model{ ### MAIN LOOP ### # loop through colonies for(n in 1:N) { # loop through years for(t in 5:(nYrs-1)) { # marine density dependence determined by SST log(a1[n,t]) <- al0 + SST_a1*SST[n,t] # recruitment either marine regulated (a2>a1) or terrestrially regulated (a1>a2) logit(r[n,t])<-100-max(a1[n,t],a2[n])*P[n,t] # fecundity determined by nsAT and prec logit(b[n,t])<-a0 + eps[t] + nsAT_b*nsAT[n,t] - nsAT_b2*(nsAT[n,t])^2 + prec_b*prec[n,t] # number of young y[n,t]<-sj*b[n,t-4]/2*P[n,t-4]*(aH^harvest[n,t-4]) # weight of redistribution w[n,t]<-P[n,t] # redistribution function W[n,t]<-w[n,t]/wtot[t] # number of recruits R[n,t]<-r[n,t]*((1-aI)*y[n,t]+aI*ytot[t]*W[n,t]) # COMMENT-out in future scenario model running lambda[n,t]<-sa*P[n,t]+R[n,t] # COMMENT-in accounting for HPAIocc in future scenario model running #lambda[n,t]<-HPAIocc[n,t]*sa*P[n,t]+HPAIs[n,t]*P[n,t]+R[n,t] # population at next time step P[n,t+1]~dpois(lambda[n,t] * h[n,t]) #overdispersion parameter h[n,t] ~ dgamma(theta,theta) # observed population at next time step Pd[n,t+1]~dnorm(P[n,t+1],1/(0.05*P[n,t+1]+1)^2) # marine carrying capacity per col per t K1[n,t]<-1/a1[n,t]*(100-log(rstar/(1-rstar))) } } for(t in 5:(nYrs-1)) { # total young ytot[t]<-sum(y[,t]) # total extant colonies wtot[t]<-sum(w[,t]) # total available recruits rtot[t]<-sum(R[,t]) } # introducing fec data # run though all fecundity observations for (i in 1:fec_obvs){ # no. fleglings determined by fecundity (b) at a certain colony nf at a cetain time tf # and number of nests fledg[i]~dbin(b[nf[i],tf[i]], nests[i]) } # equalise recruitment at t=4 for(n in 1:N) {R[n,4]<-1} # Population time series for each colony P1<-P[1,1:nYrs] P2<-P[2,1:nYrs] P3<-P[3,1:nYrs] P4<-P[4,1:nYrs] P5<-P[5,1:nYrs] P6<-P[6,1:nYrs] P7<-P[7,1:nYrs] P8<-P[8,1:nYrs] P9<-P[9,1:nYrs] P10<-P[10,1:nYrs] P11<-P[11,1:nYrs] P12<-P[12,1:nYrs] P13<-P[13,1:nYrs] P14<-P[14,1:nYrs] P15<-P[15,1:nYrs] P16<-P[16,1:nYrs] P17<-P[17,1:nYrs] P18<-P[18,1:nYrs] P19<-P[19,1:nYrs] P20<-P[20,1:nYrs] P21<-P[21,1:nYrs] P22<-P[22,1:nYrs] P23<-P[23,1:nYrs] P24<-P[24,1:nYrs] P25<-P[25,1:nYrs] P26<-P[26,1:nYrs] P27<-P[27,1:nYrs] P28<-P[28,1:nYrs] P29<-P[29,1:nYrs] P30<-P[30,1:nYrs] P31<-P[31,1:nYrs] P32<-P[32,1:nYrs] P33<-P[33,1:nYrs] P34<-P[34,1:nYrs] P35<-P[35,1:nYrs] P36<-P[36,1:nYrs] P37<-P[37,1:nYrs] P38<-P[38,1:nYrs] P39<-P[39,1:nYrs] P40<-P[40,1:nYrs] P41<-P[41,1:nYrs] P42<-P[42,1:nYrs] P43<-P[43,1:nYrs] P44<-P[44,1:nYrs] P45<-P[45,1:nYrs] P46<-P[46,1:nYrs] P47<-P[47,1:nYrs] P48<-P[48,1:nYrs] P49<-P[49,1:nYrs] P50<-P[50,1:nYrs] P51<-P[51,1:nYrs] P52<-P[52,1:nYrs] P53<-P[53,1:nYrs] # Marine carrying capacity time series for each colony K11<-K1[1,5:(nYrs-1)] K12<-K1[2,5:(nYrs-1)] K13<-K1[3,5:(nYrs-1)] K14<-K1[4,5:(nYrs-1)] K15<-K1[5,5:(nYrs-1)] K16<-K1[6,5:(nYrs-1)] K17<-K1[7,5:(nYrs-1)] K18<-K1[8,5:(nYrs-1)] K19<-K1[9,5:(nYrs-1)] K110<-K1[10,5:(nYrs-1)] K111<-K1[11,5:(nYrs-1)] K112<-K1[12,5:(nYrs-1)] K113<-K1[13,5:(nYrs-1)] K114<-K1[14,5:(nYrs-1)] K115<-K1[15,5:(nYrs-1)] K116<-K1[16,5:(nYrs-1)] K117<-K1[17,5:(nYrs-1)] K118<-K1[18,5:(nYrs-1)] K119<-K1[19,5:(nYrs-1)] K120<-K1[20,5:(nYrs-1)] K121<-K1[21,5:(nYrs-1)] K122<-K1[22,5:(nYrs-1)] K123<-K1[23,5:(nYrs-1)] K124<-K1[24,5:(nYrs-1)] K125<-K1[25,5:(nYrs-1)] K126<-K1[26,5:(nYrs-1)] K127<-K1[27,5:(nYrs-1)] K128<-K1[28,5:(nYrs-1)] K129<-K1[29,5:(nYrs-1)] K130<-K1[30,5:(nYrs-1)] K131<-K1[31,5:(nYrs-1)] K132<-K1[32,5:(nYrs-1)] K133<-K1[33,5:(nYrs-1)] K134<-K1[34,5:(nYrs-1)] K135<-K1[35,5:(nYrs-1)] K136<-K1[36,5:(nYrs-1)] K137<-K1[37,5:(nYrs-1)] K138<-K1[38,5:(nYrs-1)] K139<-K1[39,5:(nYrs-1)] K140<-K1[40,5:(nYrs-1)] K141<-K1[41,5:(nYrs-1)] K142<-K1[42,5:(nYrs-1)] K143<-K1[43,5:(nYrs-1)] K144<-K1[44,5:(nYrs-1)] K145<-K1[45,5:(nYrs-1)] K146<-K1[46,5:(nYrs-1)] K147<-K1[47,5:(nYrs-1)] K148<-K1[48,5:(nYrs-1)] K149<-K1[49,5:(nYrs-1)] K150<-K1[50,5:(nYrs-1)] K151<-K1[51,5:(nYrs-1)] K152<-K1[52,5:(nYrs-1)] K153<-K1[53,5:(nYrs-1)] ### PRIORS ### # adult survival sa0~dbeta(12,12) samax<-0.918+(2*0.023) samin<-0.918-(2*0.023) sa<-samin+sa0*(samax-samin) # juvenile survival sj0~dbeta(12,12) sjmax<-0.279+(2*0.05) sjmin<-0.279-(2*0.05) sj<-sjmin+sj0*(sjmax-sjmin) # define priors for HPAI matrix (for colonies wher HPAI impact not known) # COMMENT-in for running future scenario model #HPAIs[1,123]~dunif(0.455,samax) #HPAIs[2,123]~dunif(0.455,samax) #HPAIs[12,123]~dunif(0.455,samax) #HPAIs[15,123]~dunif(0.455,samax) #HPAIs[19,123]~dunif(0.455,samax) #HPAIs[23,123]~dunif(0.455,samax) #HPAIs[38,123]~dunif(0.455,samax) #HPAIs[47,123]~dunif(0.455,samax) #HPAIs[49,123]~dunif(0.455,samax) #HPAIs[50,123]~dunif(0.455,samax) # immigration prior aI0~dbeta(12,12) aImax<-0.5 aImin<-0.3 aI<-aImin+aI0*(aImax-aImin) # harvest aH~dbeta(1,1) # overdispersion prios theta <- max(10000-theta0,1000) theta0 ~ dexp(1/200) # COVARIATE PRIORS prec_b~dnorm(0,1) # prior for prec in b (fec) nsAT_b~dgamma(1,1) # prior for linear nsAT in b (fec) nsAT_b2~dgamma(1,1) # prior for non-linear nsAT in b (fec) SST_a1~dnorm(0,1) # prior for SST in a1 (fec) # Initialise first 5 years of model for(n in 1:N){ for (t in 1:4){ y[n,t]~dunif(0,5000) logit(b[n,t])<-a0 + eps[t] w[n,t]<-min(1,P[n,t]) } } for (n in 1:N){ for (t in 1:5){ P[n,t]~dunif(0,5000) Pd[n,t]~dnorm(P[n,t],1/(0.05*P[n,t]+1)^2) } } # intercept of density dependence (a1) # mean 0.05, sd 0.02 a10~dgamma(6.25,125) al0<-log(a10) # intercept of fecundity a0~dnorm(0.84,1) # baseline fecundity logit(bstar)<-a0 # define constant rstar<-(1-sa)/sj*bstar # priors for terrestrial carrying capacity and density dependence for(n in 1:N) { K0[n]~dbeta(9.2,13.8) Kmax[n]<-1.2*cc[n] Kmin[n]<-0.8*cc[n] K[n]<-Kmin[n]+K0[n]*(Kmax[n]-Kmin[n]) a2[n]<-1/K[n]*(100-log(rstar/(1-rstar))) } # stochastic annual fecundity fluctuations in each year for(t in 1:(nYrs)) { eps[t]~dnorm(0,preceps) } # precision of eps preceps~dgamma(10,1) #inits# a0 #data# nYrs,N,Pd,harvest, cc, fledg, nests, nf, tf, fec_obvs, SST, prec, nsAT #extra data needed for running future scenarios model: # HPAIocc, HPAIs #monitor model coefficients historical #monitor# a0, al0, a2, aH, aI, sa, sj, K, theta, preceps, nsAT_b, nsAT_b2, prec_b, SST_a1 #monitor populations sizes #monitor# P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19,P20,P21,P22,P23,P24,P25,P26,P27,P28,P29,P30,P31,P32,P33,P34,P35,P36,P37,P38,P39,P40,P41,P42,P43,P44,P45,P46,P47,P48,P49,P50,P51,P52,P53 #monitor carrying capacities #monitor# K11,K12,K13,K14,K15,K16,K17,K18,K19,K110,K111,K112,K113,K114,K115,K116,K117,K118,K119,K120,K121,K122,K123,K124,K125,K126,K127,K128,K129,K130,K131,K132,K133,K134,K135,K136,K137,K138,K139,K140,K141,K142,K143,K144,K145,K146,K147,K148,K149,K150,K151,K152,K153 }