

11

2

∢

3

F

<u>L.</u>

0

5

LIFE SCIENCE COMMUNITY

Workshow 10 June 2024 UC3M Madrid

www.ai4life.eurobioimaging.eu

New microscope 0.000 new device

10 µm

Explosion growth of complex data

Image-based studies

Numerical Quantitative Objective

Image Processing

Machine Learning 10

00:00:00.000

Cell bacteria interaction, phase contrast and fluorescence channel for bacteria Source: Matthieu Delincé and Chiara Toniolo, McKinney Lab, EPFL

10 June 2024

IMAGING

WRAP UP — BIOIMAGE ANALYSIS

www.ai4life.eurobioimaging.eu

From Qualitative to Quantitative Microscopy

Digital era

Biochemistry

fluorescence single-molecule

Fluorescence Microscopy

- High SNR
- Quantitative
- Specific to subcellular component
- Structural, functional and *in vivo*
- Interactions at molecular scale
- Diffraction-limited
- Autofluorescence
- Photobleaching
- Toxicity

Ser

Microscopy

high resolution time-lapse

Series of (r)evolutions

Bioimaging has evolved from its **qualitative** origins, mainly focusing on the visualization of individual biological processes and structures, to a highly **quantitative** discipline, producing **large, multimodal and complex** datasets requiring sophisticated and robust computation and methods for analysis.

A. Mather, Building a FAIR ..., 2023

Imaging Disciplines

- **Digital Imaging** Image acquisition, analysis
- Image Processing
 Transformation of images
- Image Analysis Extraction of information
- Computer Vision High-level understanding
- Computer Graphics Synthesizing visual content

Image reconstruction

data, measure, signals \succ image

Image processing raw image ➤ enhanced image

Image analysis image ➤ number, description

Computer Vision

Human perception modeling

Real-time processing

Well defined shape and geometry

Bioimage Analysis

Large number of simple particles

Live cell / interaction / motility

Multiple dimensions

Common Questions

Typical biological questions

- Count cells, classify cells
- Measure the expression of protein (fluorescence)
- Mesure the granularity
- Identify the interaction
- Record the diffusion, growth rate
- Build the trace in time, cell lineage

Expectations of a bioimage analysis system

- Quantitative, objective
- Parameter-free, no human bias
- Reliable, confident, robust to input variation
- Reproducible
- Computing: reasonable fast, laptop

➡ Do not expect a 100% correct answer in real life

Illustration from QuPath website

Bioimage Datasets

Databases

- Data and metadata
- Annotated data for ML
- Open, re-analysable
- Centralised repositories

A call for public archives for biological image data Jan Ellenberg et al. Nature Methods 2018

Building a FAIR image data ecosystem for microscopy communities Aastha Mathur et al. J. Histoch Cell Biol 2023

Large Data Storage Transfer Share and annotation Simple processing Visualization

Public repositories of bioimages

Pre-trained DL models

http://bioimage.org/ **Trained Models Zoo**

http://cellpose.org/ **Cellpose for Cell Segmentation**

Bioimage Informatics

Bioimage informatics is a key technology for Life Science

- Quantitative discipline, unprecedented quantity and detail.
- Requiring sophisticated and robust computational and statistical methods [Kemmer 2023].
- Wide range of imaging modalities [Ouyang 2017].
- Computational advancements allow to map spatiotemporal biological processes.

Bioimage informatics methods span

- **Spatial scales** from single molecules to cells, all the way to entire multicellular organisms [Kemmer 2023].
- Time scales ranging from fractions of ms to days.
- Multiplexing visualization of a multitude of sample characteristics in parallel [Ellenberg et al. 2018].

Software Packages in Java

ImageJ NIH Vanilla version

QuPath Pete Blankhead

rootrak icy qupath 3dspan amira arivis relion apeer jmp fishingrod tensorflow mar horos vast cellpose rvs scikitimage neurolucida360

> Automation, speed up, many images Non-human bias Reproducibility, documentation

Automation of image analysis problem

Software Packages in Python

CellProfiler Broad Institute

Resource for training

Forum for getting help

Bioimage Analysis Societies

globalbioimaging.org

www.bioimagingnorthamerica.org/

www.eurobioimaging.eu

FRANCE-BIOIMAGING

france-bioimaging.org/

swissbias.github.io/

Conferences

european light microscopy initiative

and more ...

ai4life.eurobioimaging.eu/

quarep.org/

gerbi-gmb.de/

Bioimage Analysis

Segmenta

DANIEL SAGE = EPFL = 10.06.2024

ation	

Virtual Acquisition

E. M.Christiansen, In Silico Labeling, Cells 2018

In-painting

Object Detection

Segmenta

H. Wang, Nature Methods, 2019,

L.ª	
tion	

In-painting

Object Detection

Segmenta

Generative Denoising Diffusion Models

ation	

Fill in missing parts

Source: Medium.com, Tarun Bonu

Axial restoration

CARE, M. Weigert, 2019

In-painting

Object Detection

Segmenta

Artefact Correction

Jin et al., IEEE Trans. Im Proc., 2017

21	ti	С	or)		

Object Detection

Blood cell detection Bounding Box YOLOv3

Mouse/human cells

Juppet et al., 2021.

Object In-painting Segmenta Detection

Semantic Segmentation Pixel classification

Pixel classification

- Binary
- Multiple classes

Instance Segmentation HeLa cells

Ronneberger et al., U-Net MICAI, 2015.

Live Cell Imaging in Deep Learning Era

Live Cell Imaging in Deep Learning Era J. Pylvänäinen et al., Current Opinion in Cell Biology, 2023

1 frame / 1 minute

Artificial labeling, fuorescence to fuorescence

DANIEL SAGE

EPFL

10.06.2024

Image Segmentation

➡ Grouping pixels into regions

- Segment image into objects
- ➡ Classify objects of the image

Science or Art?

Dimension

- Large number of objects, dense
- Highly variability: shape, color, ...
- Rare phenotype of interest

10 June 2024

IMAGING

WRAP UP — BIOIMAGE ANALYSIS

Workship June 2024 UC3M Madrid

www.ai4life.eurobioimaging.eu

SM/	ART	
20	25	
		:
		:

Rule-based Approach

Intensity-based adhoc routines

Preprocessing, filters

Packaging of Swiss chocolates

Aggregation

- Super-pixel SLIC
- Region-growing/ Watershed

Preprocessing / simplification

- Structure enhancing
- Denoising
- Projection over time
- Flatten background

DANIEL SAGE

EPFL

10.06.2024

Model-based Approach

PHYSICS-DRIVEN RECONSTRUCTION

Mathematical formalism: forward model

- Inverse problems: Deconvolution
- Correlative imaging
- Image reconstruction
- Super-resolution microscopy

Sage et al. DeconvolutionLab2 Methods 2017.

SHAPE MODELING FOR SEGMENTATION

Mathematical formalism: shape representation

- Level-set
- Active contours
- Graph-cut
- Mathematical morphology

Badoual et al. Active Contours 2017.

Machine Learning

Handcrafted features: filterbank

Pixel Classification Annotation by user interface and feature classifier

Fiji

QuPath

LabKit

Anaphase Metaphase Interphase

fted Classification: erbank supervised learning

Clij

Napari

		·		<u> </u>						
Sonnebe	rg									
Classifie	r file									
ObjectSe	egme	nter.c							Selec	t file
	Tra	ining	Ap	oplic	ation	/ Pr	edict	ion		
Select g	round	l truth	n anr	notat	tion +	· obj	ect c	lass		
Labels									2	
Select	t feat	ures								
sigma	0.3	0.5		2	3	4		10	15	25
Gauss										
DoG										
LoG										
SoG										
Con	sider	origir	nal in	nage	e as v	vell				
Tree dep	oth, nu	um.tre	es						0	
Estimate	ed me	mory	con	sum	ption	(GP	U): 2	.2 M	Byte	s
					ain					

llastik

Machine Learning

Hand-crafted features

Random-Forest

Hand-crafted features

Fully connected network

End-to-end learning -> Deep architecture

Image to

analyse

raw

V. Uhlmann, L. Donati, D. Sage, IEEE SPM 2022

Bioimage Model Zoo

Partners

Interoperability

INTRODUCTION TO MICROSCOPY IMAGE ANALYSIS • WORKSHOP AI4LIFE • MADRID

https://bioimage.io/

Facets

The Biolmage Model Zoo and FAIR data principles are core facets of the Al4Life project.

MAI4Life

Standardization

Reproducibility

Radial Distances

NON-MAXIMUM SUPRESSION

Python package, napari QuPath, Fiji CellProfiler ZeroCostDL4Mic

Stringer et al., "Cellpose: a generalist algorithm for cellular segmentation", Nature Methods 2021

Web interface Python package Fiji, Napari ZeroCostDL4Mic

Sketchpose – Omnipose

Flow representation

Segment-Anything Model (SAM)

Transform: encoding / decoding

BIG DATA

 \mathbf{O}

Model SA-1B

- Natural photographies
- Huge model (~1GB)
- 11M diverse, high-res. images
- 1.1B segmentation masks
- Open, privacy

The ChatGPT of the **Computer Vision**

Alexander Kirillov et al. IEEE/CVF, 2023, 2700 citations

SAM for Science?

Web interface Python package QuPath Napari Fiji

- MedSAM
- CellSAM

- . . .

Variants of SAM Models

MicroSAM

EfficientSAM

MobileSAM

MicroSAM C. Pape

CellSAM

ARCGIS

Acceleration of annotations Megakaryocotes on human biopsis SAM Large model SAM extension of WuPath SAM on server R. Sarkis, CHUV, L-F. Celma, EPF April 2024

Two Paradigms of Image Analysis

Model-based

Based on a-priori model

Physical rule biophysics law, prior knowledge of the sample

Insight of the structure of the problem Convergence prove, intuitive parameters

> Results explainable 🙂 Mathematics, error analysis

Generalization Under known assumptions

Very efficient ... Very inefficient

from simple algorithms to iterative algorithms

Machine Learning

Based on data

Process Control

Explainability

Generalizability

Computing

Adaptivity to the data

no explicit model 🙂

Blackbox no guarantees, validation on data

> Not explainable Working in progress, tools

Strong claim of IA Questionnable aspect

Training: slow / GPU Prediction: efficient

Difficult to manually tweak the parameters of the model because a DNN has millions of parameters inside

10 June 2024

IMAGING

WRAP UP — BIOIMAGE ANALYSIS

www.ai4life.eurobioimaging.eu

When Shall I Use Deep Learning?

No explicit model of the objects of interest

- Abstract features
- Complex relationships
- Hierarchical features
- No physical rules / engineering

PROMISES OF DEEP LEARNING

- **End-to-end learning** (B)
- **Continual improvement** (-D
- **Ability to generalization** (B)

How much time and resources?

What are the required skills?

How evaluate the accuracy?

Importance of the Data

Dataset size Few ground-truth Overfitting

Normalized data

Misaligned raw data Divergence

Model complexity

Few # parameters Underfitting

Building a training dataset is a scientific process including preparation, unbiased, curation, annotation, validation, integrity, open-access.

Representativity

Mismatch conception

Dataset shift

Data selection

Exclude phenotypes Bias

Distribution

Imbalance classes Ignore minority

Annotation

Simulation

Crowd-source

Content-Aware

Smart Acquisition

- Low SNR and high SNR
- SR and resolution standard
- Different focal plane
- Axial vs. Lateral

Public Databases

ImageNet, Bioimage Archive, Broad

CARE, M. Weigert, 2019

Training Datasets

Deep-Learning Model?

MODEL = ARCHITECTURE + LEARNT PARAMETERS

Neural Network Architecture

- CNN Convolutional neural network
- **Deep** multiple layers that gradually extracts higher-level features

Parameters

- Weights of convolution kernel + bias of non-linearity
- **Trained** parameters using **data** and a criteria to minimize (**metric**)

+ METADATA interoperability, open

U-Net — pixel classification

Ronneberger et al., U-Net, MICCAI, 2015

Label maps

00000

00000

Multiple label classification

DANIEL SAGE = EPFL = 10.06.2024

- Data science
- IT skills
- Programming
- Domain knowledge

Deep Learning Frameworks

O PyTorch

Primarily developed by Facebook

- Tensor -> numpy
- Convenient for research

TensorFlow

Primarily developed by Google

- Major changes in TF2
- Keras

Open format to represent ML models

ZeroCostDL4Mic

#ZeroCostDL4Mic

- **Self-explanatory** Notebooks
- Running on **Google Colab** (free)
- Export to the bioimage zoo (beta)
- U-net 2D, 3D, Stardist, noise2void, ...

L. von Chamier, Nature Comm, 2021

Model Consumers

- Domain knowledge
- Final users
- Validation
- Trust

Deep Learning Consumers

Run deep-learning interference in ImageJ as plugin or macro

- ✓ Macro recordable (pipeline)
- \checkmark Expose models to user
- ✓ One-click installation
- ✓ Pre & post-processing
- ✓ Models from the **Bioimage Zoo**

TF 1 & 2 PT 1 & 2 ONNX

3.0

E. Gómez-de-Mariscal, Nature Methods, 2021.

deepimagej.github.io

SAMJ Annotation with SAM on FIJI (CPU)

SAMJ

- FIJI Plugin and ICY plugin
- Model Efficient SAM (run on CPU)
- Automatic installation of the Python environment
- Smart strategy for tiling

SAMJ Team: Carlos, Caterina, Arrate, Vladimir Ulman, Adrian Ines, Jonathan Heras, Curtis Rueden, Jean-Christophe, Daniel

And Many Others Tools

Object detection

YOLO

DEEPBACS

- - Schmidtea mediterranea

- Phagocata sp.
- Girardia dorotocephala
- Phagocata gracilis

- ➡ CellProfiler
- ➡ QuPath
- ➡ Fiji (deepImageJ)
- ➡ BiaPy
- ➡ DeepMIB
- ➡ DeepTrack

Characterization of bacteria

Detection of elongated cells

OMNIPOSE

NIKON NIS.AI

OLYMPUS APEXVIEW

LEICA AIVIA

10 June 2024

IMAGING

WRAP UP — BIOIMAGE ANALYSIS

Workshow 10 June 2024 UC3M Madrid

www.ai4life.eurobioimaging.eu

V. Uhlmann, L. Donati, D. Sage, IEEE SPM 2022

Dataset shift Low performance, hallucination

Fine tuning

Trust in results Overconfidence or Skepticism

Validation / Interpretation

The data is the code.

Scientific Design of the Training Datasets

Preparation, curation, annotation, validation, unbiased, integrity, open

When you train a machine, you are actually programming the algorithm using data instead of using code.

Machine learning is only as good as the training data you put into it.

Believing is Seeing

Believing is seeing – the deceptive influence of bias in quantitative microscopy R. M. Lee et al.

Journal of Cell Science 2024

© 2024. Published by The Company of Biologists Ltd Journal of Cell Science (2024) 137, jcs261567. doi:10.1242/jcs.2615

Biologists

SUBJECT COLLECTION: IMAGING

Believing is seeing – the deceptive influence of bias in quantitative microscopy

Rachel M. Lee, Leanna R. Eisenman, Satya Khuon, Jesse S. Aaron and Teng-Leong Chew*

The visual allure of microscopy makes it an intuitively powerful research tool. Intuition, however, can easily obscure or distort the these best practices, but ultimately, implementation of these reality of the information contained in an image. Common cognitive biases, combined with institutional pressures that reward positive research results, can quickly skew a microscopy project towards unbedding, with a state of the pholding, rather than rigorously challenging, a hypothesis. The funding and subsequently promotion – tends to reward positive impact of these biases on a variety of research topics is well known. What might be less appreciated are the many forms in which bias can permeate a microscopy experiment. Even well-intentioned on its head: believing becomes the impetus for seeing what was researchers are susceptible to bias, which must therefore be expected, providing multiple vulnerabilities for observer bias to take ctively recognized to be mitigated. Importantly, although image control of an experiment. quantification has increasingly become an expectation, ostensibly to confront subtle biases, it is not a guarantee against bias and cannot cognitive biases, which manifest in many forms during a alone shield an experiment from cognitive distortions. Here, we provide illustrative examples of the insidiously pervasive nature of

quantification (Khater et al., 2020; Waters and Swedlow, 2008) Journals, reviewers and funding agencies can encourage the use of

Observers are naturally susceptible to a wide bias in microscopy experiments – from initial experimental design to image acquisition, analysis and data interpretation. We then provide suggestions that can serve as guard rails against bias. experimental choice, the impulse to support the hypothesis can KEY WORDS: Microscopy, Bias, Bioimage analysis, Quantitative microscopy lead an observer astray. Selection of a region of interest or image acquisition parameter can be misinformed by the subjective sment of the observer. Likewise, identification of features in

Clustering illusion	Se
Color perception	IIIu
Confirmation bias	Fa
Congruence bias	No
Contrast effect	O'
Illusory correlation	Se
Pareidolia	Se
Publication bias	W
Recency bias	Gi
Selection bias	Fc
Survivorship bias	O

- eeing groups in time or space as significant when they are random
- usions due to misleading perception of colors
- avoring information that supports existing beliefs
- ot testing alternative hypotheses for the observed data.
- ver- or under-estimating a feature based on spatial-temporal surroundings
- eeing a relationship where there is no underlying correlation
- eeing patterns that do not exist
- 'ithholding negative results from publication
- iving greater weight to more recent observations
- ocusing on a sample that is not representative of the population population
- verlooking data that does not survive a selection process

Open Imaging and Responsability

Sustainability

No overshot of the planetary boundaries Digital: Life cycle of equipments (gray energy) → green-algorithms.org

> Illustration from the online book The Turing Way

Ethical Guidelines

- 1. Keeping raw data, open the data
- 2. No image compression
- 3. Simple adjustment acceptable
- 4. Cropping acceptable
- 5. Digital filtering is not encouraged
- 6. Combining images if no hiding
- 7. No local alteration
- 8. Compare in the same conditions
- 9. Image should be documented
- 10.Reporting the analysis script

Manipulation and misconduct C. Blatt, Plant Physiology, 2013.

Mishandling and Misconducts K. Miura, S. Nørrelykke, 2021.

Avoiding twisted pixels D. Cromey, 2010.

Al4Life in a nutshell AI4LITE

Goals

To empower life science researchers to harness the

Establish standards for the submission, storage and FAIR access

Empower common image analysis platforms with **Al integration**

RESOURCE CENTRE

 \times

Al4Life

COMMUNITY

UE CIENCIA

Z

1BL

Goal: reduce the disparity between the theoret and applicability and the practical use of Al-based age analysis methods thousa life sciences.

Al/Life

Outcome Services provided and solution

www.ai4life.eurobioimaging.eu

Simple model deployment, sharing, and dissemination through a new developer-facing service

PUT

ENC COMMUNITY

Organize Open Calls and Challenges for image analysis problems

Organizing outreach and training events courses/workshops and participation in conferences

