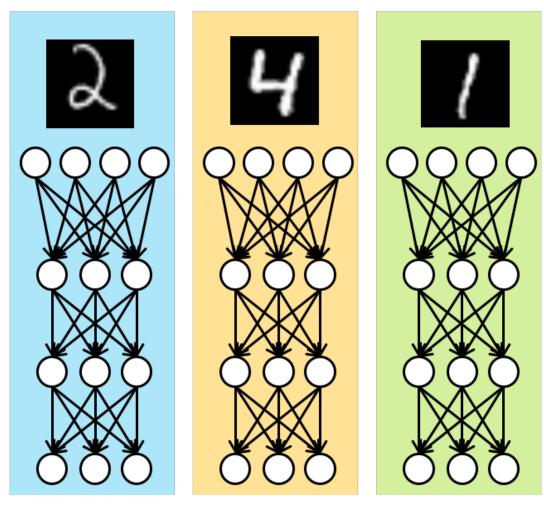
Random forest label prediction scores from subset embeddings

Gene	precision	recall	f1-score	support
	0 00	0 00	0 00	2
	0.00	0.00	0.00	3
GHRHR	0.00	0.00	0.00	1
KIF11	0.75	0.94	0.83	16
PIGF	0.00	0.00	0.00	1
PIM2	0.00	0.00	0.00	27
PTPN12	0.00	0.00	0.00	5
RGS10	0.00	0.00	0.00	2
SLC25A3	0.00	0.00	0.00	21
Wildtype	0.60	0.97	0.74	90
accuracy			0.61	166
macro avg	0.15	0.21	0.17	166
weighted avg	0.40	0.61	0.48	166

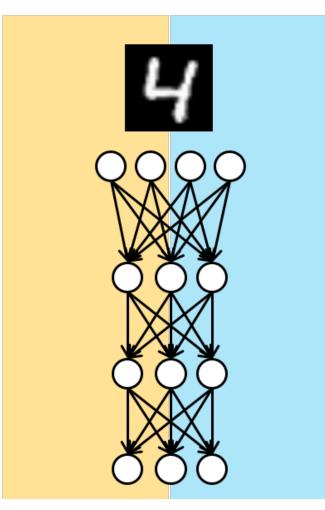
Large model Training

- Data parallelism
 - Dataset is split per training node \bullet
 - Same model per node
 - Gradients can be accumulated \bullet
- Model parallelism
 - Model is split per training node lacksquare
 - Gradients have to be synchronised quickly

Data Parallel



Model Parallel



Challenges + Tips

- Larger batches are always better
 - They converge faster
 - Choose largest that fits in memory
- CPU bottlenecks lead to GPU bottlenecks
 - Raw tiffs are slow, pngs are faster, zarr loading also slow

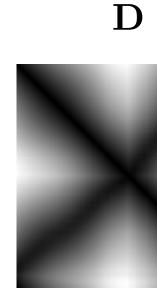
https://lightning.ai/docs/pytorch/stable/advanced/training_tricks.html

- GPU bottlenecks
 - 1 device per node is bad for model parallelism
 - Generally we see diminishing returns on speed for model sharding and data parallelism
- Hyperparameter tuning is embarrassingly parallel

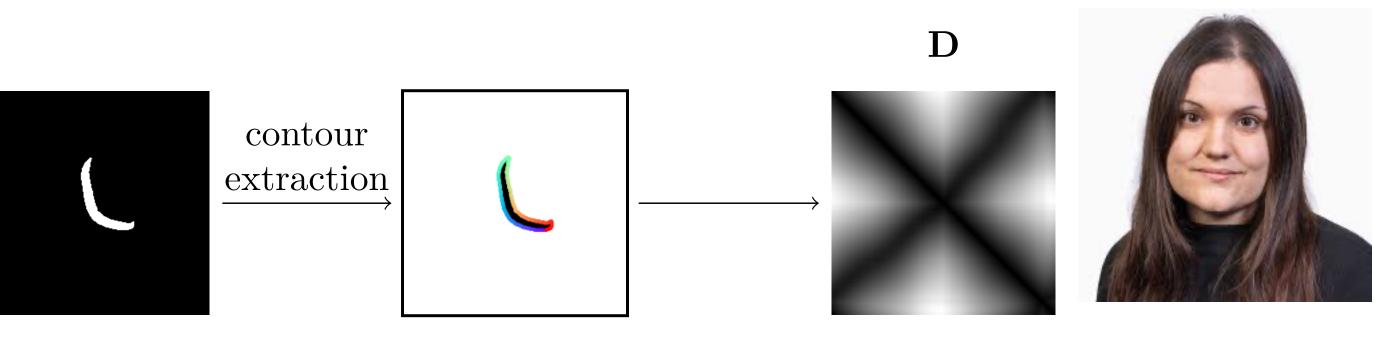
Biological applications

shape_embed

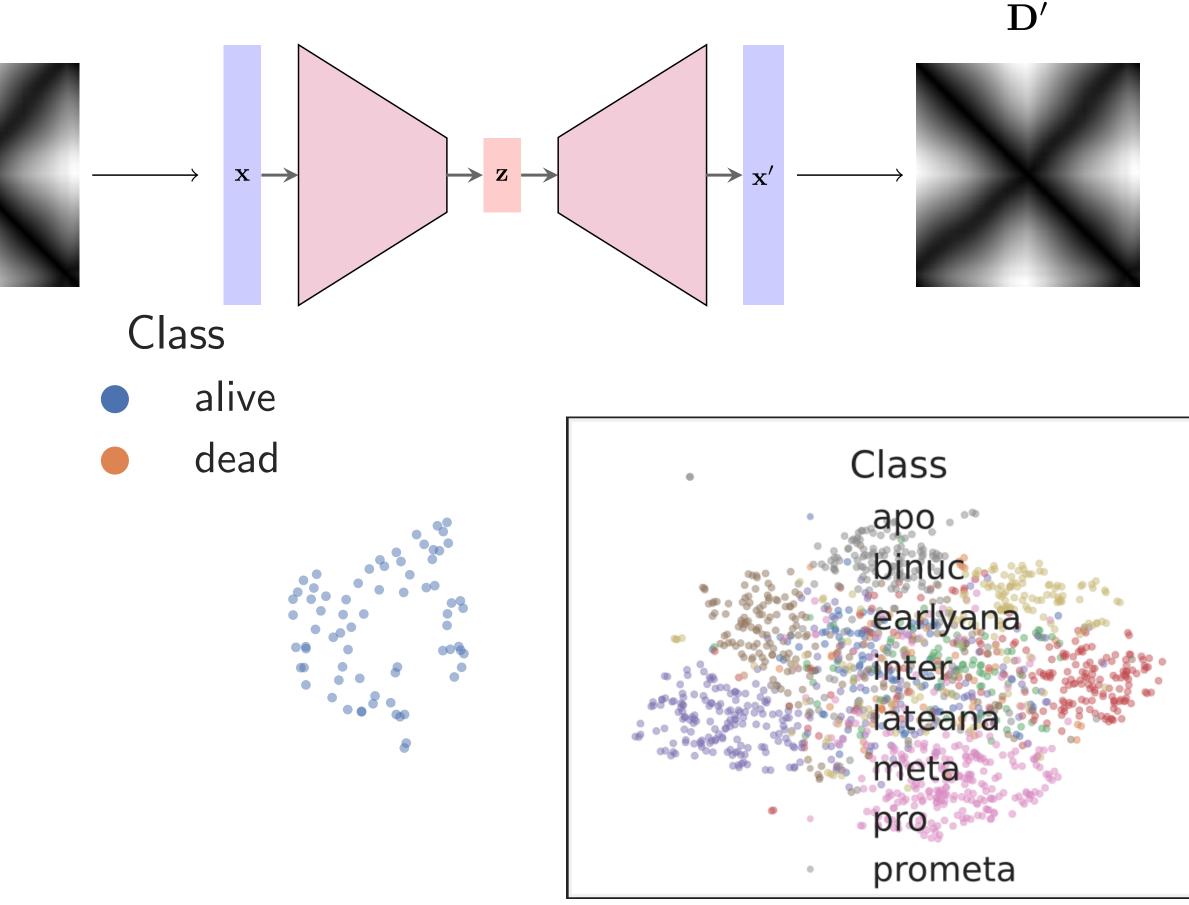
- Use distance matrix representation of masks/ contours
 - Agnostic to *rotation* and *translation*
- Feed those distance matrices into the model
- Generate shape representation



 $UMAP_1$

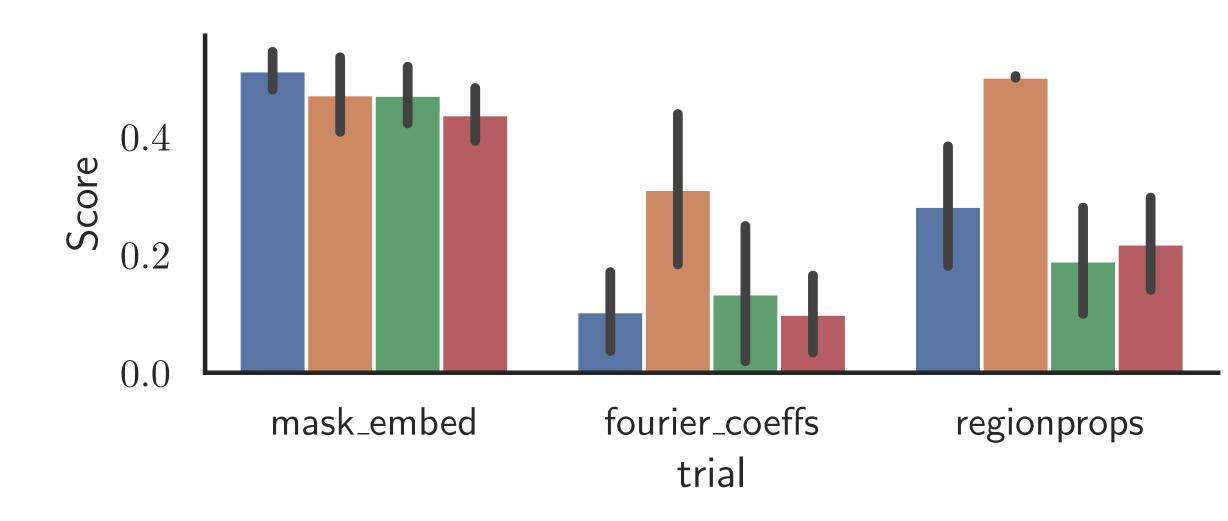


(a) Generation of distance matrix from a segmentation mask.



shape_embed results **Classification power**

- Scoring with RandomForest
- Region props = [size, extent etc.]
- Broadly outperforms classical approaches



Metric test_accuracy

test_precision

test_recall

test_f1

skimage.measure.regionprops_table(label_image,

intensity_image=None, properties=('label', 'bbox'), *, cache=True,

separator='-', extra_properties=None, spacing=None)

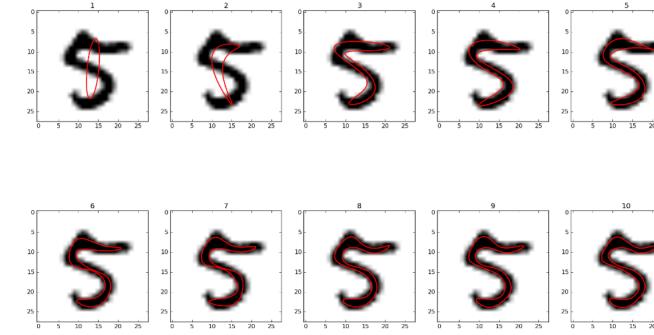
Compute image properties and return them as a pandas-compatible table.

The table is a dictionary mapping column names to value arrays. See Notes section below for details.

PyEFD

 Build and Test passing pypi v1.6.0 downloads 803/month license MIT coverage 100%

An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in ^[1].



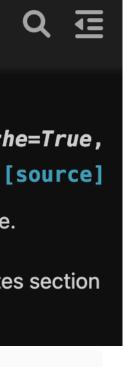
EFD representations of an MNIST^[2] digit. Shows progressive improvement of approximation by order of Fourier series.

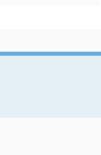
pyefd.elliptic_fourier_descriptors(contour, order=10, normalize=False, return_transformation=False) [source]

Calculate elliptical Fourier descriptors for a contour.

Parameters:

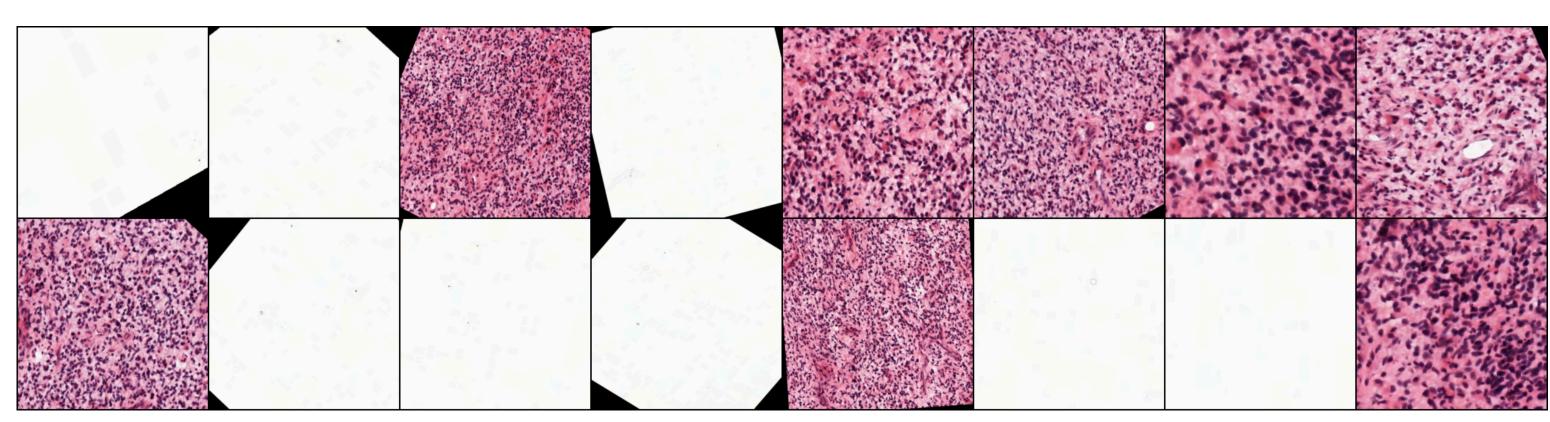
- contour (numpy.ndarray) A contour array of size [M x 2].
- order (int) The order of Fourier coefficients to calculate.
- normalize (bool) If the coefficients should be normalized; see references for details.

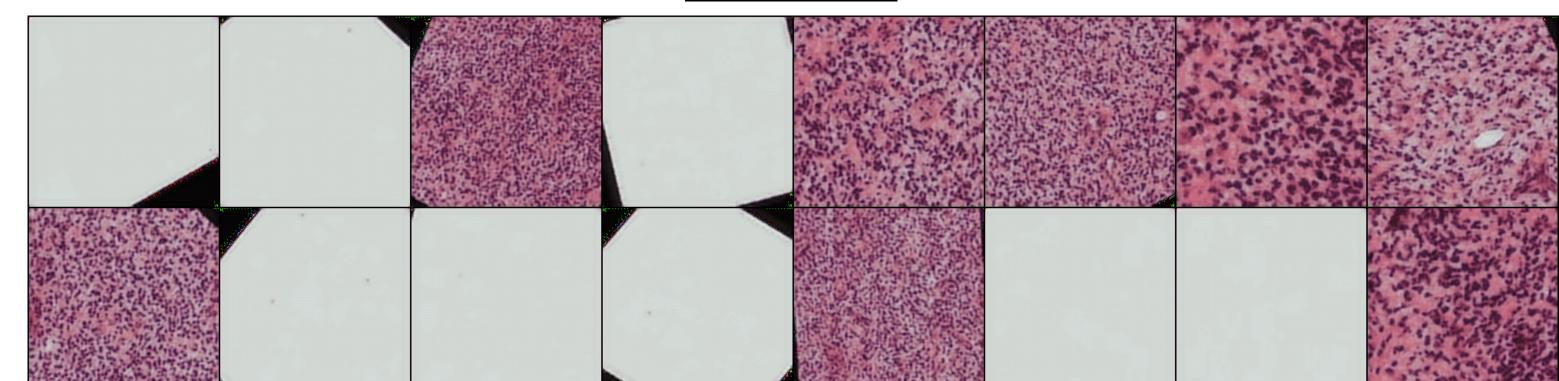


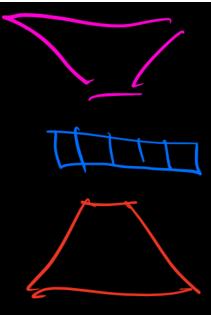


Histopathology patch similarity

- Large histopathology image
- Autoencoder encodes patches to patches
- Use latent representation and euclidean distance to find similar patches



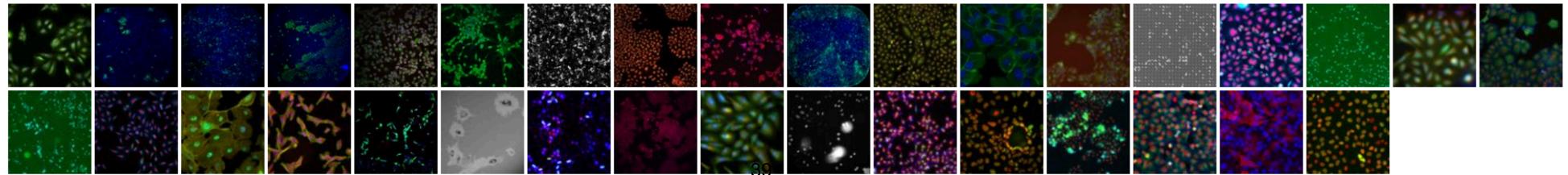




Future work

- Release challenge datasets
 - Pre-training + labelled
- MultiModal learning
 - Text Dyes are extremely important
 - Metadata, papers etc
 - Shape segmentations exist for some data

High-content screening (human)



- More data Include BIA
 - Larger pretraining
- More contrastive learning
 - More useful in finetuning
- Beta user public release
- More backend models
 - Transformers, HuggingFace models

Acknowledgements

Partnership with EMBL-EBI Cast of Characters in Collaboration

Santiago Insua Hybrid Cloud Manager

Craig Russell

Data Scientist

David Gomez

Hybrid DevOps Engineer

Matthew Hartley Team Leader

-00

ML Ops Solution Accelerator Transformation Journey

Raymond Hounon Account Director Customer Engineer Customer Engineer

Hariprasad

Hatem Nawar

Adam Hammond Regional Sales Lead -EMEA

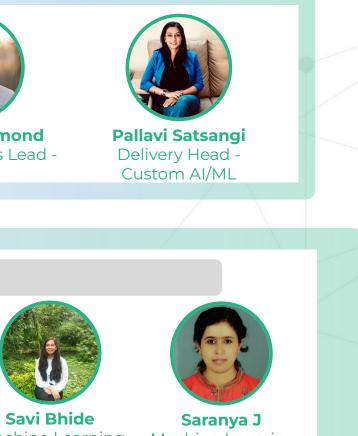
Delivery Team

Saicharan Gurramkonda Engagement Manager

Samit Saxena Jay Mangi Technical Architect - Snr. Machine Learning Machine Learning Machine Learning Machine Learning Machine Learning Engineer

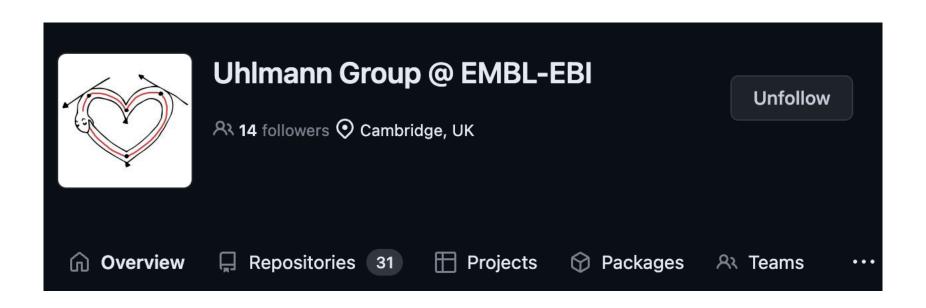
Sakshi Garg Engineer

C.D. Tiwari Architect



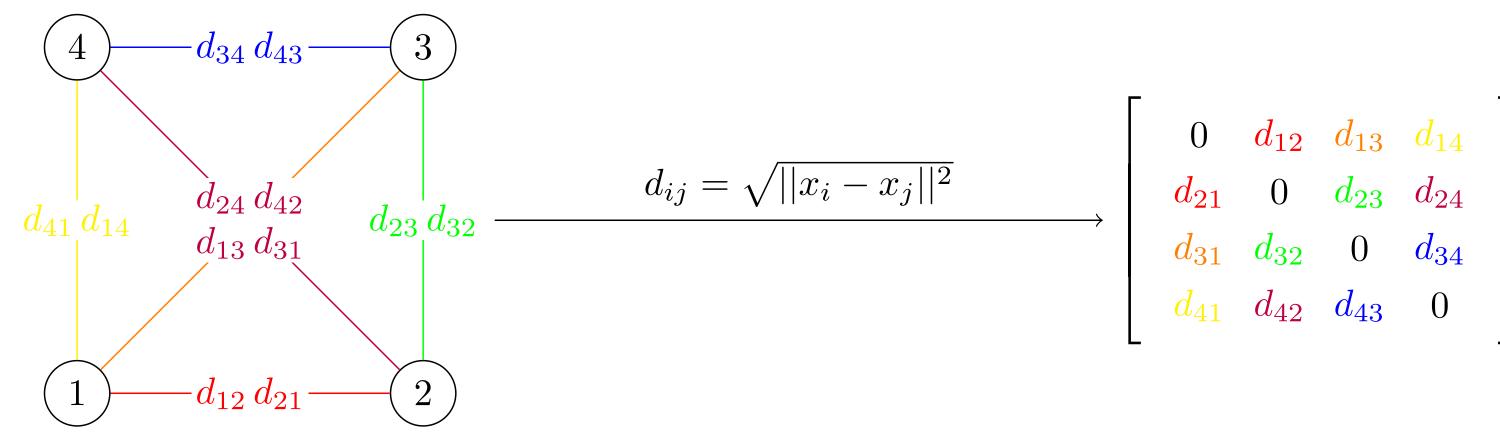
Engineer Engineer

E quantiphi © 2023 Quantiphi



Distance matrices

- Invariant to:
 - Rotationally invariant
 - Scale invariant
 - With Frobenius norm
 - Translation invariance
 - Reflection invariance
 - Single shape prior



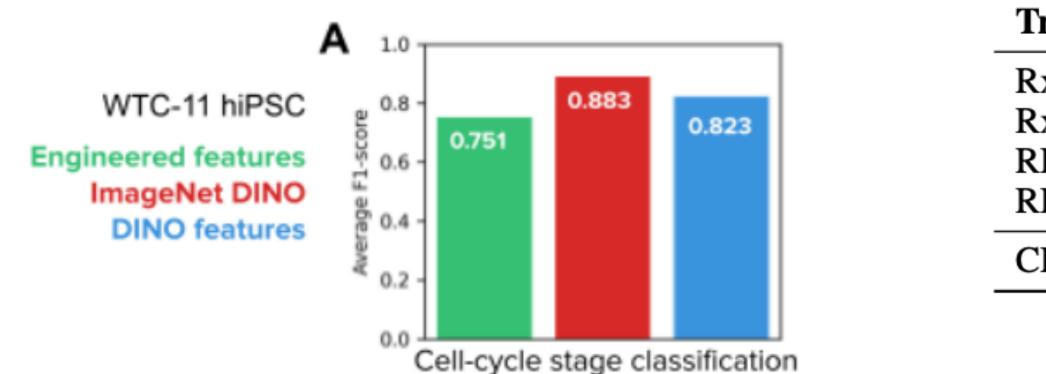
Distance matrices Indexation invariance

- Achieved through augmentation
- Possible number of augmentations
 - $\|\operatorname{diag}(\mathbf{D})\|$

Unbiased single-cell morphology self-supervised vision transformer

Michael Doron¹, Théo Moutakanni², Zitong S. Chen¹, Nikita Moshkov³, Mathilde Touvron², Piotr Bojanowski², Wolfgang M. Pernice⁴, Juan C. Caicedo^{1*}

- ¹ Broad Institute of MIT and Harvard, Cambridge, MA, USA
- ² Meta AI, Paris, France
- ³ Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeg
- ⁴ Department of Neurology, Columbia University Medical Center, New York, NY, USA
- * Corresponding author (jcaicedo@broadinstitute.org)



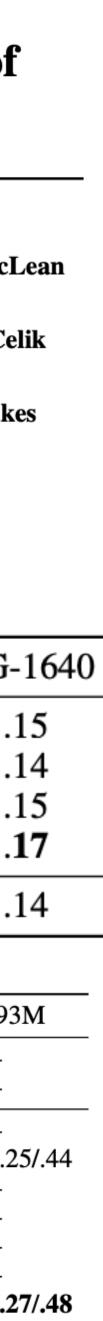
bioimage_embed: Autoencoders for Biological Image Data

bioimage_embed is an all-in-one Python package designed to cater to the needs of computational biologists, data scientists, and researchers working on biological image data. With specialized functions to handle, preprocess, and visualize microscopy datasets, this tool is tailored to streamline the embedding process for biological imagery.

with ers	Masked Autoencoders are Scalable Learners of Cellular Morphology						
e Caron ² , Hugo	Oren Kraus*	Kian Ken	yon-Dean*	Saber Sabe	rian Maryam F	allah Peter McL	
	Jess Leung	Vasude	v Sharma	Ayla Khan	Jia Balakrish	nan Safiye Cel	
	Maciej Syp	etkowski	Chi Vicl	ky Cheng	Kristen Morse	Maureen Make	
ged, Hungary		Ben N	ſabey		Berton Earnsh	aw	

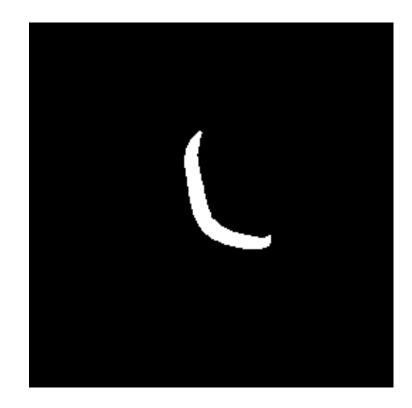
Fraining dataset	Model backbone	PoC-124	MoA-300	DG-
RxRx1 [49]	WSL DenseNet-161 w/ AdaBN	.79	.24	•
RxRx3 [19]	MAE ViT-S/16	.74	.19	•
RPI-52M	MU-Net-L	.79	.20	•
RPI-93M	MAE ViT-L/8+	.80	.23	•
CP-1640 [45]	DiNO ViT-S/8	.53	.12	•

Model backbone		RxRx1 [49]	RxRx3 [19]	RPI-52M	RPI-93
	DenseNet-161	.38/.31/.19/.33	.36/.27/.17/.32	_	_
	DenseNet-161 w/ AdaBN	.48/.35/.23/.42	.46/.30/.19/.38	-	_
	MU-Net-M	_	.56/.38/.23/.42	_	_
	MU-Net-L	_	.57/.37/.23/.43	.58/.39/.24/.44	.58/.39/.2
	MAE ViT-S/16	_	.52/.37/.23/.41	.51/.36/.22/.40	_
	MAE ViT-B/16	_	.57/.39/.23/.43	.54/.37/.23/.42	_
	MAE ViT-B/8	_	_	.60/.40/.25/.46	_
	MAE ViT-L/16	_	.56/.37/.23/.43	.61/.41/.26/.46	_
	MAE ViT-L/8+	-	_	.61/.42/ .27 /.47	.62/.44/.27

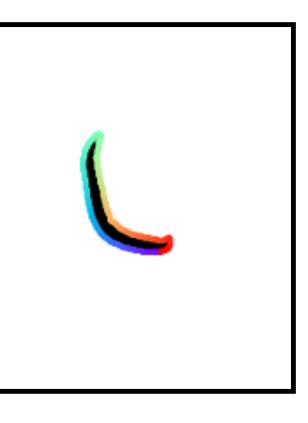


Contour extraction

- Crop centroid
 - Window size hyperparam
- Marching squares
- Fit cubic spline
- Resample \bullet
 - Currently uses a stardist style ray casting
 - Should use spline resampling



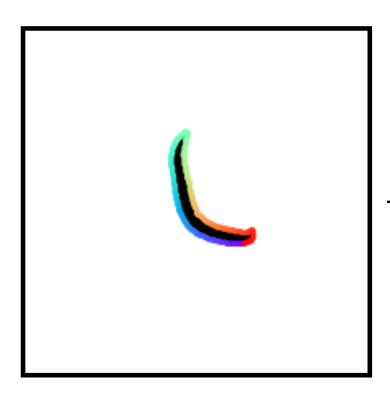
contour extraction

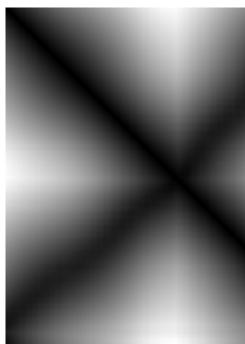


Contour to distance matrix

- Resample to 256 points (hparam)
 - 256 is roughly 224 -> ImageNet size
 - Rainbow -> samples
- Normalise coords to window_size [!]
- Run euclidean distance on contour points
 - Use euclidean because operation can be inverted

D





sklearn.metrics.pairwise.euclidean_dist ances

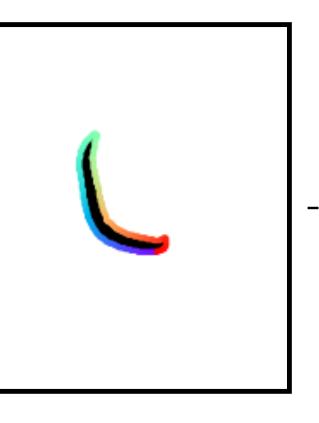
sklearn.metrics.pairwise.euclidean_distances(X, Y=None, *, Y_norm_squared=None, squared=False, X_norm_squared=None)

Compute the distance matrix between each pair from a vector array X and Y.



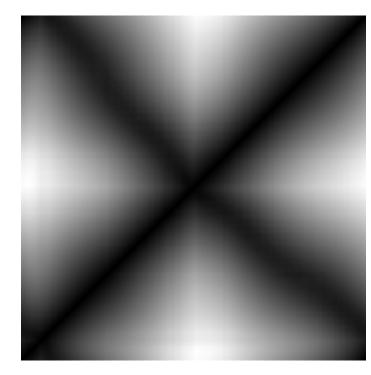


contour extraction

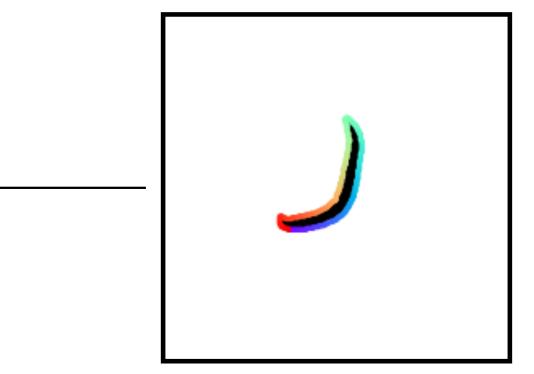


Distance matrix to contour

- Multi-Dimensional-Scaling
 - Magically iterative algorithm
 - Does not get stuck in local minima
 - Will always converge
- The seed value essentially only randomly controls
 - The rotation
 - The indexation
- The essence of the shape is always recovered



Π



sklearn.manifold.MDS

class sklearn.manifold.MDS(n_components=2, *, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=None, random_state=None, dissimilarity='euclidean', normalized_stress='warn') ¶

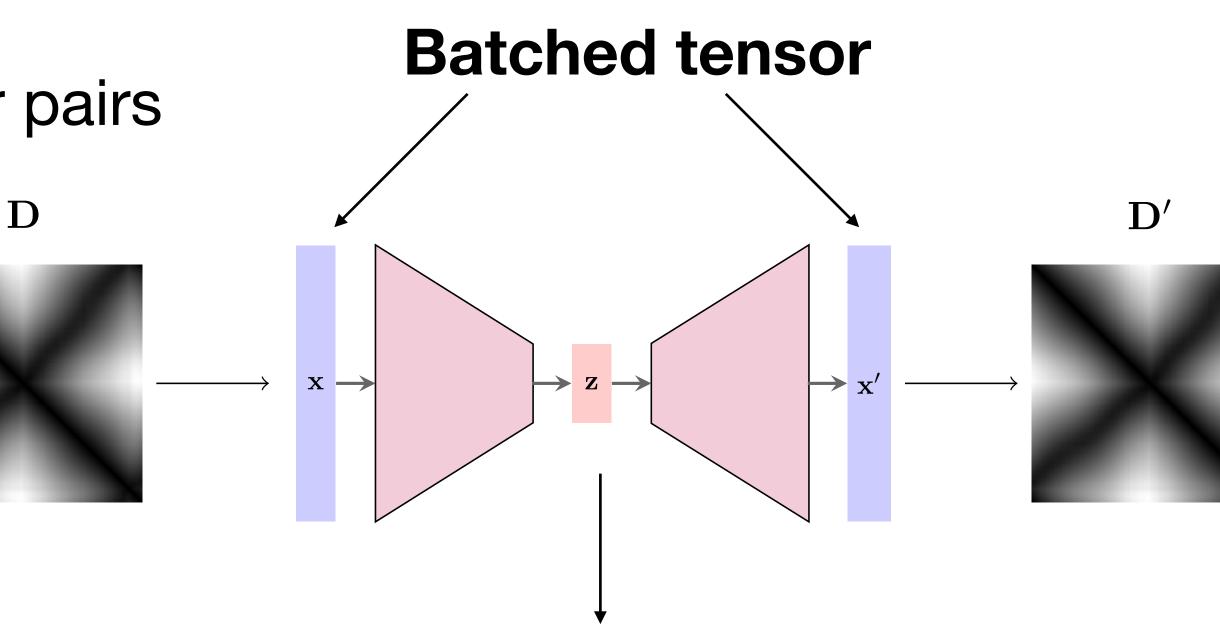
Multidimensional scaling.

Read more in the User Guide.



Autoencoding shapes

- We use matched encoder-decoder pairs
- Currently available
 - ResNet{18,50,110}
- **Future :**
 - Segmentation anything encoder
 - Mask auto encoder
 - (These might be the same or similar)



Latent representation

Distance matrix losses

- - All zero leading diagonal -> discourage deviation of diagonals from zero
- 2. $\mathscr{L}_{non-negativity}(\mathbf{D},\mathbf{D}') = MSE(max(0,\mathbf{D}'-$
 - All off-diagonal values are positive.

1. $\mathscr{L}_{diagonal}(\mathbf{D}') = MSE(diag(\mathbf{D}'), \mathbf{0})$ 3. $\mathscr{L}_{symmetry}(\mathbf{D}, \mathbf{D}') = MSE(\mathbf{D}', \mathbf{D}'^T)$

• Penalize any discrepancy between the matrix and its transpose

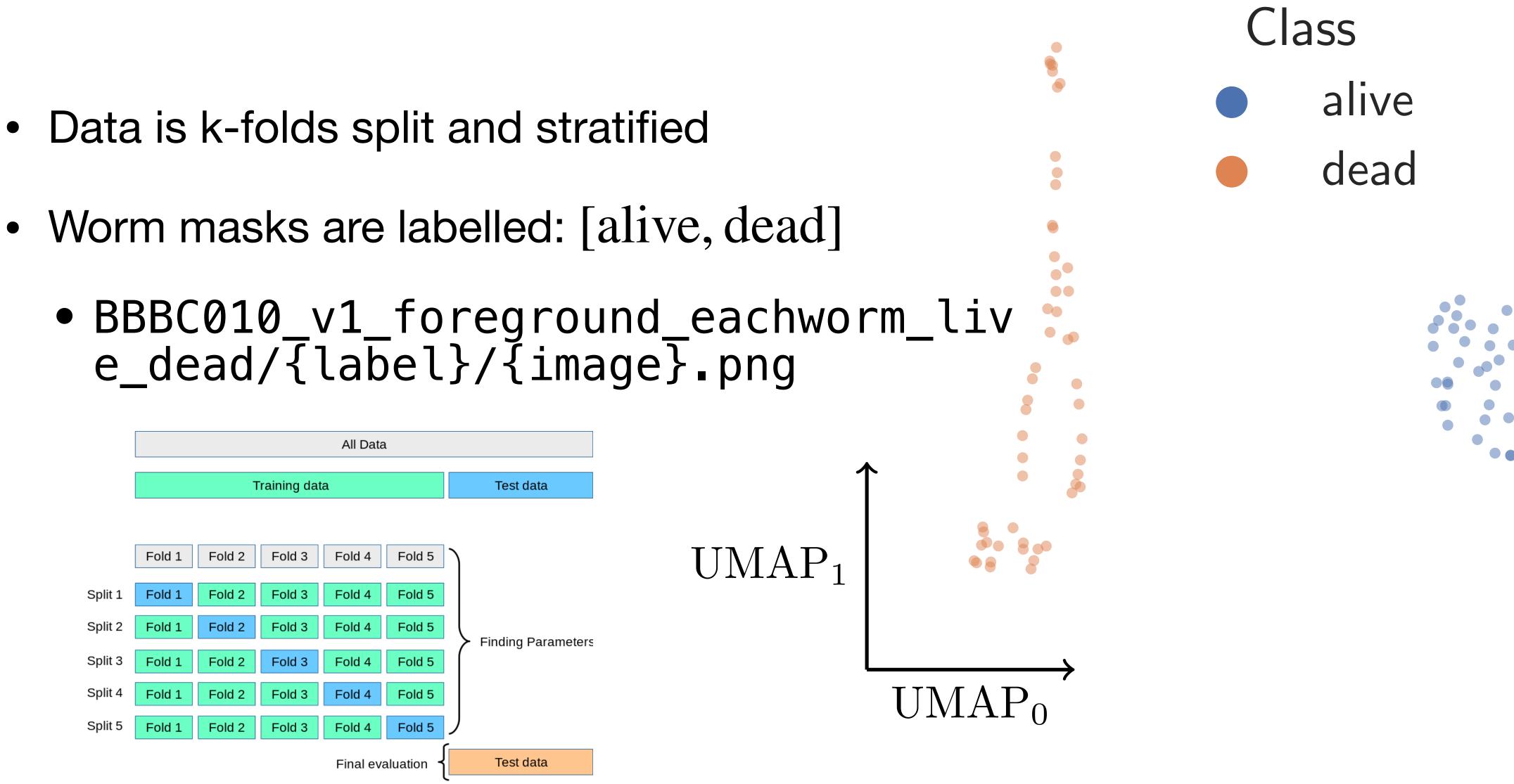
$$-\mathbf{D}) \Big) \quad \mathbf{4.} \quad \mathscr{L}_{\text{triangle}}(\mathbf{D}') = \text{ReLU}\left(\frac{1}{N}\sum_{i=1}^{N}\left[d_{ij} + d_{jk} - d_{ij}\right]\right)$$

 Euclidean points mean triangle inequality is valid



Results

- Data is k-folds split and stratified



Conclusions

- Alternative shape representer that has useful shape priors and invariances baked-in
 - Rotation, translation, [opt.] scale
- Model agnostic -> No special invariant layers
- Information spread generally better through the image vs black

- Outperforms simple classical methods on biological shape data
- Complimentary to image features
 e.g. easy to concatenate D onto an image
- Tight control over latent space, useful for shape generation