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Outline

• What is Bioimage Analysis?

• Image Segmentation.

– Machine learning-based segmentation.

• What is Machine Learning?

– Important concepts and definitions.

• Shallow Learning.

– Trainable Weka Segmentation plugin.

• Deep Learning.

– Historical view of Artificial Neural Networks.

– Available tools.
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What is bioimage analysis?

● Automatically extract biophysically meaningful information 
from microscopy images of biological samples.

EU funded action: https://www.cost.eu/actions/CA15124
Network of European Bioimage Analysts: www.neubias.org
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Slide adapted from Christian Tischer

https://www.cost.eu/actions/CA15124
http://www.neubias.org
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Fiji: our open-source solution
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Schindelin,
Nature Methods, 
2012
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Typical analysis pipeline

5

Arganda-Carreras, 
I. & Andrey, P.,
Light Microscopy, 
2017
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Image Segmentation

6

• “Process of partitioning a digital 
image into multiple segments”.

• Typically used to locate objects 
and boundaries.
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Image Segmentation

• “Process of partitioning a digital 
image into multiple segments”.

• Typically used to locate objects 
and boundaries.

• More precisely, image segmentation 
is the process of assigning a label 
to every pixel in an image such that 
pixels with the same label share 
certain visual characteristics.
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Semantic
segmentation
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Image Segmentation

• “Process of partitioning a digital 
image into multiple segments”.

• Typically used to locate objects 
and boundaries.

• More precisely, image segmentation 
is the process of assigning a label 
to every pixel in an image such that 
pixels with the same label share 
certain visual characteristics.
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Instance
segmentation
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Segmentation methods
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Image
Segmentation

Methods

Thresholding

Region based
methods
(region

growing…)

Clustering
(k-means,

mean shift…)

Graph based
methods

(graph-cut…)

Shape based
methods (level

sets, active
contours…)

Morphological
methods

(Watershed)

Machine
learning based

methods

http://imagej.net/Category:Segmentation

http://imagej.net/Category:Segmentation


Machine learning based 
segmentation
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What is machine learning?
• Technological advances in the last decades have made possible 

to automate many tasks that required a significant amount of 
time and repetitive manual work.

• Now technology allows us to work with big data and automate 
tasks that are not simply mechanical but require a certain degree 
of intelligence.

• Some tasks are easy for humans but difficult for machines. For 
example, face recognition, has many challenges:

– Position, illumination, haircut…
• Some tasks are hard for humans due to the large amount of data 

to handle.
• Data mining and machine learning techniques have achieved 

great results in this direction, making intelligent systems an 
important part of research and business models.
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Image via www.vpnsrus.com
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Machine learning
• Subfield of computer science that "gives computers the ability to learn without being explicitly 

programmed" (Arthur Samuel, 1959).
• Assign labels to objects indicating their class.
• Objects represented by a set of measurements or features.
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• Subfield of computer science that "gives computers the ability to learn without being explicitly 
programmed" (Arthur Samuel, 1959).

• Assign labels to objects indicating their class.
• Objects represented by a set of measurements or features.

Machine learning
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• Subfield of computer science that "gives computers the ability to learn without being explicitly 
programmed" (Arthur Samuel, 1959).

• Assign labels to objects indicating their class.
• Objects represented by a set of measurements or features.

Machine learning

x1

x2
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Supervised vs unsupervised learning

Supervised Unsupervised

x1

x2

x1

x2
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Supervised vs unsupervised learning
• To which class belongs each new point?

Supervised Unsupervised

x1

x2

x1

x2
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Supervised vs unsupervised learning
• Supervised learning:

– Data is labeled.

– Target: build a model or classifier to automatically label novel data ⇒ training.

– If labels are not discrete ⇒ regression.

– Examples:

• Character or digit recognition (classification).

• Age estimation (regression).

• Unsupervised learning:

– Data without labels.

– Target: model data to discover groups ⇒ clustering. Age: 26.7
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Class, features and dataset
● In machine learning, each sample is represented by a feature vector:

● Features can be quantitative or qualitative.

● Supervised learning ⇒ predefined classes (labels).

○ A sample belongs (usually) to one class only.

○ Each class contains similar samples different to the samples of other classes.

○ Ex.: biopsy classification ⇒ 2 classes (tumorous - non-tumorous).

● Dataset:

○ Set of pairs sample-class (supervised)

○ Set of samples without class (unsupervised)
19
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Classification

• Classifier: function that relates samples to labels:

• Some classifiers have two steps:

– “Soft” decision

– “Hard” decision

• Training algorithm adjusts classifier parameters     to minimize a 

cost or error function.
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Classifier evaluation

• How do we evaluate the performance of a classifier?
• How do we compare classifiers?
• Confusion matrix:

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.

Total number of positive samples: P=TP+FN

Total number of negative samples: N=TN+FP

21

Prediction

u0 u1

Real
class

u0 TP FN

u1 FP TN
Groundtruth ⇒

⇐ Predicted labels
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Performance metrics
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True Positive Rate
(hit rate, recall, sensitivity)

TP/P Proportion of positive samples correctly classified

False Positive Rate
(False Alarm Rate)

FP/N
Proportion of negative samples incorrectly classified 

as positive

False Negative Rate FN/P
Proportion of positive samples incorrectly classified 

as negative

True Negative Rate
(specificity)

TN/N Proportion of negative samples correctly classified

Precision
(Positive Predictive Value)

TP/(TP+FP)
Proportion of samples classified as positive that are 

really positive

F1 Score
2 x precision x recall
/ (precision+recall)

Harmonic mean of precision and recall

Error Rate (FP+FN) / (P+N) Proportion of samples incorrectly classified

Accuracy (TP+TN) / (P+N) Proportion of samples correctly classified
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Classifier design

• How many samples we use to build the classifier?
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Classifier design

• How many samples we use to build the classifier?
• If we use all samples ⇒ overfitting

24



AI4Life Workshop - Deep Learning for Microscopy

Train and test

• Divide dataset in two sets:
– Train: to build the model (~66% of samples)

• Some models need a validation subset (~10% of training 
samples).

– Test: to evaluate the model (~33% of samples)

25

Train Test

Data

learning algorithm
classifier prediction

Validation
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k-Fold cross-validation

• Very common alternative.

• Divide dataset of N samples in k 
“equal” parts: 1 for test and k-1 
for train.

• Usual values of k: 5 or 10.

• Train/test k times and evaluate 
based on test labels

• Particular case: leave-one-out 
(N-1 for training and 1 for testing).
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Source: https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html
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Real
world
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Valid result?
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No
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Data
collection

Pre-processing and
feature extraction

Supervised learning



Shallow Machine Learning in 
ImageJ/Fiji 

Trainable Weka Segmentation
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Trainable segmentation basics

• Transform segmentation problem into pixel classification.

29
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Classification algorithms
• Support Vector Machines (SVM).
• Decision Trees / Random Forests.
• Artificial Neural Networks.

30

https://scikit-learn.org/

Slide courtesy: Martin Weigert, EPFL Lausanne

@martweig



What about deep learning?

31
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Linear classifiers: perceptron
• Perceptron (1956): Find a linear classifier f(x) such that

w: weights
b: bias
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Linear classifiers: perceptron
• Separating two classes A and B

– y = 1 if the example belongs to A
– y = 0 if the example belongs to B

• Perceptron algorithm:
–   At iteration k, we consider example x:

•  w(k) = w(k-1)   if x is correctly classified
•  w(k) = w(k-1) + (d-y) x    otherwise (d: 

desired output)
•  The algorithm stops once it finds a linear separation. 
•  It converges if and only if the examples are linearly 

separable.
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Failures, promises…
• The perceptron (PCP) is a linear machine, so it can 

learn the AND and OR predicates… but it cannot 
learn XOR

• Linearly separable problems are very unlikely when 
sample size >> sample dimension

• But a PCP with one hidden layer can solve XOR

• And a PCP with two hidden layers can (essentially) 
solve any classification or regression problem

• However, there were no algorithms to build (learn) 
them from a given sample

• This led to the first NN winter (1969) and a 
concentration of AI efforts in symbolic systems...

34

Source: K. Kawaguchi

http://wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/thesis.html
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Back in business
• We can summarize early work on PCPs by saying that

– The architecture was right

– But the training approaches were wrong

• Things change in 1986 with the book: Parallel Distributed Processing. Explorations in 

the Microstructure of Cognition: Psychological and Biological Models, J.L. 

McClelland, D.E. Rumelhart and the PDP Research Group (G. Hinton among them)

– Grand title, but learning becomes error minimization (i.e., moves from AI to 

optimization)

• Multilayer PCPs (MLPs) became highly flexible and very efficient non–linear 

regression and classification machines.
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Multi-layer perceptron architecture
• General organization:

– 1 input layer, 1 or more hidden layers, 1 output 
layer

– Each fully connected with feedforwad processing
• Many layered MLPs define a highly non–linear, 

weight–depending, transformation
• Learning’s goal: minimization of a suitable error 

function
• Gradient can be easily computed by backpropagation
• This went on strongly until the late 90’s when

– New relevant contributions decrease
– New competitors appear: Boosting, SVMs, 

Random Forest ⇒ Second Winter of NN.

36

http://cs231n.github.io/neural-networks-1/



AI4Life Workshop - Deep Learning for Microscopy

Neural Networks decline
• A nagging issue are deeper MLPs
• One hidden layer MLPs are enough for most applications
• But nobody knew how to train MLPs with three or more hidden layers
• One main obstacle was vanishing gradients: in a 5 layer MLP

From Glorot & Bengio, AISTATS 2010

• Gradients in the last (5–th) layer are nonzero but vanish as we go back towards the 
first layer

• Inputs cease to have any effect and training stalls
37
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Golden era: Deep Networks

• First breakthrough around 2007: deep MLP unsupervised pretraining using stacked RBMs 
(Hinton) or autoencoders (Bengio)

– Easier fine-tuning afterwards by standard back-propagation
• Floodgates opened: large nets with huge number of weights and new convolutional layers, 

regularizations, initializations or activations
– New mood: what was impossible before is now much easier and leads to better results and 

even major breakthroughs in significant problems
– New techniques appear ... that are not that different from the old ones

• 2012: the convolutional network AlexNet (Hinton group) wins the ImageNet challenge → the 
Deep Learning revolution starts.

• 2013: Google hires Geoff Hinton.
• 2014: Facebook hires Yann LeCun (father of the first convolutional network).
• 2018: Turing Award for Hinton, LeCun and Bengio.
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Convolutional and pooling layers
• Starting assumption: patterns organized in 

features having a one, two (or multi) intrinsic 

dimensional structure

• Basic processing: to apply a K x K convolutional 

filter w over an image patch xj  as yj = f (w * xj + b)

• An M1 x M2  input “image" X  becomes an (M1 - K 

+  1) x (M2 - K + 1)  output X’ = C(X)

• This is followed by a pooling transformation P  

over L x L patches of X’

–  Possible transforms: averages, max

39

From UFLDL Stanford tutorial

From computersciencewiki.org

http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/
https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
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Deep Convolutional Networks
• The previous steps are often combined in a Deep Convolutional NN with

– An initial number of convolutional layers, followed by
– A number of fully connected inner product layers and, finally
– A readout layer that yields the NN’s response

• A typical architecture for image processing can be

• Possibly with connections and weights in the millions

40

From Convolutional Neural Networks (LeNet) tutorial

http://deeplearning.net/tutorial/lenet.html
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Many computer vision applications

41
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Current situation in Bioimage analysis

[1] Chen et al., ISBI, 2016.
[2] Yoon et al. Front. in Comp. Neuro., 2017.
[3] Weigert et al., Nat. Methods, 2018.
[4] Nehme et al., Optica, 2018

Mitosis Detection [1]

42

3D Segmentation [2]

Context-aware image restoration [3]

Super-resolution [4]
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Effective deep learning architectures

When did it start in the field?
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O. Çiçek, et al., 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation, MICCAI 2016

O. Ronneberger, et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI 2015

User friendly libraries

F. Chollet, et al., https://keras.io 2015 Deep Learning toolbox, Matlab 2015
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Advantages of U-Net
• Image processing:

– Contracting path extracts 

high dimension features

⇒ abstract analysis.

– Expanding path refines the 

processing. 

• Data augmentation applied to 

medical image processing.

O. Ronneberger, et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, 
MICCAI 2015.
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What do you need?

Classification: the number of classes has to be determined and their description cannot be ambiguous

The problem to solve by machine learning techniques has to be well defined.

Segmentation: the result of any manual annotation when performed twice by an expert, should always coincide.

High enough quality of 
data.
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What do you need?
• To train your own model you need:

– Technological infrastructure.

• Graphics processing units (GPU).

• Cloud computing (Google Colab, Kaggle 

notebooks, Amazon).

– Data: Ground Truth (GT) ⇒ manual annotations 

supervised by experts.

• GT has to represent the real scenario of the 

problem.

• Large enough to train the model and evaluate it. 

NVIDIA Quadro P5000
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What do you need?
• Data augmentation.

• Patching

– Geometrical transformations

• Linear transformations (preserve shape) 

– Rotation

– Translation

• (!) Non-linear (elastic) transformations (shape changes)

– Zooming

– Shearing 

• (!) Add artifacts: noise

Patching 

Original patch RotationRotation + Shift

Linear transformations

ZoomOriginal patch Shearing

Non-linear transformations

NoisyOriginal image

Noising
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Resources

Python 
(Tensorflow, 

Keras, PyTorch)

Data annotation

Slicer Polygon-
RNN++

ImageJ/Fiji

Data repositories

Kaggle Cell tracking 
challenge

Deep learning software

Matlab C++ (Caffe)

User friendly software

ImageJ 
(U-Net, 
CARE, 

deepImageJ)

Cell profiler

48

Ilastik

ZeroCostDL4Mic /
DL4MicEverywhere

ImJoy

Zenodo

BiaPy

Napari

https://fiji.sc/
http://celltrackingchallenge.net/
http://celltrackingchallenge.net/
https://github.com/danifranco/BiaPy
https://napari.org/stable/
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Instance Segmentation Challenges!
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Wei et al., "MitoEM dataset: Large-scale 3D mitochondria instance 
segmentation from EM images", MICCAI  2020

Lin et al., "NucMM Dataset: 3D Neuronal Nuclei Instance Segmentation at 
Sub-Cubic Millimeter Scale", MICCAI  2021

Wei et al., "AxonEM Dataset: 3D Axon Instance Segmentation of Brain Cortical 
Regions", MICCAI  2021

https://mitoem.grand-challenge.org/
https://connectomics-bazaar.github.io/proj/nucMM/index.html
https://connectomics-bazaar.github.io/proj/AxonEM/index.html
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Do not miss Estibaliz’s talk this afternoon at 2pm!
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Current related lab projects
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BiaPy: BioImage Analysis Pipelines in Python

52

Daniel Franco-Barranco
(PhD student)

Instance segmentation

Detection

Class A
Class B

. . .
Class F

Classification

Semantic segmentation
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Do not miss Dani’s workshop this 
afternoon at 2:30pm!
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Wound healing modeling by video prediction

Given a set of initial frames, predict the next frames of a video
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Lenka Backovà
(PhD student, Biofisika)

Encoder Decoder

(2) Prediction based on 8 initial frames:

Ground truth Prediction

(1) Frame encoding
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Super-resolution deep learning for microscopy
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4×

100 nm

100 nm 

Ivan Hidalgo
(former Master student, 

EHU)
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Take home messages
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https://xkcd.com/1838/

• Machine / Deep Learning is spreading out in 
the field of Bioimage Analysis.

• Tons of applications if you have:
– 2D / 3D / ND images, videos…

• and need to do:
– Classification,
– detection / segmentation / tracking,
– super-resolution…

• Drawbacks:
– Generalization.
– Interpretability.
– Computing resources.
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Thank you for your attention!
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Slides credits and references
• Dr. Ulas Bagci, UCF, CAP5415-Computer Vision.
• Dr. Mubarak Shah, UCF, CAP5415-Computer Vision.
• Dr. Fadi Dornaika. Pattern Recognition master class, 2009.
• Conceptos y Métodos en Visión por Computador. Enrique Alegre, Gonzalo Pajares, Arturo de la 

Escalera. Capítulos 9-10.
• Erik Learned-Miller, University of Massachusetts, Amherst, CS370, Introduction to Computer 

Vision, “UNIT 3: Pattern Recognition and Classification.”.
• Selim Aksoy (Bilkent University), “Introduction to Pattern Recognition”, CS 551, Fall 2016.
• Deep Networks, J. Dorronsoro, EPS-IIC, UAM.
• Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford, cs231, lecture 11.
• Estibaliz Gómez-de-Mariscal, “Machine learning - Deep learning, Applications to BioImage 

analysis”, SPAOM2018.
• Arrate Muñoz-Barrutia, “deepImageJ, A user-friendly plugin to run deep learning models in 

ImageJ”, SPAOM2019.
• Estibaliz Gómez-de-Mariscal, “deepImageJ: bridging deep learning to ImageJ”, ISBI 2020.
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