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Abstract: In the era of the Internet of Things (IoT), billions of sensors 

collect data from their environment and process it to enable intelligent 

decisions at the right time. However, transferring massive amounts of 

disparate data in complex environments is a challenging issue. The 

convergence of Artificial Intelligence (AI) and the Internet of Things has 

breathed new life into IoT operations and human-machine interaction. 

Resource-constrained IoT devices typically need more data storage 

and processing capacity to build modern AI models. The intuitive 

solution integrates cloud computing technology with AIoT and 

leverages cloud-side servers’ powerful and flexible processing and 

storage capacity. This paper briefly introduces IoT and AIoT 

architectures in the context of cloud computing, fog computing and 

more. Finally, an overview of the NEMO [1] concept is presented. The 

NEMO project aims to establish itself as the “game changer” of AIoT-

Edge-Cloud Continuum by bringing intelligence closer to data, making 

AI-as-a-Service an integral part of self-organizing networks 

orchestrating micro-service execution. 

Keywords: Internet of Things (IoT); Artificial Intelligence (AI); AIoT; 

AIoT-Edge-Cloud. 



 

1    Introduction 

The rapid development and implementation of intelligent IoT, cloud and edge 

technologies have enabled various technological advances in different areas 

of life. The main goal of IoT technology is to simplify processes in various 

fields, increase the efficiency of systems (technology and/or specific 

processes) and, ultimately, improve the quality of life. Towards fulfilling this 

challenge, sustainability has become a vital issue for those who see the 

dynamic development of IoT technologies being able to provide various 

valuable benefits. However, this rapid development must be carefully 

monitored and evaluated from the sustainability perspective to “limit” harmful 

effects and ensure innovative use and limited world resources. Considering 

the strengths and weaknesses of IoT technology, this requires considerable 

research effort in the current sense. The present paper aims to contribute to 

understanding the impacts of the current technological advances related to 

sustainable corporate development in the IoT and edge computing era.  

The era of the Industry 4.0 revolution begins with the development of 

intelligent sensors technology to integrate AI-based systems used in real-time 

applications [2].  Smart sensors are a topic that contributes to increased 

production and sales in various industries [3]. These advantages are 

especially evident when commercially available technologies are used 

effectively. Additionally, sensors may “react” differently in different 



environments. They can provide data of varying quality that can mislead the 

respective underlying model’s decisions and lead to classification errors if the 

corresponding model needs to be more robust. AI-based systems designed to 

solve a single classification challenge are labor-intensive and costly; even a 

single misclassification scenario is costly in this scope. Cloud and edge 

computing are essential technologies in the computing continuum for efficient 

data management “closer to its source” rather than sending raw data to data-

centres [4]. These trends, therefore, require a “shift” towards the technical and 

business convergence of the previously formally separated cloud, edge and 

IoT domains. 

The Internet of Things fundamentally aims to change diverse sectors of our 

society and economy. However, realizing the vision of IoT requires data 

processing (stream, static, or both) in a “sweet spot” in the edge cloud 

continuum. Far-edge/sensors produce data and actuate; edge/fog consists of 

“heterogeneous intermediate devices” where data can be processed; cloud 

facilities deliver unlimited processing capabilities, while all of them jointly (and 

supported by resources/services/data orchestration) constitute the edge-cloud 

continuum. In this context, future IoT platforms will have to manage processes 

in multi-stakeholder, multi-cloud, federated and large-scale IoT ecosystems. 

“Key” challenges are related to the fact that such platforms (encompassing 

operating systems, up to applications) will have to jointly leverage the 

continuous progress of multiple enabling technologies such as, for example, 

5G/6G networking, privacy and security, distributed computing, artificial 



intelligence, trust management, autonomous computing, distributed/innovative 

applications, data management, etc. Moreover, they must facilitate intelligent 

(autonomous) orchestration of physical/virtual resources and tasks by 

realizing them at the “optimal location” within the considered ecosystem (e.g., 

closer to where data is produced). This implies that resource-aware, frugal AI 

is needed to facilitate self-awareness and decision support across the 

heterogeneous ecosystem. Finally, it is also imperative that resource 

management considers the carbon footprint of the ecosystem, uses data and 

tasks efficiently and also leverages multi-owner heterogeneous renewable 

energy sources.   

The next section of the paper provides an overview of the related work in this 

field, while Sect. 3 explains the layers of the IoT and AIoT architectures. 

Section 4 refers exclusively to the framework of the ongoing NEMO EU-

funded project, highlighting its specific concept and objectives. Finally, Sect. 5 

concludes the scope of the paper.  

 

2    Related Work  

With the rapid development of technology, the number of IoT devices has 

increased dramatically. However, due to its limited resources, it can run out of 

capacity when processing computationally intensive and time-sensitive 

applications. As such, compute offloads that use cloud and network edge 



nodes for processing and analyzing data are emerging, so edge computing 

has recently started receiving much attention [5]. It supports cloud-like 

computing at the network edge by providing compute and network resources 

along the path between data sources and cloud data centres [6]. Fog 

computing [7] and mobile edge computing [8] are two well-known edge 

computing paradigms. Fog computing focuses on the infrastructure side and 

is typically deployed at the edge of the core network. Mobile edge computing, 

on the other hand, focuses on the mobile user side and is typically deployed 

within the wireless access network. To this respect, many offload algorithms 

for edge computing have been proposed with different offload criteria to fall 

into different offload algorithms.  

Chen et al. focus on performance in terms of the average number of beneficial 

cloud computing users and the average amount of computational effort across 

the system [9]. They designed a distributed computing offload algorithm to 

improve the wireless access efficiency of computing offload in the mobile 

edge cloud computing environment. At the same time, many computational 

offload algorithms have been proposed to reduce service delays, including 

both network and computational delays. Using the Markov decision process, 

Liu et al. [10] formulated a power-constrained delay minimization problem for 

mobile edge computing systems and proposed an efficient one-dimensional 

search algorithm. Further on, Yang et al. proposed a Multi-Dimensional 

Search and Adjustment (MDSA) method for connecting computation 

partitioning and resource allocation to reduce the average delay of latency-



sensitive applications on mobile edge clouds [11]. Youselfpour et al., aiming 

to reduce service delay for IoT applications, proposed interesting delay-

minimizing guidelines for fog-capable devices in [12]. Zhang et al. studied the 

problem of allocating computing resources in a three-tier IoT fog network [13], 

focusing on performance from a utility perspective.  

At the same time, Liu et al. explored the appearing tradeoffs between latency 

and reliability in mobile edge computing offloading [14], while Li et al. 

researched the offloading problem related to heterogeneous real-time 

activities in fog systems as well as the resource allocation investigating the 

compromise between high throughput and high task completion rate [15]. 

 

3 Internet of Things (IoT) and AIoT Architectures   

This section provides a brief overview of the overall IoT architecture and edge 

computing in terms of related paradigms. IoT technology acquires global 

perception in a ubiquitous connected environment using sensors, wired and 

wireless networks and cloud computing. The IoT architecture is widely 

recognized as a tri-tier, consisting of three layers, as indicated shown in the 

figure below; the respective layers are the perception layer, network layer and 

application layer (cf. Figure 1). 

 



 

 

Figure 1: Three-layered architecture [16] 

The perception layer, also known as the physical layer, includes diverse 

technologies and devices (such as sensors and actuators) according to the 

requirements of the intended applications per case. These devices are used 

for sensing and gathering information in the form of data, so that to enable 

comprehensive awareness of the surrounding environment(s).  The network 

layer is the most standardized of the three IoT levels. Here, the devices 

existing at the perception level can communicate by using IoT gateways, 

wireless fidelity (Wi-Fi), Access Points (APs) and Base Stations (BS) for data 



transmission. The communication can be either short-range or long-range 

using various communication protocols such as, for example, Bluetooth, 

ZigBee, Sigfox, Long Range Radio (LoRa) and Narrowband IoT (NB-IoT). The 

data generated in the perception layer must be quickly and with accuracy 

transmitted to the server through the network layer and exactly. Within the 

application layer all the applications using IoT technology are defined. This 

layer can provide countless applications such as industrial control, urban 

management, smart agriculture and smart farming. This layer corresponds to 

the control level and the IoT decision layer.  

However, the above three-tier architecture has been proved “insufficient” due 

to the fast-growing IoT requirements. Considering that, ITU-T [17] proposed a 

four-layer architecture introducing an additional layer, namely the support 

layer (also known as transport layer), between the network layer and the 

application layer (see Figure 2a). 

 

 



 

Figure 2(a): Four- layer IoT Architecture [18];  

(b): Five-layer IoT Architecture [19] 
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The new tier has been proposed because of the deficiencies in the 3-tier 

architecture and, more specifically, in order to enhance security in the 

architecture of IoT. In the prior approach, information is sent directly to the 

network layer of the three-tier architecture, so threats are more likely to 

appear. In the four-tier architecture, information is sent to the support layer 

and received by the perception layer. The support layer has two specific roles: 

to ensure the information is sent by genuine users and protected from threats. 

There are many ways to verify the authenticity of information. The most 

commonly used method is authentication, implemented with a pre-shared 

secret, key and password. The support layer's second task is sending 

information to the network layer. Radio- or wire-based is the medium for 

transferring information from the support layer to the network layer. Various 

attacks, such as Denial of Service (DoS) attacks, malicious insiders, and 

unauthorized access, can affect this layer [20]. 

The previously explained four-tier architecture has played an essential role in 

IoT development and approval. However, since security and storage issues 

continued, researchers have proposed a subsequent 5-layer architecture to 

secure the IoT [21]. Similar to previous architectures, there are three layers 

named perception layer, network layer, and application layer and two 

additional layers named middleware and business layers (cf. Fig.2b). This 5-

tier proposed architecture meets multiple novel IoT technology requirements.  

The processing layer, or the middleware layer, collects and processes the 

information sent by the network layer. Here, meaningless information is 



removed, and valuable information is extracted. This procedure solves the big 

data issue in the IoT domain since a large amount of information is received, 

thus impacting the IoT ecosystem's performance. The business layer is 

considered the “manager” of the system. The function of this specific layer is 

the management of IoT applications and intended services. Based on the 

volume of accurate data received from lower layers, it effectively analyzes 

such data. This layer can also determine how information is created, stored 

and modified, simultaneously managing t users' privacy. 

 

3.1   Fundamentals of Artificial Internet of Things  

The artificial intelligence of things is enabled by combining IoT [22] and 

artificial intelligence techniques [23]. IoT is defined as any device that can be 

interconnected – e.g. sensors – and collect data in real-time [24]. This 

relevance is revealed by processing the acquired data using artificial 

intelligence models, especially machine learning (ML) or, in some cases deep 

learning (DL), to analyze the collected data and extract valuable information 

for decision-making ([25], [26]).  

Combining AI and IoT results in Artificial Intelligence of Things (AIoT) which, 

in turn, enables building more efficient IoT operations thus enhancing human-

machine interaction and data management and analytics. IoT is considered 

the spine of the system, while artificial intelligence is the system's brain. AIoT 

is revolutionary and beneficial for both types of technology since artificial 



intelligence evaluates IoT through machine learning capabilities and IoT 

artificial intelligence through connectivity, signalling and data exchange. As 

IoT networks spread across large industries, there will be a large amount of 

human-centric, machine-generated data [27]. This can support data analytics 

solutions that can “add value’ to al data forms generated by IoT. Several IoT 

systems are designed for simple event control, but other events are much 

more complex, and IoT can be used for analytics purposes. AIoT elaborates 

on this context for preparing the appropriate steps to make this process 

happen. With intelligent tools on, edge devices are capable of observing their 

surroundings, perceiving data and finally making the best decision(s); and the 

most important is that all of these procedures can be implemented with the 

minor human intervention. Artificial intelligence transforms AIoT devices into 

intelligent machines capable of performing self-centred analysis and 

independent operations rather than mere messengers providing information to 

a control centre [28]. 

Regarding data analytics, with the combination of machine learning with 

IoT networks and systems, AIoT can create "learning machines." This can be 

applied to enterprise and industrial data, controlling IoT data such as the 

network edge and automating tasks in the connected workplace. Real-time 

data is critical to all AIoT applications and solutions. In particular, there are 

four main areas where AIoT is expected to have a significant impact: 

wearables, smart homes, smart cities and smart industry. Other fields are also 

currently expanding, requiring dynamic solutions that can be solved with AI, 



for example, sustainability [29], health [30], communication systems [31], data 

protection [32], electric vehicles [33] and power systems [34]. 

 

3.2   Overview of AIoT Architecture  

Similar to IoT, AIoT also assumes a 3-tier architecture, this time from a 

computational perspective. The three layers are now cloud, fog and edge 

computing as illustrated in Figure 3.  

 

Figure 3: AIoT layered architecture [35] 



 

The Edge computing layer can be considered as the perception layer in IoT 

architecture. It supports control and execution via sensors and actuators, 

enhancing AIoT systems’ behavioural, overall perception and cognitive 

abilities. Fog computing is embedded in the fog nodes (i.e. hubs, routers, 

gateways) within the network; finally, the cloud computing layer supports 

application services per the IoT application layer. The fog and cloud 

computing layers have vast computational resources, access to considerable 

amounts of data and are primarily concerned with empowering AIoT systems 

with learning and reasoning capabilities. 

  

3.2.1   Edge Layer 

Edge networks are often powered by specific computing and storage 

capabilities. The bottom edge nodes are responsible for receiving data from 

the end devices of the perception layer and returning control flows to the 

devices over wireless interfaces [36]. The upper-edge servers use the 

received data to perform computational tasks, which, in cases of augmented 

complexity, can also be outsourced to higher-level servers with more powerful 

computational capabilities. Other edge server functions include authentication, 

authorization, offloading and storing data exchanged across the networks. 

This type of edge computing can reduce latency and provide continuous 

service while at the same time protecting data security and privacy. This has 



practical value for several AIoT applications such as agriculture, ships and 

smart grids where the internet could be more practically stable.  

Edge layer resources are scarce compared to traditional cloud computing. 

This makes edge computing flexible and scalable, delivering various services 

anywhere between end-users and the cloud. Edge computing is usually 

viewed as an “extension” of cloud platforms and, in some scenarios, can work 

effectively, independently or in conjunction with cloud platforms. In this sense, 

edge computing refers to providing computing power to edge devices close to 

sensors and actuators. The emergence of edge computing depends on 

migrating computational tasks to the edge of the cloud, succeeding proximity 

to sensors or actuators, thus reducing the pressure of data transfer and the 

end-to-end (E2E) latency enabling real-time services. Here it should also be 

noted that fog and edge nodes are continuously distributed, while cloud nodes 

are not. 

 

3.2.2  Fog Layer  

The term “edge computing” is often confused with fog computing in literature 

[37] or is perceived as an “umbrella” term that includes fog as well. In fact, fog 

computing is responsible for bringing storage, computation, processing and 

networking capacity to the edge of the network, which is in the proximity of 

devices acting as an extension of and a ‘supplement” to cloud computing. 

Although fog nodes (routers, switches, gateways and wireless access points) 



are functioning similarly to cloud computing, fog computing can provide real-

time collaborative services with less latency for numerous interconnected IoT 

devices as well as better data protection in terms of security and privacy since 

data can be held within the Local Area Network (LAN). Fog computing can 

provide real-time collaborative services with less latency for numerous 

interconnected IoT devices via distributed fog nodes [38]. 

 

3.2.3  Cloud Layer 

The cloud enables AIoT corporations to have virtual computational resources 

instead of physical ones. The Cloud computing layer is a service-oriented 

architecture that provides flexible, scalable, elastic and reliable resources 

(such as computing, storage, and networking), enabling various AIoT 

applications and reducing information technology overhead for end-users and 

ownership costs. Real-time data is sent from distributed sensors and devices 

to remote cloud centres over the internet for processing and storage. 

However, cloud centres are usually built in remote locations far away from the 

end-user, thus causing delays in data transmission. With the increased 

number of IoT devices, the cloud cannot “meet” latency and data protection 

requirements, especially regarding latency-sensitive and privacy-sensitive 

applications [39]. AI can perform such tasks, and it is located in two places 

within an IoT ecosystem (i.e., centre and edge). AI deployments in centres 

traditionally generate predictive analytics or even anomaly detection. So far, 



AI deployments have mostly had a secondary function of reducing the amount 

of data entering the cloud. 

 

4    NEMO Concept leveraging IoT 

The Internet of Things can offer new and improved services and applications 

based on knowledge of the environment and the entities it contains. Millions of 

micro-suppliers could be created, formulating a highly fragmented market with 

new business opportunities able to offer commercial services. In this respect, 

the ongoing NEMO EU-funded project considers that intelligence needs to 

“move closer to the point of decision” and become an integral part of the AIoT 

meta-Operating System (mOS), supporting every activity, process and 

decision that ranges from ad-hoc micro-cloud cluster self-organization to 

micro-services migration and intent-based programming. To facilitate 

knowledge easily and almost without administrator instant deployment on any 

AIoT device, all mechanisms need to be integrated and connected, essential 

mOS tools and plug-ins installed as a (semi-)automated/standalone software 

package while ensuring interoperability, trust, cybersecurity and privacy. 

Under this framework the NEMO project [1] aims to “drive” the IoT-Edge-

Cloud continuum to the next generation by offering flexible, multi-path 5G/IoT 

connectivity and a lightweight micro-services’ mesh migration/execution to 

ensure horizontal and vertical scalability. NEMO will pursue a close 



collaboration among semi-autonomous IoT nodes, IoT fog clusters, far-edge 

and near-edge cloud, and national and federated cloud infrastructures. 

Following a flexible collaboration model, new generation AIoT nodes will be 

equipped with intelligence to function in a semi-autonomous mode, reducing 

the latency and performing many complex operations locally without 

transporting raw data. Furthermore, federated on-device learning, data 

sovereignty, and trusted, explicitly attested (edge) cloud nodes will "bring" AI 

to environments with limited network coverage. The NEMO core functionality 

will be offered by an AI-based meta-Orchestrator, which will automatically, 

and in real-time, re-configure the mOS set-up at each node (either IoT, Edge, 

Cloud, ad-hoc or hybrid Clouds) so that the end-to-end federation operates 

optimally, matching the applications’ Service Level Objectives (SLOs) and the 

policies set by the mOS administrators. 

 

Figure 4. NEMO Concept 

 



This effort will be highly related to security, regulation and legal restrictions. 

In this respect, new security and policy enforcement capabilities in the form of 

plug-in modules that comply with the terms of the Linux Security Modules 

(LSM) will be built for better protection against malicious code, cyberattacks or 

unintentional misconfigurations. Capabilities that go far beyond traditional 

smart contracts, such as data sharing and introducing innovative contractual 

perspectives as microservices, will consider the energy consumption and the 

costs of processing, storage, network/transmission, and cooling for providing 

optimal end-to-end services.  

 

5 Conclusion 

The Internet of Things is driving a significant transformation with the help of 

technologies such as 5G, fog computing and artificial intelligence to create 

new applications with specific requirements and greater flexibility and 

efficiency. This paper surveyed on several fundamental concepts (including 

IoT, AI and edge computing) and how these have managed to move the 

frontiers of AI away from the cloud network edge. Guided by these concepts, 

the paper also explores the general AIoT architecture and the integration that 

facilitated the corresponding rapid development. Connecting Edge 

Computing, IoT, and AI creates a new paradigm for edge intelligence with 

specific vertical industries such as smart agriculture, smart energy 

management, smart media and cultural experiences to exploit this innovative 



feature, also emphasizing the integration of substantial new data streams 

from machines and sensors. 

This paper has so provided a comprehensive insight into the IoT and AIoT 

architectures, being able to promote on-edge intelligence. Specifically, first, 

our work has presented a short review of the related background and then the 

most known architectures. Based on these concepts, the paper has further 

outlined open challenges and future directions of AIoT in the context of the 

NEMO concept, aiming to have direct impact on several use cases of market 

importance. 
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