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Abstract This study is aimed to investigate the possibility of three lumped hydrological models to predict                
daily runoff of large-scale Arctic basins for the modern period (1979-2014) in the case of substantial data                 
scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional              
information about landscape, soil or vegetation cover properties of studied basins. We found limitations              
of model parameters calibration in ungauged basins using global optimization algorithm and confirmed             
the hypothesis about its equifinality without robustness violation. Model parameters regionalization based            
on the whole parameters set transfer across studied watersheds was performed and showed good              
efficiency for prediction in ungauged basins. We run a blind test of the proposed methodology for                
ensemble runoff predictions on five subbasins which had only periodical monthly observations, and it              
showed promising results for current freshwater resources assessment for a broad domain of the              
Russian Arctic. Further work will focus on gridded daily runoff dataset development based on presented               
findings. The whole research workflow (from data to figures) was performed reproducibly and freely              
available on Github (github.com/hydrogo/HSJ_article_1). 

1 INTRODUCTION 

Arctic basins are amongst the most vulnerable systems to climate change impact (Blaen et al., 2014;                
Flato et al., 2013; Lammers et al., 2001), but at the same time, they are among the least studied                   
geographical objects because of observational data scarcity and overall inaccessibility for long-term            
direct geoscientific measurements (Shiklomanov et al., 2002; Vorosmarty et al., 2001). Arctic            
ecosystems and local communities are strongly affected by freshwater budget from rivers (Harms et al.,               
2000; Peterson et al., 2002; Holmes et al., 2000; Kane, 1997). In recent decade there were many studies                  
devoted to an assessment of freshwater fluxes to the Arctic ocean. Despite the firm scientific basis all of                  
them provide significantly different results (Couet and Mauer, 2009; Wilkinson et al., 2014; Slater et al.,                
2007), which indicates both high natural variability (uncertainty) of runoff formation processes in the              
Arctic basins and the lack of our understanding (and a possibility to describe) of their dynamics                
(Berezovskaya et al., 2004; Lammers et al., 2001; Gelfan et al., 2015). A movement towards annual to                 
daily runoff estimates, from well-observed to ungauged basins, and from global to local research scale               
increases the uncertainty of hydrological cycle processes and therefore decreases runoff predictability            
(Bloschl and Sivapalan, 1995; Gelfan et al., 2015).  

One of the main problem facing hydrological community in the past decades has been runoff predictions                
in ungauged basins. Research decade initialized by International Association of Hydrological Sciences            
(IAHS) in 2003 and devoted to Predictions in Ungauged Basins (PUB) put a wide range of scientific                 
questions are expected to be resolved within ten years (Sivapalan et al., 2003). Despite great research                
achievements, there is no community consensus about a universal framework to deal with the problem of                
continuous streamflow simulations in ungauged basins (Hrachowitz et al., 2013; Parajka et al., 2013).              
The main PUB science focus - a reduction of predictive uncertainty - is still alive across the globe: there                   
are neither only right land cover and meteorological forcing datasets (Nasonova et al., 2011; Essou et                
al., 2016; Vu et al., 2016), nor true physically-based model working with the same efficiency in different                 
geographical conditions (Arsenault and Brissette, 2016; Goswami et al., 2006; Duan et al., 2006), nor the                
best regionalization technique for model parameters transfer (He et al., 2011; Razavi and Coulibaly,              
2013). Despite these difficulties in hydrological theory development, the most state-of-art technique for             
research in PUB still is in the coherent framework of the bundle "data - model - regionalization technique                  
- prediction." 
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1.1 Hydrological models 

There are many types of different hydrological models implemented for a variety of scientific and               
practical purposes, including (i) water resources assessment, (ii) flood forecasting, (iii) runoff            
calculations, (iv) climate impact and uncertainties assessment, etc. (Beck et al., 2016a). Nevertheless,             
modern hydrological model development, testing, and further implementation face the same limitations            
as five decades ago (Smith et al., 2013; Paniconi and Putti, 2015; Hrachowitz et al., 2013). A lot of                   
physically-based (Stromqvist et al., 2012; Gusev and Nasonova, 2006; Maoyi and Liang, 2006;             
Semenova et al., 2015), conceptual (Winsemius et al., 2009; Arsenault and Brissette, 2014; Razavi and               
Coulibaly, 2016; Oudin et al., 2008; Merz and Bloschl, 2004), and data-driven models (Yang et al., 2008;                 
Besaw et al., 2010) use for continuous streamflow predictions in ungauged basins, but only some of                
them take into consideration issues devoted to model parameters equifinality and model robustness. 

1.1.3 Equifinality 

The equifinality thesis is related to the situation that there are many acceptable model representations               
we derived from calibration procedure and our inability to easily reject them on a theoretical or                
observational basis (Beven, 2006). In other words, the equifinality is the case where different model               
conditions (are determined by model parameters) lead to similar effect (model efficiency) (Ebel and              
Loague, 2006). To increase the realism of hydrological model predictions in case of model parameters               
equifinality we need to incorporate in our research more knowledge about hydrological cycle physics of               
particular basin or more common physically-based constraints (Loague and VanderKwaak, 2004). For            
ungauged basins in data-scarce regions, the issue about concrete methodology implementation for            
appropriate model parameters restraint remains controversial (Yadav et al., 2007; Arsenault and            
Brissette, 2016; Savenije, 2001; van Emmerik et al., 2015). 

1.1.4 Robustness 

The robustness is another important issue to deal with the assessment of hydrological model ability to                
predict streamflow in changing conditions (Maier et al., 2016; Thirel et al., 2015b). Many studies report                
the lack of robustness both of physically-based (Bloschl and Montanari, 2010) and conceptual models              
(Coron et al., 2014). There are several strategies to deal with model robustness evaluation based on                
common principles provided by Klemes (1986). Coron et al. (2012, 2014) proposed the generalized              
split-sample testing procedure which incorporates efficiency metrics were derived from many sub-periods            
of calibration and validation, and provide graphical and numerical analysis criteria. Thirel et al. (2015a)               
proposed an evaluation protocol which extends Klemes' differential split-sample testing technique           
(Klemes, 1986) and provides a wide range of primary and secondary efficiency metrics and graphical               
analysis instruments. Despite this there is no scientific consensus about considering complex robustness             
testing framework into research workflow of hydrological modeling - the vast majority of studies use the                
simplest approach of robustness evaluation based on efficiency criteria estimation on calibration and             
validation periods and vice-versa (Gusev et al., 2015; Gelfan et al., 2015). 

1.2 Data for modelling 

There are no clear guidelines for choosing the best landcover, land-use or meteorological forcing dataset               
for PUB (Hrachowitz et al., 2013). Every modelers' group choose required datasets according to their               
own experience, model structure, spatial coverage and scale, specific issues of data availability, model              
intercomparison project conditions, national obligations, etc., and frequently avoid detailed description           
about the reason why they choose this particular data source, rather than another. Recent studies               
provide common results of an intercomparison of various meteorological data sources for hydrological             
models: (i) global reanalyses have good potential to be used as hydrological models forcing, especially in                
data-scarce regions (Essou et al., 2016a), (ii) despite datasets differences hydrological models can             
perform equally well after a specific calibration to each dataset (Essou et al., 2016b). 

2 



1.3 Regionalization 

Regionalization is the main technique for PUB. The term "regionalization" was used in hydrological              
literature in quite different meanings (He et al., 2011), but today it is typically used for a group of methods                    
aimed at necessary information transfer from gauged to ungauged basins to perform runoff calculations.              
There are three more utilized regionalization techniques: (i) regression-based, (ii) spatial proximity, and             
(iii) physical similarity (He at al., 2011; Razavi and Coulibaly, 2013). In their comprehensive review article                
Razavi and Coulibaly, reported that spatial proximity and physical similarity regionalization approaches            
had shown satisfactory results in arid to warm temperate climate (e.g., Australia) and cold, snowy               
regions (e.g., Canada), in contrast, regression-based approaches have been preferred in warm            
temperate regions (e.g., Europe). Recent PUB-inspired studies include plenty of researched basins            
across the globe. Gupta (Gupta et al., 2014) systematized 94 papers in hydrology that used more than                 
30 catchments (median value is 140), and most of them also referred to PUB initiative. We suppose that                  
the use of a large-sample datasets always outperform hydrological model abilities for continuous             
streamflow predictions because of dense spread of research basins - there is quite easy to find                
calibrated and robust model parameters set for ungauged basin which is located at a few hundred                
kilometers distance from donor basin. Performance of regionalization techniques in rarely gauged            
regions still remains insufficiently investigated. 

1.4 Blind test problem 

We suppose that the problem of runoff predictions in ungauged basins is rather far-fetched. Most of                
PUB-related studies verify proposed hypotheses by the methods of leave-one-out jack-knife           
cross-validation (Arsenault and Brissette, 2014; Oudin et al., 2008) or reserving some part of dataset for                
independent evaluation (Young, 2006). Thereby every study actually uses information from gauged            
basins and transform it in artificial manner to "pseudo-gauged" concept. This problem of inability of               
proper tested hypotheses verification was discussed in a few studies (Efstratiadis et al., 2014; van               
Emmerik et al., 2015; Rojas-Serna et al., 2016). Goswami (Goswami et al., 2006) proposed for truly                
ungauged basin to calculate runoff without any verification, Seibert and Vis (Seibert and Vis, 2016)               
investigated the ability to use stream level observations for hydrological model calibration. In our opinion               
frameworks proposed by Seibert and McDonnell (Seibert and McDonnell, 2014) that includes both clever              
fieldwork and modeller experience, and the method proposed by Rojas-Serna (Rojas-Serna et al., 2016)              
that combines weighted regional data and local information, are the best for PUB-inspired cases. 

1.5 Motivation 

Despite the efforts exerted to the PUB research, hydrologic community still faces the need to make                
stronger attempts to provide a valuable assessment of contemporary water resources based on             
state-of-art techniques (Hrachowitz et al., 2013). In the presented study, we tried to pass standard               
research workflow (as mentioned above: "data - model - regionalization technique - prediction") for runoff               
predictions in ungauged basins for the large domain of Russian Arctic rivers Nadym, Pur, Taz, and their                 
nested basins.  

According to the Occam's razor principle “plurality should not be posited without necessity”in our study               
we decided to use well-known lumped hydrological models instead of more complex distributed             
physically-based or land-surfaces models. If a simpler model can describe daily runoff variations well it is                
the reason we consider it realizes proper hydrological processes schematization and carries a low rate of                
structural model uncertainty (Butts et al., 2004). Data availability drives our decision to use only WFDEI                
(WATCH Forcing Data ERA-Interim) meteorological forcing dataset in our study, and this reflects our              
choice of unconstrained model calibration towards implementation of automatic parameters searching           
algorithm which requires only information about model parameters bounds. Because of the small dataset              
using, there is no intercomparison of different regionalization techniques performances - we focused only              
on simple model parameters transfer across the researched basins (known as "proxy-basin test") and              
three-fold split-sample test, both proposed by Klemes (Klemes, 1986). We used five nested ungauged              
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basins for blind test case study where only monthly observations were available for runoff predictions               
verification. 

There are three central questions in these study that we would like to discuss: (i) Does high variability of                   
optimal parameters make hydrological model unstable? (or does equifinality lead to instability?) (ii) Does              
simple transfer of model parameters set from donor to recipient basin work for large Arctic basins? Does                 
it lead to predictions instability (uncertainty)? (iii) Does parameter downscaling from the main to nested               
watersheds "as is" provide appropriate results for ensemble runoff prediction in ungauged basins?  

2 STUDY AREA 

The study area consists of three large river basins of the Russian Arctic: the Nadym, the Pur, and the                   
Taz (NPT domain). Five nested river basins used for blind test of runoff predictions in ungauged basins.                 
Figure 1 shows basins locations, streamflow gauges locations, and covering study area.  

 

 

Fig. 1 River basins locations used in this study 

 

NPT domain was and remains the object of high scientific research interest. Recent studies investigated               
different sides of hydrological cycle features of rivers in NPT domain. Peteet et al. (1998) researched                
peatland dynamics and climate history for NPT based on a stratigraphic analysis. Zakharova et al. (2011)                
examined snow cover formation features and estimated proportions of various freshwater sources and its              
transformation in main rivers of NPT. Karlsson et al. (2014) investigated the behavior of lake               
size-distribution in permafrost landscape dynamics. Gusev et al. (2015) proposed a robust tool for NPT               
water balance assessment based on land surface model SWAP. It is worth mentioning that every study                
noted NPT river basins as a region which has similar natural conditions. Main points of basins                
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description (including annual runoff provided by ArcticRIMS and r-ArcticNET projects (ArcticRIMS, 2016;            
r-ArcticNET, 2016)) are presented in Table 1. 

 

Table 1. Main characteristics of basins used in this study 

# River Gauge station Basin 
area, 
km2 

Annual 
discharge, 
km3  

Period of runoff 
observations 

Study stage 

1 Nadym Nadym 48000 14.45 1955 - 1991 main 

2 Pur Samburg 95100 28.25 1939 - 1991 main 

3 Taz Sidorovsk 100000 32.99 1962 - 1996 main 

4 Pravaya 
Hetta 

Pangozh 1200 0.38 1979 - 1993 blind test 

5 Pur Urengoy 80400 23.99 1961 - 1999 blind test 

6 Pyakupur Tarko-Sale 31400 9.72 1954 - 1999 blind test 

7 Kharampur Kharampur 4330 1.27 1980 - 1985 blind test 

8 Ercal-Nadey Khalesovaya 6600 2.02 1959 - 1995 blind test 

 

3 DATA 

3.1. Forcing 

Meteorological observation network in Russia is weak, especially in remote Arctic territories. National             
hydrometeorological data provider (Roshydromet) does not provide continuously updated observational          
dataset and does not always monitors the quality of the data provided. For the modern studies related to                  
contemporary water resources assessment on vast territories, it is essential to use well-served             
meteorological datasets, such as global gridded data provided by international scientific collaborations.            
For this reason, all models were driven by precipitation and temperature data from WFDEI              
meteorological forcing dataset (1979-2014, 0.5° spatial resolution, Weedon et al., 2014). In the WFDEI              
framework precipitation data were further enhanced using the monthly Climate Research Unit (CRU)             
dataset (Harris et al., 2013). Potential evapotranspiration is another required forcing variable for all              
models, and it was derived based on temperature-based equation proposed by Oudin (Oudin et al.,               
2005). 

3.2. Observed runoff 

Daily and monthly observed data were used in this study for a variety of tasks, such as (i) hydrological                   
models parameters calibration, (ii) models efficiency evaluation on different periods, (iii) proxy-basin            
regionalization approach evaluation, (iv) estimation of ensemble runoff predictions efficiency in ungauged            
basins. All data were provided by Global Runoff Data Centre (GRDC, 2016).  

3.3. Basin schematization and geospatial data 

For meteorological forcings averaging procedure and for further runoff modeling results comparison,            
researched basins were schematized by spatial grid cells of 0.5°✕0.5° resolution. In (Boone et al., 2004)                
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it was shown that spatial representation of basin does not significantly affect the result of forcing                
averaging. Geospatial data used in this study were provided by GRDC (GRDC, 2011). 

4 METHODS 

Standard PUB workflow determines our research toolkit as a bundle of three lumped conceptual              
rainfall-runoff models, automatic model parameters calibration procedure, and appropriate         
regionalization approach. Statistical metrics of model efficiency evaluation are also defined and            
described. 

4.1 The HBV model 

The HBV (Hydrologiska Byråns Vattenbalansavdelning) model was used in this study according to its              
broad implementation for different hydrological applications, flexibility, proven effectiveness for runoff           
predictions in different geographical conditions, and numerous successful applying for PUB-inspired           
studies. The HBV model is a typical bucket-type river basin, it has daily time step and simulates river                  
runoff using three meteorological variables as input forcings: temperature, precipitation, and potential            
evaporation. There are four basic routines are used to represent conceptual water balance processes at               
basin scale: (i) snow routine, (ii) soil routine, (iii) groundwater routine (iv) routing routine. We slightly                
modified the HBV model version proposed in (Beck et al., 2016) adding extra parameters related to                
forcings correction, and also we transformed routing scheme replacing triangular weighting function to             
Butterworth function. List of all HBV model parameters and its calibration ranges (were based on typical                
values from previous studies) is shown in Table 2. For the detailed model description, please refer to                 
(Lindstrom, 1997; Seibert, 1999; Seibert and Vis, 2012). 

4.2 The GR4J-Cema-Neige model 

The GR4J (modele du Genie Rural a 4 parametres Journalier) model is a daily lumped four-parameter                
rainfall-runoff model (Perrin et al., 2003). It was used in this study according to similar reasons as the                  
HBV: it was widely and successfully implemented in different geographical conditions and for extensively              
used for case studies related to the PUB initiative. Model routines represent river basin behavior as an                 
interaction between three water storages (for an interception, production, and routing), including            
interbasin and groundwater exchange, and also incorporate routine scheme based on unit hydrograph             
methodology. There is no snow accounting module in the original version of the GR4J model. For                
appropriate using this model in the Arctic basins, we coupled two-parameter snow model Cema-Neige              
proposed by Valery (Valery, 2010) with the GR4J model in a similar way as in (Coron et al., 2014). List of                     
parameters, its description and calibration ranges for the GR4J-Cema-Neige model is shown in Table 2.               
For the detailed model description, please refer to (Perrin et al., 2003; Valery, 2010). 

4.3 The SIMHYD-Cema-Neige model 

The third lumped conceptual hydrological model in our study is SIMHYD (Chiew et al., 2002, 2009). Its                 
conceptual representation is quite similar to the GR4J model despite different approaches to             
empirically-based water balance processes description and routing schemes distinction. The SIMHYD           
model also has been used widely for various applications, including regionalization and PUB-related             
studies (Reichl et al., 2005, 2009; Zhang and Chiew, 2009). As well as for GR4J model, we also                  
incorporated Cema-Neige snow model in SIMHYD simulation procedure. The SIMHYD-Cema-Neige          
model has in total twelve parameters: eight for main simulation routine; two for routing scheme, and two                 
for snow routine - list of all parameters description and its calibration ranges is shown in Table 2. 

 

Table 2. Hydrological models parameters description and calibration ranges 

Parameter Description Minimum Maximum 

6 



HBV 

TT (°C) Threshold temperature 
when precipitation is 
simulated as snowfall 

-1.5 2.5 

SFCF Snowfall gauge 
undercatch correction 
factor 

0.4 1.0 

CWH Water holding capacity 
of snow 

0 0.2 

CFMAX (mm °C-1 d-1) Melt rate of snowpack 1 10 

CFR Refreezing coefficient 0 0.1 

FC (mm) Maximum water 
storage in the 
unsaturated zone store 

50 500 

LP Threshold of soil 
moisture value above 
which actual 
evaporation reaches 
potential evaporation 

0.3 1.0 

BETA Shape coefficient of 
recharge function 

1 6 

UZL (mm) Threshold parameter 
for extra outflow from 
upper zone 

0 500 

PERC (mm d-1) Maximum percolation 
to lower zone 

0 3 

PCORR Precipitation correction 
factor 

0.5 2 

CET Evaporation correction 
factor 

0 0.3 

K0 (d-1) Additional recession 
coefficient of upper 
groundwater storage 

0.01 0.4 

K1 (d-1) Recession coefficient of 
upper groundwater 
store 

0.01 0.4 

K2 (d-1) Recession coefficient of 
lower groundwater 
store 

0.001 0.15 

MAXBAS (d) Routing scheme 
parameter 

1 7 
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GR4J-Cema-Neige 

X1 (mm) Capacity of the 
production store 

0 1500 

X2 (mm) Groundwater exchange 
coefficient 

-10 5 

X3 (mm) Capacity of the 
nonlinear routing store 

1 500 

X4 (d) Unit hydrograph time 
base 

0.5 4 

X5 Snowpack thermal 
state coefficient 

0 1 

X6 (mm °C-1 d-1) Melt rate of snowpack 1 10 

SIMHYD-Cema-Neige 

INSC (mm) Interception store 
capacity 

0 50 

COEFF (mm) Maximum infiltration 
loss 

0 400 

SQ Infiltration loss 
component 

0 10 

SMSC (mm) Soil moisture store 
capacity 

1 1000 

SUB Constant of 
proportionality in 
interflow equation 

0 1 

CRAK Constant of 
proportionality in 
groundwater recharge 
equation 

0 1 

K Baseflow linear 
recession parameter 

0 1 

etmul Potential evaporation 
correction factor 

0.1 3 

DELAY (d) Runoff delay 0.1 5 

X_m Muskinghum 
transformation 
parameter 

0.01 0.5 

X5 Snowpack thermal 
state coefficient 

0 1 
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X6 (mm °C-1 d-1) Melt rate of snowpack 1 10 

 

4.4 Numerical performance metrics for model simulations 

The simulated runoff of the models was evaluated with two widely used criteria: the Nash-Sutcliffe (Nash                
and Sutcliffe, 1970) efficiency (NS, Eq. 1) and the systematic error of runoff estimation (Bias, Eq. 2).  

, (1)S N =  
∑
 

Ω
(X −X )obs obs

2

∑
 

Ω
(X −X )sim obs

2

 

where Xsim and Xobs are the simulated and observed values of a variable X (here, runoff), while Ω is a                    
discrete sample set of variable X. 

, (2)ias | | 00%B =  
∑
 

Ω
Xobs

∑
 

Ω
(X −X )sim obs

 

× 1  

Despite recent studies that pointed NS as a flawed metric for model performance evaluation (Jain and                
Sudheer, 2008), NS remains the most commonly used metric in the field of hydrological modeling. We                
decided to use Bias as an additional metric that is aimed mostly at base-flow events evaluation. Runoff                 
simulation Bias can be high (in absolute values) even at high NS, that can tell us about some structural                   
discrepancies in model routines of hydrological cycle processes representation (Nasonova et al., 2011;             
Zhang and Chiew, 2009). 

4.5 Calibration procedure 

Model parameters (listed in Table 2 for every model) were calibrated by maximizing NS criteria.               
Differential evolution (DE) algorithm that finds the global minimum of a multivariate function proposed by               
(Storn and Price, 1997) was implemented. DE algorithm is rarely used in hydrological model calibration,               
but for known studies, it showed good results (Zhang et al., 2009). DE optimization routine does not use                  
gradient methods, and therefore it can be computationally expensive. For detailed algorithm description,             
please refer to (Storn and Price, 1997; Price et al., 2006). 

For every model, we used three calibration periods of observational runoff data: full period (further               
referred on figures as “full” or “f”), and two approximately equal half-periods (further referred as “first half”                 
or “h1” and “last half” or “h2”) which are different for every river (Table 3). The use of multiple calibration                    
periods ensures required information for model robustness evaluation and a possibility to use various              
optimal parameter sets for runoff predictions in ensemble manner. 

 

Table 3. Periods of hydrological models calibration 

River Full period (“f”) First-half period (“h1”) Last-half period (“h2”) 

Nadym 1979 - 1991 1979 - 1984 1985 - 1991 

Pur 1979 - 1991 1979 - 1984 1985 - 1991 

Taz 1979 - 1996 1979 - 1987 1988 - 1996 
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4.6 Interperiod model robustness сross-evaluation 

After the calibration procedure, we derived optimal sets of parameters for every model, and for every                
river basin. The further idea is to verify the efficiency of using every parameter set on every period and                   
river basin (Klemes, 1986; Merz and Bloschl, 2004; Beck et al., 2016b). 

In our study, we want to propose to expand the meaning of the "equifinality" and "robustness" terms.                 
Beven and Freer (Beven and Freer, 2001) state that "it may be endemic to mechanistic modeling of                 
complex environmental systems that there are many different model structures and many different             
parameter sets within a chosen model structure that may be behavioural or acceptable in reproducing               
the observed behaviour of that system." According to this point of view, every the unique model                
parameters set represents the unique model structure, which works well on a calibration period              
("equifinality"), but it is also necessary (for using equifinality as a working paradigm) to prove model                
robustness with these different parameters sets. In presented study we propose to use soft threshold               
criterion - NS > 0.5 - for model robustness verification: if the model with selected optimal parameters set                  
predicts runoff on test periods with efficiency greater than the threshold value - we can talk about                 
robustness confirmation. Otherwise, we can talk about model robustness failure. If there are more than               
one such optimal parameters set satisfies model robustness condition, we can talk about the situation of                
"proof of model parameters equifinality without model robustness violation" - and this statement may be               
used as a strict condition for selection ensemble members for ensemble runoff predictions. A decision               
about selection of NS threshold value is based on the NS values systemized in (Moriasi et al., 2007) and                   
marked as lower bound for satisfactory modeling results. 

4.7 Regionalization approach 

Model parameters transfer from gauged to a pseudo-ungauged basin in our study was based on a                
simple proxy-basin approach which does not use any additional information neither about physiographic             
characteristics (which is commonly used for physical similarity regionalization approaches), nor basins            
location information (which is commonly used for spatial proximity regionalization approaches).           
According to this approach, the entire set of optimal model parameters which were calibrated on the                
gauged basin is used without any modifications to runoff modeling for ungauged basin (Klemes, 1986;               
Oudin et al., 2008; Arsenault and Brissette, 2016). According to recent studies (Oudin et al., 2008; Reichl                 
et al., 2009; Singh et al., 2014), the entire optimal model parameters set transfer (based on both physical                  
similarity or spatial proximity indices) is the most successful regionalization approach for PUB. 

4.8 Blind test methodology 

The main assumption of lumped hydrological model implementation for real-world cases is the uniformity              
of landscape conditions within researched basins. It is a strong assumption, and it is always in strict                 
conformity with reality, especially for large river basins. We decided to check this hypothesis with the                
reserved set of nested pseudo-ungauged basins. This blind test routine consists of using optimal              
parameters sets from the main river basin for runoff predictions in ungauged nested basins ("dumb               
downscaling"). Since we have three different models and three independent parameters sets for them,              
we can provide ensemble runoff predictions for every nested ungauged basin. In this study, we do not                 
propose any technique for model outputs averaging and do not search the best solution among               
calculated runoff realizations. Unfortunately, in this study, we can evaluate the efficiency of proposed              
ensemble runoff predictions approach only for a few available episodic monthly runoff observations. 

4.9 Toolkit for research reproducibility 

We think that the main shortcoming issue of the modern hydrological modeling-oriented studies is the               
lack of research reproducibility. Please, refer to our Github repository          
(github.com/hydrogo/HSJ_article_1) for more information about the way you can reproduce (replicate)           
results obtained in the presented study. 
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5 RESULTS AND DISCUSSION 

5.1 Parameters variability, equifinality, robustness 

5.1.1 HBV model variability 

Sixteen HBV model parameters were obtained for three calibration periods and three main researched              
rivers (Figure 2). There are four parameters which vary in a more narrow range than calibration range for                  
all three basins: field capacity (FC), recession coefficient of upper groundwater store (K1), routing              
scheme parameter (MAXBAS), and melt rate of snowpack (CFMAX). A low range of these parameters               
variation tells us about low uncertainties provided by processes representation which have been             
parametrized by them and processes proximity to overall NPT domain. The number of parameters which               
vary in a broad range is higher than relatively stable ones. There are five parameters: shape coefficient                 
of recharge function (BETA), additional recession coefficient of upper groundwater storage (K0),            
maximum percolation to lower zone (PERC), threshold parameter for extra outflow from the upper zone               
(UZL), a refreezing coefficient (CFR). Remaining parameters vary in mediate ranges and provide             
additional uncertainty in runoff predictions. 
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Fig. 2 HBV model parameters variability on different calibration periods 

 

There is no clear picture about similarities between basins: (i) there is no parameter with the same                 
variations range for all basins and (ii) there is no clear pattern of pair-basin similarities - it's impossible to                   
say which basins are more similar to each other than the other one. Almost all HBV model parameters                  
are located on the Figure 2 canvas in cascade manner - this feature can be related with climate                  
continentality rise from west to east for NPT domain, and we can assume that climate forcing                
characteristics may affect model parameters (and related hydrological cycle processes) both in spatial             
and temporal manner. 

We suppose that high parameters variability is linked with structural limitations provided by lumped HBV               
model for large basins. Results show that there are not only one best (optimal) model parameters set,                 
but the individual for every calibration period - this point indicates the possibility of many optimal                
conceptual basin representations which have a similar response to meteorological forcing.  
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We also suppose that another possible reason of high parameters variability links with parameter              
identifiability issues provided by uncertainties in initial guessing realized in the optimization procedure.             
Because of our DE calibration procedure incorporates quasi-random latin hypercube initial guessing we             
may find (within certain limits, of course) many optimal parameter sets reflecting various conceptual              
structures of our basins - and, as a result, we may achieve model parameters equifinality. For many                 
procedures with stable initial guessing (e.g., Newtonian optimizers) it is impossible to find many optimal               
solutions, and this leads to pseudo-equifinality - model parameters vary insignificantly within its             
uncertainty (error) bounds. We think that model parameters equifinality phenomenon links strongly with             
the over-parametrization case: a large number of parameters increase the complexity of model             
parameters surface and may cause computational problems with several objective function minimums            
availability. 

In our study, we follow hypothesis of HBV model parameters stationarity and we based on the                
assumption that calibration provides the optimal lumped structure of researched basin that can be              
defined by optimal parameter set and will not change in time. This assumption is in substantial conflict                 
with a hypothesis of HBV parameters non-stationarity described and proved in (Merz et al., 2011). Osuh                
et al. (2015) provided contradictory results of investigation how model parameters relate to climatic              
indices, and we think that non-stationarity successful hypothesis testing is in more relation with study               
area and researched basins characteristics than with possible changing of climate conditions.  

Using additional information about basin physiographic and landscape characteristics can provide useful            
decision rules for model parameters constraining, but for ungauged basins, it can be difficult to obtain                
any relevant information. We think that using global databases of vegetation and soil properties is a                
perspective way for hydrological model parameters constraining and therefore for the more            
physically-based calibration procedure. The problem of model parameters sets stability will be discussed             
later in Sect. 5.1.4. 

5.1.2 GR4J-Cema-Neige parameters variability 

In contrast to HBV model, the GR4J-Cema-Neige model has only six parameters. Five of them vary in a                  
wide range, comparable to the calibration range and only one parameter - unit hydrograph time base                
(X4) - varies in quite narrow range (Figure 3). These results can be explained by the same reasons we                   
supposed for the HBV model parameters variability: basin approximation by the lumped structure leads              
to high uncertainty (variability) of optimal parameters combination, primarily if we do not use any               
physically-based constraints for the calibration procedure. For the routing parameter (X4) basin area             
plays the leading role and regulates its variations in a narrow range. 
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Fig. 3 GR4J-Cema-Neige model parameters variability on different calibration periods 

 

Figure 3 shows the similarity between the Pur and the Taz basins - for most of parameters allocation we                   
can mark the pair of these basins. According to this notice, we can suppose that under-parameterized                
model can approximate similar runoff formation complexes into the identical model structures. These             
structures may be very different from the real basins, and it is necessary to evaluate its robustness (will                  
be discussed later in Sect. 5.1.4). For the some HBV model parameters, we noted its cascade look (on                  
Figure 2 canvas). For the GR4J-Cema-Neige model, we can note parabolic look (on Figure 3 canvas) for                 
the most model parameters allocation for different rivers, which strongly corresponds with a hypothesis              
about similarities between the Pur and Taz rivers and their high contrast from the Nadym river. 

The HBV and the GR4J-Cema-Neige models have three pairs of quite similar (but not identical)               
parameters (i) melt rate of snowpack (CFMAX and X6), (ii) maximum water storage in the unsaturated                
zone store (FC) and capacity of the production store (X1), (iii) routing parameters (MAXBAS and X4).                
Intercomparison of these parameters pairs shows a few discrepancies in hydrological processes            
description provided by models we use. For example, for HBV model, melt rate of snowpack varies                
(CFMAX) in a quite narrow range and has concave parabolic distribution across basins, but the same                
parameter of GR4J model (X6) varies in three times wider range and has falling cascade distribution.                
Thus we see that the different snow routines which have "conceptually true" processes schematization              
are in sharp conflict with a parameter range and its spatial distribution. The parameters that determine                
the features of soil moisture routine for the HBV and GR4J-Cema-Neige - FC and X1 - also have                  
mirrored (rising and falling, respectively) cascade distribution across basins. Routing scheme parameters            
for both models - MAXBAS and X4 - vary in quite narrow ranges, but have mirrored parabolic (convex                  
and concave, respectively) distribution across basins.  

We can not find any information about temporal (induced by climate change or uncertainties in               
hydrological processes representation) model parameters variability in most of the studies related to             
GR4J model implementation. All of these studies focused on an evaluation of different efficiency metrics               
in connection with varying factors of impact and did not provide extensive information about every model                
parameter uncertainty. 

We suppose that the reasons of observed high model parameters variability are the same and for                
GR4J-Cema-Neige model: (i) rough approximation of basin structure by the lumped model, (ii)             
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uncertainties and high complexity of global optimum parameters set search. The effect of model              
parameters equifinality will be discussed later in Sect. 5.1.4. 

5.1.3 SIMHYD-Cema-Neige parameters variability 

The SIMHYD-Cema-Neige model takes an intermediate position (between HBV and GR4J-Cema-Neige)           
according to the number of parameters - there are 12 parameters. Most of them vary in broad ranges,                  
comparable to calibration ones (Figure 4). Only for baseflow linear recession parameter (K), we have an                
entirely narrow range of variability, that can be related to conservative nature of groundwater recharge in                
NPT domain. 

 

 

Fig. 4 SIMHYD-Cema-Neige model parameters variability on different calibration periods 

 

There are no apparent similarities between researched basins - every parameter variation has its pattern               
for every basin. We also need to note that parameters distributions on (Figure 3) canvas tend to be more                   
blurred - cascade and parabolic looks of distributions are not strict because of parameters ranges               
overlay. 

The parameters distribution pattern for GR4J and SIMHYD-based models are similar, while HBV model              
parameters patterns have a different (mirrored) look. The parameters X5 and X6, which refer to               
Cema-Neige snow routine, and that are the same for the both GR4J-Cema-Neige and             
SIMHYD-Cema-Neige models, are in full agreement for both models. We suppose that this point tells us                
about the relative stability of Cema-Neige snow model and its low impact on structural uncertainty               
provided by the models coupled with it. 
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There are a couple of studies which examined parameters variability of the SIMHYD hydrological model.               
Reichl (Reichl et al., 2005) conducted an experiment based on Monte-Carlo simulations run on 44               
Australian catchments. Results showed that equifinality of SIMHYD model parameters amounts to            
considerable parameter uncertainty and this is the primary reason for regression-based regionalization            
approaches failure. Li (Li et al., 2015) linked high temporal variability of SIMHYD parameters with forcing                
changes between different calibration periods and with the inadequate model presentation. In this study              
also noted that landscape basin characteristics also define parameters stability - for humid basin              
parameters variability is lower than for arid ones. 

We suppose that the reasons of observed high model parameters variability are the same and for                
SIMHYD-Cema-Neige model (as for the HBV and the GR4J-Cema-Neige models): (i) rough            
approximation of basin structure by the lumped model, (ii) uncertainties and high complexity of global               
optimum parameters set search. We believe that reducing of model parameters variability can only be               
achieved by (i) the use of new information for model parameters constraining on a physical basis, and (ii)                  
the development of more physically-based, process-oriented models with a low number of calibrated             
parameters.  

In the next section, we will show how model parameters variability affected model robustness (in the                
case of runoff predictions for different time periods). 

5.1.4 Inter-period cross-evaluation 

The procedure of model robustness evaluation was described in Sect. 4.6. For results representation, we               
decided to use heat maps of efficiency criteria for different evaluation/calibration periods as provided in               
(Thirel et al., 2015a). 

Obtained results have a clear spatial pattern - when moving east modeling efficiency (NS) increases and                
Bias decreases - the best daily runoff predictions were obtained for the Taz River, the worst - for the                   
Nadym river. We suppose that this point relates to climate continentality growth in the east direction that                 
determines the low inter-seasonal variability of hydrological processes intensity and, as a result, forms              
stronger predictability of runoff simulations. 

For the Nadym basin, all three lumped hydrological models have a similar temporal pattern of their runoff                 
prediction criteria (Figure 5). For model parameters set calibrated on the full ("full set") period of                
observations, the best efficiency reaches on the first half of evaluation period and slightly decreases for                
the last half. It indicates some changes in climate, basin behavior or streamflow measurements quality               
between selected half-periods. For the parameters sets calibrated on the first ("first set") and the last                
("last set") periods slight performance decreasing on independent half-periods is a common situation. All              
the models with the "last set" and "first set," except GR4J-Cema-Neige, show satisfactory results on the                
full period. Only one parameter set of all three models - "last set" for GR4J-Cema-Neige - can be marked                   
as non-robust, because it performs well only during the calibration period and fails on the validation                
ones. Visual patterns of NS and Bias almost identical, the only exception is Bias values pattern of "last                  
set" for the SIMHYD-Cema-Neige model, in this case, Bias on the evaluation periods is smaller than on                 
calibration period. The HBV model performs better calculations than both GR4J-Cema-Neige and            
SIMHYD-Cema-Neige on every corresponding period with every optimal parameter set. GR4J and            
SIMHYD -based models, show comparable results. 
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Fig. 5 NS (blue palette) and Bias (red palette) criteria for model evaluation for the Nadym river. In the 
rows - criteria values for different calibration periods which marked as columns ticks 

 

For the Pur basin, temporal patterns of runoff prediction efficiency are individual for every model (Figure                
6). For HBV model for every optimal parameter set the best efficiency reaches for the first half of                  
evaluation period, i.e., not only "full set" works better on the first half (a result that we derived for the                    
Nadym basin for all the models). The HBV model for the Taz basin also tends to be fairly robust one -                     
loss of NS value across validation periods is small, and the model Bias is moderate. For the                 
GR4J-Cema-Neige we can note a standard pattern of decreasing in efficiency for half-periods             
parameters sets during its validation on independent half-periods. For evaluation on the full period, all               
sets show satisfactory results. The NS pattern of GR4J-Cema-Neige model is not similar to the Bias                
pattern - for this model we may notice a weak positive correlation between NS and Bias. For the                  
SIMHYD-Cema-Neige we can note two clear patterns: (i) for every optimal parameter set the best               
efficiency reaches on the first half of evaluation period (similar result with the HBV model), (ii) "last set"                  
parameters provides a better result than "full set" parameters. The SIMHYD-Cema-Neige Bias values             
are extremely high for all subperiods and all optimal parameters sets. It is caused by unsatisfactory                
model simulations for the long period of low flows. The lowest Bias could be derived with "first half" set                   
for every evaluation period. For the Pur basin the HBV model also shows the best results, the                 
SIMHYD-Cema-Neige model works worst (especially because highest Bias), the GR4J-Cema-Neige          
model takes an intermediate position. 
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Fig. 6 NS (blue palette) and Bias (red palette) criteria for model evaluation for the Pur river. Designations 
are the same as in Figure 5 

 

For the Taz basin, efficiency criteria patterns for all the models differ considerably (Figure 7). For all the                  
models average NS efficiency is higher, and Bias is lower for the Taz basin than for the Nadym and the                    
Taz basins. The HBV model also shows highly robust results of inter-period cross-evaluation - only the                
"first set" parameters show apparent efficiency decreasing on validation periods, the HBV Bias pattern              
also represents this trait. The GR4J-Cema-Neige model has an interesting cross-shape pattern for both              
NS and Bias criteria, which shows us mediocre model robustness for using with the "first set"                
parameters. The SIMHYD-Cema-Neige model has NS pattern, which is similar to the HBV model, but the                
differences in Bias patterns are apparent: we note slight increasing in Bias values on first-half validation                
period for all of optimal parameters sets. The SIMHYD-Cema-Neige model only for the Taz river               
performs better than the GR4J-Cema-Neige model, but the HBV model remains the best among them. 
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Fig. 7 NS (blue palette) and Bias (red palette) criteria for model evaluation for the Taz river. Designations 
are the same as in Figures 5, 6 

 

The main result of the proposed inter-period cross-evaluation procedure is the evidence of parameters              
equifinality of various lumped conceptual hydrological models in a broad sense with the preservation of               
model robustness. This result shows that there are multiple structures of our researched basins which               
can represent the complexity of runoff formation processes. We can not say which structure is the best                 
for our purposes until we receive additional information about landscape or climatic characteristics and,              
on this basis, develop constraining conditions for our model parameters. We suppose that it is normal to                 
get high model parameters uncertainty in our study - we use one of the most straightforward techniques                 
for continuous streamflow prediction for the three large Arctic basins, and we can be ready for difficulties                 
if we want to assess contemporary water resources conditions for our domain. Without any additional               
information and strict parameters constraints we can use multiple optimal parameters sets for runoff              
predictions in ungauged basins in ensemble manner - if we can not decide what is the best parameters                  
set, why don't we use all of them? We suppose that it is a good strategy for decision-making in ungauged                    
basins - provide not only single realization, but a whole band of robust realizations (Arsenault and                
Brissette, 2014; Beck et al., 2016b). 

Another significant result is the overall high efficiency of simulated daily runoff predictions with the use of                 
optimal parameters. It was a difficult question at the beginning of our study - even if we find optimal                   
parameters (calibration procedure was successful), can they then be used for predictions? And despite a               
high rate of individual model parameters variability (Sect. 5.1.1-5.1.3), the whole sets of parameters are               
stable and allow the model to satisfy the soft robustness criteria. These conceptual models have not                
been previously used for continuous runoff simulations for this large domain in the Arctic, and verification                
of its possibility to simulate runoff only with meteorological reanalysis data, which was obtained in our                
study, itself is of great importance for further water resources assessment for the NPT domain. 

Obtained results show that the HBV model is the best choice for continuous runoff predictions in a whole                  
NPT domain. The GR4J and the SIMHYD models had not been initially designed for simulation in                
snow-dominated regions, unlike the HBV. The Cema-Neige snow model coupling with the GR4J and the               
SIMHYD seriously improves simulation quality but overparameterized HBV routine is slightly more in line              
with cold region hydrological cycle processes conceptualization. Li (Li et al., 2015) obtained results that               
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are consistent with our findings for the comparison of HBV, SIMHYD, and XAJ models on two basins in                  
China and Australia. 

It should be noted (for all models) that high NS values do not lead to low Bias values and there is                     
another confirmation of necessity to use multiple evaluation criteria in hydrological modeling studies             
(Moriasi et al., 2007). We also could not find the strong reason why we received the worst results for                   
Nadym river: it may relate to specific geographical features, differences in hydrological regime, poor              
quality of streamflow data, etc. According to previous studies (Zakharova et al., 2011; Gusev et al., 2015)                 
and our findings, we suppose that inconsistency in measured at gauge station and real streamflow data                
is the main reason of mediocre results. 

At the analysis stage of our research, it became apparent that splitting observational period into a single                 
pair of calibration and validation period (according to Klemes, 1986) is not the best idea. We showed in                  
this section that there are apparent changes in basin configuration between the first and the last periods                 
of model verification, but we cannot correctly decide what kind of natural conditions may influence this                
difference: changes in climate features or, for example, changes in the riverbed near streamflow gauge               
station. We suppose that hypothesis of model parameters non-stationarity (Merz et al., 2011) can help us                
to conceptualize our research basins as evolving systems, which is strictly defined by its parameters that                
depend on the climate, landscape, and anthropogenic factors. If we accept this hypothesis of model               
parameters non-stationarity, we need to develop an entirely different framework for model parameters             
calibration and further robustness estimation which will be able to aggregate strict model parameters              
constraints (for varying in physically-based boundaries defined by a wide range of physiographic             
parameters, smoothness of temporal changes, etc.). 

5.2 Proxy-basin regionalization for runoff predictions in (pseudo)ungauged basins 

Proxy-basin test specification was described in Sect. 4.7. For results representation, we used the same               
conception of heat maps (as provided in (Thirel et al., 2015a)) for efficiency criteria grouped for every                 
model for different evaluation/calibration periods. Figures 8 shows results for all model parameters             
regionalization across the basins in NPT domain. 
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Fig 8. Proxy-basin regionalization results for HBV, GR4J-Cema-Neige, SIMHYD-Cema-Neige models 

 

For all models, we can note similar visual pattern for both NS and Bias - high parameters transferability                  
efficiency for the basin pair of the Pur and the Taz rivers. Optimal model parameters sets which were                  
calibrated on different time periods for the Pur river work well and for each period for the Taz river and                    
vice versa. It also should be noted that the Nadym has non-transferable (across NPT domain)               
parameters - they work well only for the Nadym basin itself, but runoff simulations with them for the Pur                   
and the Taz rivers show unsatisfactory results. This pattern repeats with the insignificant variations for               
every model used in this study.  

This result proves an effect of parameters equifinality for regionalization efficiency. We suppose that              
leading roles in proxy-basin regionalization success play: (i) similarity between basins, (ii) scale effects of               
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this similarity, and (iii) internal optimal parameters stability and robustness. Results show that if basins               
pair ("gauged" - "ungauged") has not only similar conditions but also has comparable drainage areas and                
stable optimal parameters sets, then it is possible to predict runoff in (pseudo)ungauged basin well. 

Obtained insights of model parameters transfer capabilities across NPT domain should be independently             
tested on very different nested ungauged basins set for proper validation of these assumptions in-depth               
(inter-basin hypothesis validation). 

5.3 Ensemble runoff predictions for truly ungauged basins (blind test results) 

Features of cross-NPT model parameters proxy-basin regionalization are also challenges for predictions            
in ungauged basins. We need to know how stable and robust structure of calibrated parameters sets                
could be transferred to small nested basins - will we lose prediction efficiency because of scale effects                 
which could determine discrepancies in basin structure representation? 

In the presented study, we follow the most accessible approach to predictions in ungauged basins called                
"dumb downscaling" (please, refer to Section 4.8) in ensemble manner, and also we do not provide any                 
likelihood estimations for our ensemble realizations or some complex averaging strategy. Results of             
continuous runoff streamflow simulations (monthly averaged hydrographs) for five independent          
ungauged basins for a long period (1980 - 2014) are presented in Figure 9 with short periods of                  
observed runoff values. 
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Fig. 9 Ensemble monthly runoff predictions for ungauged basins 
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For every runoff prediction realization, we calculated NS and Bias evaluation criteria and found the best                
realization regarding highest NS and lowest Bias values (Table 4).  

 

Table 4. Evaluation criteria statistics for ungauged basins 

Ungauged 
basin 

NS Bias Highest NS 
realization 

Lowest Bias 
realization 

Mean Min Max Mean Min Max 

Pravaya Hetta 0.72 0.65 0.79 20.5 2.0 41 GR4J, “h1” GR4J, “f” 

Pur 0.80 0.64 0.88 13.2 2.9 23.5 HBV, “h2” SIMHYD, “h1” 

Pyakupur 0.78 0.61 0.87 12.7 1.5 34.2 HBV, “h2” HBV, “f” 

Kharampur 0.74 0.64 0.78 12.0 0.1 31.3 Ensemble 
mean 

HBV, “h1” 

Ercal-Nadey 0.23 0.10 0.31 36.7 23.7 52.0 HBV, “h2” GR4J, “h1” 

 

We suppose that for our weak assumptions proposed in experiment design stage - "dumb downscaling"               
and ensemble approach - adequate efficiency measure for runoff predictions in ungauged basins is              
simple entering of prediction values in ensemble realizations band. Visual hydrographs evaluation shows             
appropriate fit between the predicted band and observed values. Results presented in Table 4, in               
addition to visual assessment, also confirm the satisfactory efficiency of proposed prediction            
methodology for all ungauged basins except the Ercal-Nadey river - lower bound of NS criterion for these                 
rivers is higher than 0.61. A common negative feature of obtained results is low capabilities of models                 
used in this study to calculate baseflow for the autumn-winter period - every model underestimates base                
flow for this period, and it leads to high Bias criterion values. It is impossible to understand specific                  
inconsistencies between predicted and observed runoff for the Ercal-Nadey river without additional            
information from streamflow gauging network. 

6 CONCLUSIONS 

Three different lumped conceptual hydrological models were used for runoff predictions in NPT domain              
for three main and nested basins. The principal findings of the presented work are: (i) global optimization                 
procedure provides very different, but robust model parameter sets which could be used in ensemble               
runoff predictions, (ii) simple model parameters transfer from donor to ungauged basins works well for               
runoff predictions in ungauged basins only if the basins are quite similar, (iii) additional information about                
physical characteristics of researched basins may provide significant improvement of model realism            
through a reasonable limitation of model parameters bounds and the way for implementing standard              
similarity metrics for more reasonable model parameters transfer procedure, (iv) hypothesis about model             
parameters similarity between main and nested basins shows good results for ensemble monthly runoff              
predictions in ungauged basins in the case of blind test methodology. 

We found significant differences between the Nadym basin in one hand and the Pur and the Taz basins                  
in another hand which reflects in hydrological model efficiency and success of proxy-basin             
regionalization procedure. Obtained results also show an insignificant role of structural differences            
between models, and prove an effect of parameters equifinality for regionalization efficiency. 
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Finally, we would like to cite Lem's discourse about mathematical models:  

“Imagine a mad tailor who makes all possible clothes. He knows nothing about people, birds or                
plants. The world does not interest him; he does not study it. He makes clothes. He does not know for                    
whom. He does not think about it… Mathematics works just like that. It builds structures, but it is not                   
known of what. Perfect, accurate models, but of what - the mathematician does not know. It does not                  
interest him. He does what he does because has turned out possible” (Lem, 2013).  

We think that presented work is vulnerable to such criticism related to models unrealism and lack of                 
physically-based procedures or analyses, but we also sure that obtained results have to help us to find                 
the right way for further improving this field. Future work will focus on creation, validation, and                
communication of gridded daily runoff dataset for NPT domain. 
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