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A Supplementary text

A.1 Solving for ω in the M-step

Here we show the algorithm to solve ω in the first round of MD-Cat where we add a constraint on ω so that
its average is a constant µ. We note that the optimization problem in the second round is simpler and can
be solved using a similar algorithm.

A.1.1 The optimization problem

Recall that we use block coordinate descent to solve the M-step of MD-Cat. In each iteration, if we let τ
fixed, then the optimization problem is reduced into the following:

P : min
ω

N∑
i=1

k∑
j=1

qij

b̂i
(b̂i − ωjτi)

2 (S1)

such that ω ≥ ϵ and
∑k

j=1 ω = kµ, where ϵ and µ are constants and 0 ≤ ϵ < µ. It is trivial to see that the
optimization problem P is convex. Therefore, we can find the global optimal ω∗ of P using the active-set
method [1] as detailed below. In addition, thanks to the simple weighted least-square form of the objective
function, below we show that each iteration of our active-set algorithm can be solved in linear time, which
is O(N + k).

A.1.2 Overview of the active-set method

Recall that a feasible point of an optimization problem is a point that satisfies all the problem’s constraints.
If ω(i) is a feasible point of P, then its active-set A(i) is defined as:

A(i) = {j|ω(i)
j = ϵ} (S2)

Starting with a feasible point ω(1) and its active-set A(1), the active-set algorithm repeat the following
procedure in each iteration (i) until the optimal point is found:

• Solve the equality-constraint problem P(i) defined by the active-set A(i) (the formal definition of P(i)

will be shown later).

• Use ω(i) and the optimal point ω∗(i) of P(i) to find a new feasible point ω(i+1) that is closer to the
optimal point of P than ω(i).

• Compute the active-set A(i+1) of ω(i+1).

• Replace ω(i) with ω(i+1) and A(i) with A(i+1), then repeat the procedure.

A.1.3 The subproblem P(i) and the Lagrange method

In iteration (i) of the active-set method, we define and solve the following equality-constraint optimization
problem:

P(i) : min
ω

N∑
i=1

k∑
j=1

qij

b̂i
(b̂i − ωjτi)

2 (S3)

such that ωj = ϵ,∀j ∈ A(i) and
∑k

j=1 ω = kµ.

P(i) can be solved analytically by introducing Lagrange multipliers:

L =

N∑
i=1

k∑
j=1

qij

b̂i
(b̂i − ωjτi)

2 − η

 k∑
j=1

ωj − kµ

− ∑
j∈A(i)

λj(ωj − ϵ), (S4)
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Algorithm 1 The Lagrange method to solve a subproblem P(i) defined by the active set A(i)

function SolveLagrange(A(i))
ω ← [] ▷ initialize to an empty list
λ← {} ▷ initialize to an empty dictionary
compute η using Eq. S7
for j ∈ [k] do

if j ∈ A(i) then
compute λj using Eq. S8
λ[j]← λj

ωj ← ϵ
else:

compute ωj using Eq. S6

append ωj to ω

return ω, η, λ

where η is the Lagrange multiplier of the constraint
∑k

j=1 ω = kµ and each λj is the Lagrange multiplier
of the constraint ωj = ϵ. We will use λ to represent the vector containing all these Lagrange multipliers.
Because P(i) is convex, L has a unique critical point which also gives the unique solution to P(i). We have:

∂L

∂ωj
=

N∑
i=1

(
2qijτi

b̂i
(ωjτi − b̂i)

)
− η − λjIj∈A(i) , (S5)

where I is the indicator function. We can find the critical point of L by setting its partial derivatives with
respect to each ωj and λj to 0. Equivalently, we set ∂L

∂ωj
to 0 and use the original constraints ωj = ϵ,∀j ∈ A(i)

and
∑k

j=1 ω = kµ to form a system of equations on ω and λ. Below we show how to solve this system of
equations.

Let ω∗, η∗, and λ∗ denote the critical point of L. If j ∈ A(i) then ω∗
j = ϵ. Otherwise, ω∗

j can be solved

by setting ∂L
∂ωj

to 0. Thus, we have

ω∗
j =

{
ϵ j ∈ A(i)

aj

cj
+ η∗

kcj
j /∈ A(i),

(S6)

where aj = 2
∑N

i=1 qijτi and cj = 2
∑N

i=1
qijτ

2
i

b̂i
. Substitute this equation to the constraint

∑k
j=1 ω

∗
j = kµ

and solve for η∗, we have:

η∗ =
k2µ− k

∑k
j=1

aj

cj
− kϵ|A(i)|∑k

j=1
1
cj

, (S7)

where |A(i)| denotes the cardinality of A(i). Next, substitute ω∗
j = ϵ to Eq. S5 and set ∂L

∂ωj
to 0, we can solve

for each λ∗
j where j ∈ A(i):

λ∗
j = cjϵ−

η∗

k
− aj (S8)

Substitute η∗ in Eq. S7 to Eq. S8 and Eq. S6, we obtain the analytical solution to all λ∗
j and ω∗

j . Obviously,
this analytical solution can be computed in O(N + k), as shown in Algorithm 1.

A.1.4 Computing ω(i+1) and A(i+1)

Let ω(i) and A(i) denote the feasible point and its active-set found in iteration (i) of the active-set algorithm
and let ω∗(i) denote the optimal point of P(i), η∗ and λ∗(i) denote its optimal Lagrange multipliers. Depending
on the characteristics of ω∗(i) and λ∗(i), we can find ω(i) and A(i) as follows.
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Case 1: ω∗(i) is feasible to P and λ∗(i) ≥ 0 In this case, ω∗(i) is also the optimal point of P, according
to the KKT condition. We simple return ω∗(i).

Case 2: ω∗(i) is feasible to P and ∃λ∗(i)
j < 0 In this case, set ω∗(i+1) to ω∗(i) and find the constraint j

that has the most negative λ
∗(i)
j and remove it from A(i) to get A(i+1) (i.e. relax the “useless” constraint).

Case 3: ω∗(i) is infeasible to P In this case, we search for a new feasible point ω(i+1) that is closer to
the optimum and update the active-set. To this purpose, we start from the previous feasible point ω(i) and
move it as close as possible to ω∗(i) on the direction d = ω∗(i) − ω(i) such that the new point is still feasible.
In other words, we need to find the largest number α ∈ [0, 1] such that

ω
(i)
j + α(ω

∗(i)
j − ω

(i)
j ) ≥ ϵ,∀j ∈ A(i) (S9)

Let V = {j|ω∗(i)
j < ϵ} denote the violated set of ω∗(i). Because ω(i) is feasible, it is easy to see that Eq. S9

is always satisfied for all j /∈ V . Thus, to find α we only need to satisfy Eq. S9 for all j in the violated set
V . Now we have two sub-cases:

• If there exists j ∈ V such that ω
(i)
j = ϵ, then Eq. S9 is satisfied only if α(ω

∗(i)
j −ω

(i)
j ) ≥ 0. On the other

hand, because j ∈ V and ω(i) is feasible, we have ω
∗(i)
j < ϵ ≤ ω

(i)
j =⇒ ω

∗(i)
j − ω

(i)
j < 0. Therefore,

Eq. S9 is satisfied only if α = 0. Thus, in this case we set ω(i+1) = ω(i) and add the constraint j into
A(i) to obtain A(i+1).

• Otherwise, let ∆j =
ω

∗(i)
j −ϵ

ω
(i)
j −ϵ

for all j ∈ V . After rewriting Eq. S9 and substituting ∆j to it, we get the

following condition: α ≤ 1
1−∆j

for all j ∈ V , or equivalently, α ≤ minj∈V
1

1−∆j
= 1

1−∆p
where ∆p is

the minimum of all ∆j . Thus, we set α = 1
1−∆p

, ω(i+1) = ω(i) + αd, and add p into A(i) to obtain

A(i+1).

The active-set algorithm described in this section is summarized in Algorithm 2.

A.2 Convergence of the EM algorithm

Recall that in the M-step, we need to find τ ≥ 0 and ω ≥ ϵ that satisfy Ψ and maximize the following
function:

g(τ, ω; q) =
∑N

i=1

∑k
j=1 qij log f(b̂i|ωj , τi), (S10)

where f denote the density function of the Gaussian model for branch estimation uncertainty, as described
in the main text.

Assume that the log-likelihood function l(τ, ω) has a maximum value. At each iteration (h) of the
algorithm, let q(h) denote the posterior computed in the E-step, τ(h), ω(h) and τ(h)+1, ω(h+1) denote the
solution found before and after M-step. Then we claim the following:

Claim 1. If g(τ (h+1), ω(h+1); q(h)) ≥ g(τ (h), ω(h); q(h)), then l(τ (h+1), ω(h+1)) ≥ l(τ (h), ω(h))

Proof. Let C =
∑

i,j qij log (kq
(h)
ij ). Subtracting C from both sides of the inequality g(τ (h+1), ω(h+1); q(h)) ≥

g(τ (h), ω(h); q(h)), we have:

N∑
i=1

k∑
j=1

q
(h)
ij log

f(b̂i|ω(h+1)
j , τ

(h+1)
i )

kq
(h)
ij

≥
N∑
i=1

k∑
j=1

q
(h)
ij log

f(b̂i|ω(h)
j , τ

(h)
i )

kq
(h)
ij

(S11)

Recall that q
(h)
ij =

f(b̂i|ω(h)
j ,τ

(h)
i )∑k

m=1 f(b̂i|ω(h)
m ,τ

(h)
i )

and
∑

j q
(h)
ij = 1. Therefore, we can rewrite the right hand side (RHS)

of Eq. S11 as follows

RHS =
∑N

i=1

∑k
j=1 q

(h)
ij log

[
1
k

∑k
m=1 f(b̂i|ω

(h)
m , τ

(h)
i

]
=

∑N
i=1 log

[
1
k

∑k
m=1 f(b̂i|ω

(h)
m , τ

(h)
i

]∑k
j=1 q

(h)
ij

=
∑N

i=1 log
[
1
k

∑k
m=1 f(b̂i|ω

(h)
m , τ

(h)
i )

]
= l(τ (h), ω(h))

(S12)
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Algorithm 2 The active-set method to solve the problem P defined in Eq. S1

function SolveOmega(τ, b̂, µ, ϵ, k)

ω
(1)
j ← µ for all j = 1..k ▷ feasible initital point

A(1) ← ∅
for i = 1 to MaxNumberIterations do

ω∗(i), η∗(i), λ∗(i) ← SOLVELAGRANGE(A(i)) ▷ See Algorithm. 1
if ω∗(i) is feasible then

if λ
∗(i)
j ≥ 0 for every j ∈ A(i) then

return ω∗(i) ▷ satisfies KKT =⇒ feasible and optimal
else

λ
∗(i)
h ← minj∈A(i) λ

∗(i)
j

remove h from A(i) to get A(i+1)

else
V = {j|ω∗(i)

j < ϵ} ▷ the violated set of ω∗(i)

if there exists j ∈ V s.t. ω
(i)
j = ϵ then

add j into A(i) to get A(i+1)

ω(i+1) ← ω(i)

else

∆j ←
ω

∗(i)
j −ϵ

ω
(i)
j −ϵ

for all j ∈ V

∆p ← minj∈V ∆j

α← 1
1−∆p

ω(i+1) ← ω(i) + α(ω∗(i) − ω(i)) ▷ feasible and “more optimal”
add p into A(i) to get A(i+1)

return the last ω(i)

On the other hand, applying Jensen’s inequality, we get an upper bound for the left hand side (LHS) of
Eq. S11:

LHS ≤
∑N

i=1 log

[∑k
j=1 q

(h)
ij

f(b̂i|ω(h+1)
j ,τ

(h+1)
i )

kq
(h)
ij

]
=

∑N
i=1 log

[
1
k

∑k
j=1 f(b̂i|ω

(h+1)
j , τ

(h+1)
i )

]
= l(τ (h+1), ω(h+1))

(S13)

Thus, from Eq. S11, Eq. S12, and Eq. S13, we have l(τ (h+1), ω(h+1)) ≥ l(τ (h), ω(h)).

Corollary 2. (Claim 1 in the main text) The EM algorithm described in the main text monotonically
improves the log-likelihood function after each iteration. Furthermore, if the log-likelihood l(τ, ω) has a
maximum value, then the algorithm converges.

Proof. Recall that in the M-step at iteration (h) , we use coordinate descent starting at (τ (h), ω(h)) to
find (τ (h+1), ω(h+1)). Therefore, g(τ (h+1), ω(h+1); q(h)) ≥ g(τ (h), ω(h); q(h)) by construction. By Claim 1,
we conclude that the algorithm monotonically improves l. In addition, note that l has a maximum value
so it is bounded above. Thus, the sequence sn(h) = l(τ (h), ω(h)) is increasing and bounded above, so it
converges.

References

[1] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, 2e
edition, 2006.
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B Supplementary figures and tables

Table S1: Parameters and statistics of the 12 clock models. Lognormal distributions are parameterized by
µ and σ, which are the actual mean and standard deviation of the distribution. The bimodal, trimodal,
and quartmodal distributions are mixtures of 2, 3, or 4 Lognormal distributions, respectively, and pi is the
probability mass of component i of the mixture. Gamma distribution is parameterized by its shape α and
rate β. The other distributions are shown by their canonical parameterization.
Model name Parameters Mean Std CV Newly simulated
LogNormal µ = 0.006, σ = 0.0024 0.006 0.0024 0.4 No
Gamma α = 6.05, β = α/µ where µ = 0.006 0.006 0.00244 0.407 No

Exponential λ = 1/µ where µ = 0.006 0.006 0.006 1.0 No
Uniform a = 0, b = 0.012 0.006 0.0035 0.577 Yes
Bimodal 1 µ1 = 0.003, σ1 = 0.0003, p1 = 0.5 0.006 0.003 0.5 Yes

µ2 = 0.009, σ2 = 0.0003, p2 = 0.5
Bimodal 2 µ1 = 0.002, σ1 = 0.0003, p1 = 0.5 0.006 0.004 0.667 Yes

µ2 = 0.01, σ2 = 0.0003, p2 = 0.5
Bimodal 3 µ1 = 0.003, σ1 = 0.0024, p1 = 0.5 0.006 0.0038 0.641 Yes

µ2 = 0.009, σ2 = 0.0024, p2 = 0.5
Bimodal 4 µ1 = 0.002, σ1 = 0.0024, p1 = 0.5 0.006 0.0047 0.783 Yes

µ2 = 0.01, σ2 = 0.0024, p2 = 0.5
Trimodal 1 µ1 = 0.002, σ1 = 0.0003, p1 = 0.2 0.006 0.00254 0.423 Yes

µ2 = 0.006, σ2 = 0.0003, p2 = 0.6
µ3 = 0.01, σ3 = 0.0003, p3 = 0.2

Trimodal 2 µ1 = 0.002, σ1 = 0.0003, p1 = 0.4 0.006 0.0036 0.6 Yes
µ2 = 0.006, σ2 = 0.0003, p2 = 0.2
µ3 = 0.01, σ3 = 0.0003, p3 = 0.4

Trimodal 3 µ1 = 0.002, σ1 = 0.0003, p1 = 0.333 0.006 0.003 0.5 Yes
µ2 = 0.006, σ2 = 0.0003, p2 = 0.333
µ3 = 0.01, σ3 = 0.0003, p3 = 0.333

Quartmodal µ1 = 0.001, σ1 = 0.0003, p1 = 0.25 0.006 0.0038 0.633 Yes
µ2 = 0.004, σ2 = 0.0003, p2 = 0.25
µ3 = 0.008, σ3 = 0.0003, p3 = 0.25
µ4 = 0.011, σ4 = 0.0003, p4 = 0.25
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Table S2: The 5 scenarios of the simulated angiosperms
Scenario Description
Scenario 1 herbaceous : woody angiosperm = 3:1
Scenario 2 herbaceous : woody angiosperm = 6:1
Scenario 3 angiosperm : gymnosperm = 4:1

herbaceous : woody angiosperm = 3:1
Scenario 4 angiosperm : gymnosperm = 4:1

herbaceous : woody angiosperm = 3:1
Gnetales take the rates of herbaceous angiosperm

Scenario 5 angiosperm : gymnosperm = 4:1
herbaceous : woody angiosperm = 3:1

Gnetales take the rates of woody angiosperm

Table S3: The estimated divergence time of the HIV-1 subtypes
Subtype MD-Cat Wertheim 2012 Patino 2017 Abecasis 2009

A1 1950 1952 (1947-58) 1953 (1944–60) 1955 (1940-1969)
B 1950 1959 (1953-63) ——– 1959 (1951-1967)
C 1946 1947 (1940-54) ——– 1952 (1940-1962)
D 1945 1952 (1946-56) 1956 (1927–61) 1944 (1935-1952)
F1 1960 1955 (1948-61) ——– ——–
F2 1963 1966 (1961-70) ——– ——–
G 1954 ——– 1969 (1961–74) 1969 (1960-1977)
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Figure S1: Log-likelihood versus iterations of the EM algorithm on the first replicate using 200 initial points.
The thick line shows the best final log-likelihood.
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Figure S2: Effective sample size (ESS) of the posterior for root age in the 5 different angiosperm tree
scenarios when analyzed on BEAST. Different values are shown when analysis was run for 10, 20, and
30 million generations. ESS above the yellow horizontal line (y = 100) report the minimum required to
demonstrate MCMC convergence, while those above the green line (y = 200) are more clearly converged.
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Figure S3: Estimated versus true branch length. Each dot shows the mean and standard error over all 100
replicates for that branch in the true tree. Both axis are in log scale.
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Figure S4: The distribution of the mean difference between true and estimated branch length across
all branches of each replicate, indicating bias. We show mean (black dots), and standard error, 25-75%
percentiles (wide boxes), and 5-95% percentiles (narrow boxes) over 100 replicates.
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Figure S5: Analysis of the sensitivity of MD-Cat to the number of rate categories (k) for (a) the Angiosperms
simulated data, and (b) the HIV simulated dataset under the three trimodal clock models. The default k
used in all other analyses is 50. We compare methods in terms of the divergence time error, defined as the
root mean squared error of divergence times of all nodes versus true divergence, normalized by tree height.
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Figure S6: Selection on k for the Angiosperms simulated data using AIC, BIC, and cross-validation. (a):
The divergence time error (absolute difference of true and estimated normalized by tree height) across all
branches. b,c,d: The selected k distribution across all runs for AIC, BIC, and cross-validation, respectively.
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Figure S7: Selection on k for the HIV simulated data using AIC, BIC, and cross-validation. (a): The
divergence time error (absolute difference of true and estimated normalized by tree height) across all branches.
b,c,d: The selected k distribution across all runs for AIC, BIC, and cross-validation, respectively.
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Figure S8: Detailed comparisons on the HIV simulated dataset. a) Normalized tMRCA error, broken down
by tree condition and clock model. Since LSD can have extremely high errors, we removed it from the
figure to help readability. Narrow boxes show 5-95 percentiles and wide boxes show 25-75 percentiles. Bar
shows median. Mean and standard error are also shown as dots and error bars. b) Divergence time RMSE
(normalized by tree height). Mean/se omitted due to high mean error for LSD. Gamma and Lognormal
are unimodal. Uniform and Exponential are nonmodal. c) Same as (b) with tree models and clock models
separated.
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Figure S9: Comparison of the running time of BEAST, MD-Cat, and wLogDate separated into four different
clock model groups. The y-axis represents the time in minutes and is shown in the log-scale. All analyses
were run on Intel Xeon CPU E5-2670 (103,597,240 kB of memory). MD-Cat runtime does not include CI
calculation and SU branch length estimation but those would add a negligible amount: about 2 minutes for
CI estimation and several seconds for SU branch length estimation using RAxML.
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Figure S10: Evaluating support values. a) Confidence interval (CI) estimated by MD-Cat for branch lengths
(Left) and divergence times (Right). Blue: CI includes the true value; red: it does not. b) The portion of
branches (Left) or nodes (Right) that fall outside the 95% CI, shown separately for 10 deciles of true branch
length / divergence time. c) For nodes where the true value falls out of CI, we show how far it falls as a
percentage. We show the distribution of |t− c|/t where c is the CI boundary which fails to capture the true
value and t is the true divergence time.
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Figure S11: The number of unique rate categories (after rounding to 3 decimal digits) inferred by MD-Cat
versus the input number of rate categories (k) in the two simulated datasets of Angiosperms (top) and HIV
(bottom). Each dot shows the median across 20 replicates.
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Figure S12: Empirical distributions of branch length in substitution units of multiple models of the HIV
simulated data. Red lines show the 0.001 threshold and orange lines show the 0.005 threshold. The intra-host
with 11 sampling times (i.e. D995 11 10) has low signal for rate estimation, where about 15% branches are
shorter than 0.001 and 50% branches are shorter than 0.005.
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Figure S13: Comparison of multiple settings of BEAST on the HIV simulated data. For each of the model
conditions Exponential, Gamma, and Lognormal, BEAST was run with the strict-clock and with the true
clock model (e.g. BEAST: LogNormal for the LogNormal model, etc.). For the uniform model, BEAST was
run with all 4 available parametric clock models (note that the BEAST software does not have the uniform
clock model).
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