

Fig. S1. Area distribution of the evaluated parcel for each study region. Area here is presented in (km²), which is equal to 10 hectares.

Fig. S2. Distribution of the number of mowing events over the annotation process and temporal distribution of mowing events assigned in 6-day buckets based on the closest reference date.

Fig. S3. Cloud coverage distribution of the pixel time series for each study region and overall. Cloud coverage for a time series is defined as the ratio of cloudy Sentinel-2 measurements to all available measurements.

In **Fig. S4** the MAE distributions of the hidden timestamps is analyzed on each region. Here, we observe relatively small errors between the ground truth and the SF predictions, which outperforms the others methods. More specifically, in Region 2 and Region 4 we observe the smallest MAE errors with mean value of 0.033, while LI and AI have around 0.039. In Region 1 the average MAE is approximately close to 0.039, while for the rest interpolation methodologies is over 0.045. Worst results are observed in Regions 5 and 6 with mean MAE of SF approach to be roughly 0.042, which is close to the interpolation methodologies, approximately a bit higher 0.044. This can be attributed, to the smaller training sample from these regions, in comparison to the two first. However, in all regions the standard deviation acquired by SF is substantially smaller.

Fig. S4. The upper bar plot displays the frequency of each region, while the lower box plot shows the relevant values of MAE of masked NDVI values for the different interpolation methods on each region respectively.

In **Fig. S5** the mean and standard deviation of MAE, as well as the frequency of NDVI drops, is analyzed for each inference date. The figure illustrates the percentage of pixels that experienced at least a 0.05 drop in NDVI value on each date. Sudden drops in NDVI frequently occur from early June to mid-August, indicating potential mowing or grazing events in Lithuanian grasslands during the summer months. Predicting steep NDVI drops is more challenging, and as a result, the SF model's performance is poorer in such cases.

Fig. S5. The upper bar plot displays the frequency of NDVI drops (< 0.05), while the lower box plot shows the relevant values of MAE on each date.

In **Fig. S6**, we compare the performance of the four different temporal interpolation methods under different cloud coverage scenarios. The analysis of the respective results under the different cloud coverage scenarios shows that, overall, SF outperforms the other methods, especially in cases of high cloud coverage. For example, in cases with less than 40% cloud coverage, all methods perform similarly, with SF yielding slightly better results with a MAE of 0.035, while AI, the second-best method, has a MAE of 0.041. However, as the number of cloudy timestamps in the time series increases, the MAE also increases for all methods. Specifically, when comparing the errors between the lowest and highest cloud coverage in the time series, there is an increase of 0.023 (from 0.034 to 0.057) in the mean value, while the standard deviation remains stable around 0.025 for the SF model. In contrast, for AI, the best-performing method among the other three, the mean value increases by 0.035 (from 0.04 to 0.075), and the standard deviation increases by 0.011 (from 0.027 to 0.038). These findings demonstrate the superior performance of SF, particularly in scenarios where the cloud coverage is high. In countries with extensive cloud coverage, long gaps in Sentinel-2 acquisitions can occur, sometimes lasting for months. Most interpolation methods have proven effective for short-term cases, which are the most common situations, but their reliability decreases as gaps grow larger.

Moreover, the distribution of MAE for different length of consecutive missing values (see **Fig. S7**) highlighted that the SF model have relatively stable results, even with the absence of ten consecutive NDVI images. In the worst-case scenarios, the average MAE of SF fluctuates around 0.05 with a small standard deviation. Conversely, interpolation methods while performing well in small gaps (size less than 7) with an average MAE less than 0.04, similar to SF, they struggle to predict extreme cases with over seven missing values in a row. In these cases, they usually underperform, with MAE values exceeding 0.2 in several cases.

Fig. S6. The upper histogram shows the frequency of each cloud coverage scenario while the low box plot shows a comparison of the MAE for the different interpolation methods and the different cloud coverage scenarios.

Fig. S7. The upper histogram shows the frequency of the number of consecutive missing values in the grasslands' NDVI time series while the low box plot shows a comparison of the MAE for the different interpolation methods and the different number of consecutive missing values (gap size).

Fig. S8. NDVI reconstruction example related to a hidden mowing event. Upper box shows the actual RGB images captured from S2. In the lower box, blue dots show input NDVI values, the green line represents the SF predictions, and the orange line shows the actual.

Table S1

Recall and precision for grassland event detection based on start event date.

Algorithm	Interpolation	tolerance = 3 days		tolerance = 6 days		tolerand	e = 9 days	tolerance = 12 days	
		Recall	Precision	Recall	Precision	Recall	Precision	Recall	Precision
MDA I	-	0.556	0.502	0.663	0.599	0.705	0.637	0.755	0.717
	LI	0.500	0.556	0.627	0.697	0.657	0.731	0.719	0.800
	AI	0.502	0.566	0.635	0.716	0.655	0.750	0.712	0.803
	QI	0.413	0.439	0.631	0.672	0.687	0.730	0.732	0.800
	SF	0.507	0.649	0.662	0.847	0.703	0.899	0.749	0.928
MDA II	-	0.547	0.524	0.654	0.627	0.695	0.666	0.762	0.730
	LI	0.473	0.628	0.577	0.766	0.601	0.798	0.635	0.843
	AI	0.499	0.614	0.636	0.783	0.658	0.811	0.696	0.857
	QI	0.458	0.556	0.642	0.780	0.670	0.815	0.707	0.859
	SF	0.509	0.610	0.692	0.830	0.736	0.882	0.770	0.923

Table S2

Recall and precision for grassland event detection based on end event date.

Algorithm	Interpolation	tolerance = 3 days		tolerance = 6 days		tolerand	ce = 9 days	tolerance = 12 days	
		Recall	Precision	Recall	Precision	Recall	Precision	Recall	Precision
MDA I	-	0.486	0.439	0.677	0.611	0.722	0.651	0.781	0.726
	LI	0.505	0.561	0.634	0.705	0.665	0.740	0.731	0.813
	AI	0.507	0.571	0.650	0.733	0.678	0.765	0.727	0.819
	QI	0.451	0.479	0.669	0.729	0.714	0.759	0.753	0.811
	SF	0.479	0.613	0.669	0.836	0.717	0.881	0.777	0.926
MDA II	-	0.498	0.477	0.695	0.666	0.727	0.706	0.759	0.785
	LI	0.480	0.637	0.590	0.783	0.614	0.815	0.640	0.849
	AI	0.500	0.616	0.656	0.808	0.682	0.840	0.700	0.861
	QI	0.492	0.598	0.673	0.817	0.695	0.845	0.709	0.862
	SF	0.513	0.615	0.695	0.824	0.729	0.866	0.764	0.916

Table S3

Recall and precision for grassland event detection based on median event date.

Algorithm	Interpolation	tolerance = 3 days		tolerance = 6 days		tolerand	ce = 9 days	tolerance = 12 days	
		Recall	Precision	Recall	Precision	Recall	Precision	Recall	Precision
MDA I	-	0.559	0.504	0.665	0.601	0.723	0.653	0.753	0.698
	LI	0.519	0.577	0.624	0.695	0.668	0.743	0.725	0.807
	AI	0.519	0.585	0.638	0.720	0.680	0.766	0.718	0.810
	QI	0.432	0.459	0.653	0.694	0.707	0.752	0.737	0.805
	SF	0.545	0.671	0.675	0.863	0.715	0.914	0.753	0.934
MDA II	-	0.548	0.525	0.660	0.632	0.711	0.682	0.769	0.737
	LI	0.491	0.651	0.580	0.769	0.614	0.815	0.638	0.847
	AI	0.522	0.643	0.640	0.788	0.676	0.832	0.702	0.864
	QI	0.479	0.582	0.651	0.792	0.687	0.835	0.710	0.863
	SF	0.533	0.639	0.701	0.840	0.749	0.897	0.773	0.927

Table S4

MAE on masked inference NDVI timestamps of the SF model for different combinations of training regions.

Training Regions	Region 1	Region 2	Region 3	Region 4	Region 5	Region 6	Total	Training Pixels
Region 1	0.0396	0.0376	0.0514	0.0410	0.0461	0.0481	0.0413	408,132
Region 2	0.0480	0.0320	0.0506	0.0412	0.0479	0.0506	0.0414	184,452
Region 3	0.0524	0.0429	0.0423	0.0437	0.0491	0.0547	0.0466	68,18
Region 4	0.0495	0.0398	0.0521	0.0336	0.0478	0.0508	0.0439	158,419
Region 5	0.0578	0.0452	0.0590	0.0475	0.0444	0.0553	0.0506	49,377
Region 6	0.0528	0.0404	0.0608	0.0418	0.0501	0.0467	0.0467	114,742
(Region 1, Region 2)	0.0397	0.0316	0.0487	0.0394	0.0454	0.0466	0.0383	592,584
(Region 1, Region 3)	0.0411	0.0378	0.0442	0.0419	0.0460	0.0479	0.0411	476,312
(Region 1, Region 4)	0.0392	0.0351	0.0446	0.0320	0.0443	0.0452	0.0381	566,551
(Region 1, Region 5)	0.0400	0.0375	0.0497	0.0420	0.0430	0.0498	0.0412	457,509

(Region 1, Region 6)	0.0404	0.0366	0.0500	0.0390	0.0462	0.0440	0.0404	522,874
(Region 2, Region 3)	0.0484	0.0323	0.0408	0.0395	0.0443	0.0491	0.0400	252,632
(Region 2, Region 4)	0.0465	0.0320	0.0466	0.0336	0.0437	0.0459	0.0390	342,871
(Region 2, Region 5)	0.0482	0.0315	0.0475	0.0413	0.0405	0.0471	0.0402	233,829
(Region 2, Region 6)	0.0471	0.0312	0.0486	0.0374	0.0435	0.0419	0.0392	299,194
(Region 3, Region 4)	0.0473	0.0362	0.0400	0.0338	0.0448	0.0480	0.0404	226,599
(Region 3, Region 5)	0.0537	0.0441	0.0412	0.0435	0.0429	0.0506	0.0464	117,557
(Region 3, Region 6)	0.0497	0.0393	0.0408	0.0404	0.0448	0.0439	0.0428	182,922
(Region 4, Region 5)	0.0496	0.0371	0.0495	0.0341	0.0419	0.0490	0.0422	207,796
(Region 4, Region 6)	0.0482	0.0376	0.0483	0.0332	0.0472	0.0444	0.0418	273,161
(Region 5, Region 6)	0.0506	0.0398	0.0523	0.0418	0.0427	0.0444	0.0444	164,119
(Region 1, Region 2, Region 3)	0.0398	0.0321	0.0416	0.0389	0.0435	0.0455	0.0376	660,764
(Region 1, Region 2, Region 4)	0.0407	0.0324	0.0453	0.0329	0.0463	0.0467	0.0378	751,003
(Region 1, Region 2, Region 5)	0.0404	0.0319	0.0475	0.0396	0.0411	0.0459	0.0382	641961
(Region 1, Region 2, Region 6)	0.0390	0.0317	0.0478	0.0375	0.0453	0.0430	0.0376	707,326
(Region 1, Region 3, Region 4)	0.0404	0.0360	0.0421	0.0330	0.0438	0.0460	0.0386	634,731
(Region 1, Region 3, Region 5)	0.0397	0.0363	0.0411	0.0387	0.0416	0.0469	0.0391	525,689
(Region 1, Region 3, Region 6)	0.0399	0.0366	0.0406	0.0370	0.0441	0.0433	0.0389	591,054
(Region 1, Region 4, Region 5)	0.0394	0.0362	0.0420	0.0321	0.0389	0.0448	0.0379	615,928
(Region 1, Region 4, Region 6)	0.0390	0.0353	0.0454	0.0324	0.0434	0.0414	0.0379	681,293
(Region 1, Region 5, Region 6)	0.0412	0.0365	0.0488	0.0393	0.0436	0.0434	0.0403	572,251
(Region 2, Region 3, Region 4)	0.0497	0.0336	0.0426	0.0344	0.0455	0.0494	0.0405	411,051
(Region 2, Region 3, Region 5)	0.0487	0.0321	0.0403	0.0392	0.0409	0.0477	0.0396	302,009
(Region 2, Region 3, Region 6)	0.0476	0.0314	0.0393	0.0375	0.0420	0.0420	0.0384	367,374
(Region 2, Region 4, Region 5)	0.0467	0.0320	0.0468	0.0346	0.0422	0.0461	0.0391	392,248
(Region 2, Region 4, Region 6)	0.0487	0.0331	0.0457	0.0336	0.0444	0.0430	0.0396	457,613
(Region 2, Region 5, Region 6)	0.0463	0.0317	0.0468	0.0384	0.0400	0.0425	0.0389	348,571
(Region 3, Region 4, Region 5)	0.0480	0.0363	0.0398	0.0335	0.0398	0.0449	0.0400	275,976
(Region 3, Region 4, Region 6)	0.0466	0.0356	0.0421	0.0325	0.0442	0.0433	0.0397	341,341
(Region 3, Region 5, Region 6)	0.0513	0.0387	0.0416	0.0394	0.0419	0.0442	0.0427	232,299
(Region 4, Region 5, Region 6)	0.0478	0.0364	0.0477	0.0341	0.0405	0.0433	0.0407	322,538
Total	0.0456	0.0357	0.0459	0.0376	0.0439	0.0463	-	-
Linear Interpolation (All Regions)	0.0498	0.0403	0.0466	0.0427	0.0471	0.0465	0.0442	-
Sentinel-1/2 Fusion (All Regions)	0.0402	0.0319	0.0408	0.0326	0.0416	0.0432	0.0364	983,302

Table S5

Mowing detection performance (i.e., recall, precision and f1-score) calculated for different cloud coverage percentages (ccp) for the different mowing detection algorithms (MDA). The groups were divided using the mean ($\mu \simeq 0.4$) and standard deviation ($\sigma \simeq 0.1$) values of the cloud coverage distribution, which resembled a normal distribution.

Metric	Interpolation	ccp < μ – σ		μ − σ ≤ ccp < μ		μ ≤ ccp < μ + σ		ccp ≥ μ + σ	
		MDA I	MDA II	MDA I	MDA II	MDA I	MDA II	MDA I	MDA II
Recall	LI	0.740	0.690	0.737	0.632	0.707	0.633	0.701	0.608
	AI	0.731	0.709	0.721	0.691	0.705	0.709	0.699	0.671
	QI	0.729	0.714	0.711	0.721	0.758	0.721	0.721	0.667
	SF	0.787	0.789	0.745	0.755	0.747	0.789	0.735	0.754

Precision	LI	0.794	0.784	0.782	0.845	0.829	0.854	0.777	0.868
	AI	0.800	0.763	0.797	0.842	0.827	0.905	0.770	0.858
	QI	0.796	0.792	0.800	0.835	0.805	0.891	0.808	0.870
	SF	0.824	0.813	0.924	0.900	0.975	0.965	0.92	0.961
F1-Score	LI	0.766	0.734	0.759	0.723	0.763	0.727	0.737	0.715
	AI	0.764	0.735	0.757	0.759	0.761	0.795	0.733	0.753
	QI	0.761	0.751	0.753	0.774	0.781	0.797	0.762	0.755
	SF	0.805	0.801	0.825	0.821	0.846	0.868	0.817	0.845
Support		101		252		2	91	159	