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• We carry out fully-featured seamless live migrations of runC containers.

• We minimize the downtime and disk utilization through diskless, iter-
ative migrations.

• We migrate containers with established TCP connections transparently
to the clients.

• We characterize the facets of live migrations in representative HPC
benchmarks.
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Abstract

Checkpoint/Restore techniques had been thoroughly used by the High Per-
formance Computing (HPC) community in the context of failure recovery.
Given the current trend in HPC to use containerization to obtain fast, cus-
tomized, portable, flexible, and reproducible deployments of their workloads,
as well as efficient and reliable sharing and management of HPC Cloud infras-
tructures, there is a need to integrate Checkpoint/Restore with container-
ization in such a way that the freeze time of the application is minimal
and live migrations are practicable. Whereas current Checkpoint/Restore
tools (such as CRIU) support several options to accomplish this, most of
them are rarely exploited in HPC Clouds and, consequently, their poten-
tial impact on the performance is barely known. Therefore, this paper
explores the use of CRIU’s advanced features to implement diskless, itera-
tive (pre-copy and post-copy) migrations of containers with external network
namespaces and established TCP connections, so that memory-intensive and
connection-persistent HPC applications can live-migrate. Our extensive ex-
periments to characterize the performance impact of those features demon-
strate that properly-configured live migrations incur low application down-
time and memory/disk usage and are indeed feasible in containerized HPC
Clouds.

Keywords: checkpoint/restore, live migration, diskless migration, iterative
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1. Introduction

Containerization technology offers an appealing alternative for encapsu-
lating and operating applications (and all their dependencies) without being
constrained by the performance penalties of using Virtual Machines and, as
a result, has got the interest of the High Performance Computing (HPC)
community to obtain fast, customized, portable, flexible, and reproducible
deployments of their workloads [2].

Containerization is a key technology for Cloud Computing, which has
been also attracting HPC users by promising the access to unlimited resources
on a pay-per-use basis and the option to scale-up and down the resources al-
located to an application on-demand. This convergence between HPC and
Cloud Computing has resulted in a new computation model, so-called HPC
Cloud [13], which considers three flavors [15], namely, (i) executing HPC ap-
plications in Cloud platforms, (ii) complementing HPC infrastructures with
Cloud resources to handle peak demands, and (iii) exposing HPC resources
using on-demand Cloud abstractions.

Containers support efficient and reliable resource sharing and manage-
ment in HPC Clouds. In addition to their workload isolation capabilities,
containers allow balancing the load of the various physical hosts depending
on changing resource requirements of the workloads, consolidating workloads
that run on under-utilized hosts and suspend idle hosts to lower energy con-
sumption, resuming workloads execution upon a host failure, or proactively
moving workloads from hosts anticipating hardware problems to healthy
spare hosts.

Many of these features rely on application checkpointing or live migration
techniques. By dumping the state of an application and restoring it at a
later time (possibly in another physical host), it can resume from the exact
point it was dumped at. This procedure constitutes a live migration when
it can be done without interrupting the service, that is, transparently to
the application and their users (if any). Such live migration would be also
seamless if the time before the restoration is small enough, so that the user
will not perceive any downtime (or minimal). Acceptable downtimes for
seamless live migrations have been established on few seconds (between 1
and 2) by major vendors featuring live migrations, such as Google1 and

1https://cloud.google.com/compute/docs/instances/live-migration-process
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VMware2.
Originally developed for the HPC domain, checkpointing was used to save

the intermediate state of long-running jobs. In the event of an unexpected
failure, the job could be restarted from the last stored checkpoint rather than
from the beginning, which would lead to lose several hours or days worth of
work [7].

Checkpoint/Restore in Userspace3 (CRIU) is an open-source software
tool to dump and restore running applications transparently to the user.
It does so entirely from userspace, by strongly leveraging interfaces exposed
by the Linux kernel. CRIU has particularly targeted its integration with
container engines and runtimes. In fact, nowadays most of those offering
checkpoint/restore functionalities such as runC4, crun5, Docker6, Podman7,
OpenVZ8, or LXC9, rely on CRIU at a lower level.

CRIU supports multiple options to optimize the checkpoint/restore pro-
cedure, particularly to reduce the freeze time of the application and enable
(really) live migrations. However, many of those options are rarely exploited
in HPC Clouds, either because the container engine does not offer them (for
instance, Docker’s support for CRIU is quite minimal), their correct use and
proper configuration is not well understood, or their potential impact on the
performance has not been well analyzed yet.

Consequently, the main goal of this work is to carry out practicable seam-
less live migrations of running runC containers in the context of memory-
intensive and connection-persistent HPC applications. runC is our container
runtime of choice because of its advanced support for container live migration,
better than other container engines and runtimes, such as Docker, which only
offers diskful (i.e., without page-server) live migrations, and Podman/crun,
which only support diskful iterative pre-copy live migrations.

We exploit runC/CRIU checkpoint and restore advanced features to im-
plement diskless, iterative (pre-copy and post-copy) migrations of containers

2https://www.vmware.com/products/vsphere/vmotion.html
3https://criu.org/
4https://github.com/opencontainers/runc
5https://github.com/containers/crun
6https://docs.docker.com/engine/
7https://podman.io/
8https://openvz.org/
9https://linuxcontainers.org/
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with external network namespaces (which include MACVLAN devices) and
established TCP connections, and we perform extensive experiments to char-
acterize the impact of those features on the application downtime (for how
long a migrating application is not running), the overall application perfor-
mance, and the migration overhead in terms of allocated (and duplicated)
memory and disk usage.

Our main contributions can be summarized as follows:

• We carry out fully-featured seamless live migrations of runC containers
running HPC applications.

• We implement diskless, iterative migrations to minimize the downtime
and resource utilization when migrating memory-intensive containers.

• We support live migrations of containers running in external network
namespaces with established TCP connections transparently to their
clients.

• We characterize the impact of the several facets of live migrations in
representative benchmarks of the HPC domain.

2. Background

2.1. Container Terminology

Containers are isolated executable units of software in which application
code is packaged along with its libraries and dependencies. They are running
instances of a container image, which is a (set of) files that are used locally as
a mount point. To enhance portability and vendor interoperability, images
are stored using a standardized format by the Open Container Initiative
(OCI)10, an open governance structure for container-related standards. A
container engine turns the image into a running container and acts as the
interaction point with the user.

Current engines do not usually instantiate the containers themselves, but
rather rely on a container runtime. The runtime is the lower-level component
that interacts with the kernel. Its specification [14] is also maintained and
developed by the OCI. runC is its reference implementation, and our tool
of choice to implement live migration. We have chosen to skip the engine

10https://opencontainers.org/
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layer and interact directly with the runtime as support for advanced CRIU
features is lacking in higher-level tools.

2.2. runC: the Reference Runtime Implementation

Originally developed at Docker, runC is a lightweight container runtime
aimed to provide low-level interaction with containers. In 2015 [10], Docker
open-sourced the component and transferred the ownership to the OCI, who
has since then led the project in a fashion similar to that of the Linux Foun-
dation. Several container engines such as containerd11 and CRI-O12 have
made runC their runtime of choice. Podman also supports runC, although it
prefers to use crun if present. The OCI releases specifications for container
runtimes, engines, images, and image distribution. runC is an OCI-compliant
container runtime (it is, in fact, the reference implementation). Users are en-
couraged to interact with containers through container engines, but runC
itself provides an interface to create, run, and manage containers natively.
Integration with CRIU has to be done on a per-project basis, and runC has
the most advanced and stable integration. Therefore, we decided to use it to
manage our containers. Running a container with runC is slightly different
than doing it in, let’s say, Docker, as the user’s interaction with the underly-
ing system is more direct. In particular, in runC there is no notion of images.
To run a container, a user must provide a specification file (config.json) and
a root filesystem in a directory (rootfs). Several low-level options such as
namespaces, control groups, and capabilities can be configured through the
specification file. The tandem config.json and rootfs is referred to as OCI
bundle.

2.3. CNI: Container Networking

Configuring the container’s network is challenging due to the large num-
ber of networking technologies available. To address this challenge, the Cloud
Native Computing Foundation13 proposed a driver-based network model,
where the container engine can offload the networking configuration to spe-
cific drivers. They released the Container Network Interface (CNI)14, which

11https://containerd.io/
12https://cri-o.io/
13https://cncf.io
14https://www.cni.dev/
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consists of a specification and libraries for writing plugins to configure net-
work interfaces in Linux containers. The specification [5] defines a JSON
schema that defines the inputs and outputs expected of a CNI plugin and
provides a clear separation of concerns for the container engine and the CNI
plugin. They also released CNI plugins15 for a variety of basic networks such
as bridge, ipvlan, or macvlan.

Many container engines such as Podman and CRI-O use CNI to configure
their container’s networking. A network namespace is created and the CNI
plugin populates it with the network devices and interfaces as defined in
the JSON file. After that, the underlying container runtime (e.g., runC) is
instructed to use that existing network namespace for the container.

As we are using runC directly to manage our containers, we must perform
part of this procedure by ourselves. We decided to create a MACVLAN
network so that our experimental setup can be easily ported to a cluster of
nodes interconnected through a LAN network. First, we define a macvlan
CNI profile, which can created by means of a JSON configuration file (my-
macvlan-net.conflist) as follows:

{

"cniVersion": "1.0.0",

"name": "my-macvlan-net",

"plugins": [ {

"type": "macvlan",

"master": "enp0s8",

"mode": "bridge",

"ipam": {

"type": "host-local",

"ranges": [ [ {

"subnet": "192.168.1.0/24",

"rangeStart": "192.168.1.17",

"rangeEnd": "192.168.1.31",

"gateway": "192.168.1.1" } ] ],

"routes": [ {

"dst": "0.0.0.0/0",

"gw": "192.168.1.1" } ]

}

15https://github.com/containernetworking/plugins
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} ]

}

Then, we create a network namespace (sudo ip netns add <NETNS NAME>)
and populate it with the MACVLAN device by using the cnitool as follows:

sudo CNI_PATH=/opt/cni/bin/ cnitool \

add my-macvlan-net /var/run/netns/<NETNS_NAME>

Finally, we instruct runC to use that network namespace to run the con-
tainer through the config.json specification file as follows:

"namespaces": [

{

"type": "network",

"path": "/var/run/netns/<NETNS_NAME>"

}

]

2.4. Checkpoint/Restore (C/R)

As defined by Schulz [21], checkpointing refers to the ability of storing
the state of a computation such that it can be continued later at that same
state without covering the preceding ones. The saved state is called a check-
point and the resumed process a restart or restore. C/R tools snapshot an
application’s state regardless of the software running and without requiring,
in general, any additional work from the application’s developer. During the
checkpointing, and in order to save the process’ state, all the essential infor-
mation such as the program’s memory, file descriptors, sockets, pipes, etc.
are dumped. With distributed computations, additional logic is required to
coordinate the checkpointing across all processes [17].

Even though C/R tools originated in the HPC environment to provide
fault tolerance and fast rollback times, they are also useful for debugging,
skipping long initialization times and, as in this work, live process migration.
In that respect, although Checkpoint/Restore had already been thoroughly
studied in the context of failure recovery strategies [7], it became popular in
the context of the migration of Virtual Machines (VM) [4]. Checkpointing of
VMs is easier when compared to arbitrary process checkpointing, as processes
running within a VM are already isolated.
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2.5. Live Migration

As mentioned before, a prominent application of Checkpoint/Restore is
live migration, which allows moving a running process(es) or container from
a physical host to another transparently to the end user. A live migration is
seamless when the downtime is minimal. It is clear that (seamless) live mi-
gration is a desirable feature for resource providers as it drastically increases
their load-balancing capabilities with minimal impact to the perceived qual-
ity of service.

A naive migration approach (a.k.a. cold migration) would freeze the
container to ensure that it no longer modifies the state, dump the whole
state, transfer it through the network while the container is stopped, and
resume the container at the destination host when all the state is available.
Unfortunately, this approach incurs in very high downtimes. There are other
approaches to minimize this downtime, aiming for really live migrations. For
this purpose, we highlight two forms of iterative migration, namely pre-copy
[4] and post-copy migration [9].

Pre-copy migration. It copies all the state from source to destination while
the container is still running on the source, and data which has changed
during this time (’dirty’) is transferred in a successive round. This procedure
is iteratively repeated until the information to transfer is minimal (smaller
than a threshold) or after a given number of iterations. Only at this point
the container is stopped (minimizing the downtime), the remaining dirty bits
are sent over the wire, and the container is resumed in the other host.

With pre-copy migration, there is no need to fetch pages from the source
host after the restoration of the container, and an up-to-date state is retained
at the source host during migration, thereby if the destination host fails in
the meantime, the container can be still recovered. However, it is possible
that the migration never ends if source host dirties pages faster than they
can be transferred. Moreover, with pre-copy migration the same page can be
transferred multiple times if the page is dirtied repeatedly at the source host
during migration.

Post-copy migration. Initially, it suspends the container and transfers the
minimal execution state for the container to be able to resume on the desti-
nation host. Concurrently, the source actively pushes the remaining memory
pages of the VM to the target, and any access in this host to a page that
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has not yet been transferred (a.k.a. remote page fault) is resolved over the
network by fetching the page from the source.

With post-copy migration, the live migration is guaranteed to end in a
finite time, as each page is sent exactly once over the network. However,
as the container state is distributed over both source and destination hosts,
it cannot be recovered if the destination host fails during migration. More-
over, post-copy migration can incur some performance degradation in the
application because of the latency of fetching pages from the source host.

3. Related Work

3.1. Checkpoint/Restore of HPC Applications

Apart from CRIU, another popular open-source tool for checkpoint/restore
with a special focus on HPC is Distributed Multi-Threaded Checkpoint-
ing (DMTCP) [1]. Unlike CRIU, any application to be checkpointed with
DMTCP must be prepared, that is, dynamically linked with the DMTCP
library and executed with wrappers on a few system calls so that they can
be intercepted. Moreover, as DMTCP does not support namespaces, it can-
not checkpoint/restore containers. On the plus side, its main advantage over
CRIU is its built-in support for checkpointing distributed computations, par-
ticularly, MPI [8].

Focusing on CRIU-based distributed checkpointing with containers for
HPC, Berg and Brattlof [3] have assessed the successful completion of check-
point/restore of a NPB benchmark running on Docker depending on the
sequence order of the CRIU checkpoint and restore operations (e.g., check-
point the MPI process launcher first/last and restore it first/last). Not all
the sequences were successful, confirming that additional logic is required to
coordinate the checkpoint across all the processes.

Sindi and Williams [23] also deal with the migration of (OpenVZ) contain-
ers running MPI workloads using CRIU to provide resilience. Their check-
pointing is actually not distributed, as they only migrate one of the containers
part of the MPI job. This container is suspended during the migration, which
causes the entire MPI job to freeze temporarily.

None of the works presented in this subsection has considered advanced
C/R features such as diskless and iterative migrations, memory deduplica-
tion, or migration of established TCP connections.
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3.2. Container Migration with non-HPC applications
Adrian Reber, one of the contributors to the CRIU project, particularly

in the integration with runC containers, has some blog posts about live mi-
grations with runC and CRIU. In [18], Reber shows how to migrate a running
runC container (executing an httpd webserver) from one system to another.
The author employs a basic setup, using the hosts’ network interfaces di-
rectly (no network namespaces) and a shared NFS filesystem between the
hosts. The work does not consider either advanced features such as iterative
migrations, a page-server, memory deduplication, or migration of established
TCP connections.

In [19], Reber migrates the server part of the Xonotic game around several
nodes in the world and compares some basic versions of migration optimiza-
tions to reduce the downtime, namely pre-copy migration (with a single pre-
dump) and post-copy migration (using a page-server). Other features such
as network namespaces, memory deduplication, or migration of established
TCP connections are not explored (although the author uses keepalived to
move the IP address from one system to another, the disconnection during
the migration is perceived by the client).

In his master thesis, Terneborg [25] has implemented a variant of CRIU’s
iterative pre-copy migration to be used for runC containers failover (auto-
matically move a container to another host upon failure), which is evaluated
using the Redis database. This work does not consider advanced features
such as a page-server, memory deduplication, or networking migration (in-
cluding network namespaces and established TCP connections).

Puliafito et al. [16] have carried out a comprehensive performance evalu-
ation of runC container migration techniques based on CRIU over a real fog
computing testbed running a client-server Java application. They compare
cold, pre-copy (with a single pre-dump), post-copy (with a page-server), and
hybrid (pre-copy+post-copy) migrations. Their study does not include other
advanced features such as network namespaces, memory deduplication, or
migration of established TCP connections.

Nadgowda et al. [12] have presented Voyager, an OCI-compliant live con-
tainer migration service that combines CRIU-based memory migration to-
gether with the data federation capabilities of union mounts to minimize
migration downtime. As in our work, Voyager takes advantage of diskless
migration, i.e., tmpfs to store the dump files and CRIU’s page-server, which
is used to implement post-copy migration. They use MySQL as test appli-
cation. Voyager does not consider other advanced features such as network
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namespaces, memory deduplication, or migration of established TCP con-
nections.

4. Building Blocks for Live Migration

In this section, we describe how to accomplish live migrations with runC
containers. Live migration attempts to provide a seamless transfer of service
between physical hosts without impacting client processes or applications.
This migrating to the destination host the container’s storage, its memory,
its network identity, and its established connections.

4.1. Storage Migration

The migration of the container’s rootfs filesystem can be avoided by using
a shared filesystem (such as NFS) that can be accessed both from the source
and the destination hosts. Alternatively, a container engine that supports
OCI-compliant images could take advantage of the layered structure of the
images so that the underlying immutable image layers can be copied between
the hosts in advance and only the top writable layer must be transferred
during the actual migration [11]. However, as runC does not implement the
concept of container images, let alone layered images, we opted for a con-
ceptually similar approach in which we configured the container’s filesystem
as read-only (using the option ’"readonly": true’ in its config.json) so
that the filesystem does not need to be migrated, only copied once before
running the container. For containers that need to write to the filesystem,
we created a tmpfs mount in the container, and configured the application
to write in there. As this mount is stored in memory, it will be migrated
when we migrate the container’s memory. This mount can be configured in
the config.json file as follows:

"mounts": [

{

"destination": "/tmp",

"type": "tmpfs",

"source": "tmpfs",

"options": [

"nosuid",

"strictatime",

"mode=755",

11



Figure 1: Diskful cold memory migration without page-server (image from https://criu.

org).

"size=1048576k"

]

}

]

A similar rationale applies to ensure that the dump files resulting from
the container’s memory (see Section 4.2) are available on the remote host
upon restore. For this case, we opted to use the rsync16 utility to copy those
files from one host to another.

4.2. Memory Migration

Figure 1 shows a simple (but typical) approach to migrate the container’s
memory, which we introduced before as cold migration. It consists of i) stop-
ping the container and dumping its memory pages to files on disk, ii) reading
the files and sending them over the network to the destination host, iii) re-
ceiving the files and writing them on disk, and iv) restoring the container’s
memory by loading the pages from files into memory.

This procedure is supported by runC through two operations, namely,
checkpoint and restore, which can be used to perform a cold migration in the
following way:

sudo runc checkpoint \

--image-path ${IMAGES_DIR} \

--work-path ${LOG_DIR} \

16https://rsync.samba.org/

12



${CONTAINER_NAME}

sudo runc restore \

--image-path ${IMAGES_DIR} \

--work-path ${LOG_DIR} \

-d ${CONTAINER_NAME}

As mentioned before, we use the rsync utility to transfer the files con-
taining the memory pages. We try to get advantage of the --sparse option
to save some disk space on the destination host.

Given the notable downtime incurred by cold migrations, in the next
subsections we are digging into diskless and iterative migrations to reduce
it. The former allows checkpoint/restore without writing to disk. The latter
allows for incremental pre-dumps without suspending the container.

4.2.1. Diskless Migration

CRIU stores the image files with the applications’ memory on the filesys-
tem location provided by the user. As a consequence, it relies heavily on the
performance of the underlying storage backend, which is usually a disk. If
the images are too big, this will result in big delays. It is of no surprise then,
that reading and writing from and to disk can quickly become the bottleneck
in the performance of live migration. Things get even worse due to the need
to copy the data to disk several times, i.e., we write once to disk to dump the
memory pages, and a second time to transfer the image files to the disk of
the destination host. CRIU can perform diskless migration without putting
images on disk to address this. As shown in Figure 2, a diskless migration
involves two complementary aspects, namely using a tmpfs filesystem and a
page-server process.

tmpfs. A way to mitigate the disk I/O overhead is to use tmpfs, a filesystem
that uses RAM as storage and was first presented by Sun Microsystems in
2007 [24]. According to the Linux manual page17, a tmpfs filesystem only
consumes as much memory as required to store the contents of its files, which
are discarded once the filesystem is unmounted. Since the files actually re-
side in memory, the user benefits from memory-like read/write performance.
A tmpfs mount to store the memory image files can be simply created by
running: mount -t tmpfs none ${IMAGES DIR}

17https://man7.org/linux/man-pages/man5/tmpfs.5.html
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Figure 2: Diskless memory migration with page-server (image from https://criu.org).

Page-server. To eliminate the double read/write of the container’s mem-
ory, CRIU offers a page-server18. It allows to send memory dumps (as they
are, without encryption nor compression) directly through the network (via
TCP), saving disk read/writes on the source host, writing them once they
reach the destination host.

The page-server is only used to migrate memory files, which tend to be
the largest ones, whereas other image files still need to be transferred (via
rsync) to accomplish the migration. Nevertheless, these images are typically
very small and will not incur significant transfer delay.

The page-server must be started on the destination node by interacting
directly with CRIU as follows. Note that this is a one-shot command, hence
if we perform multiple dumps (or predumps as described in next subsection),
a page-server must be started for each one of them.

sudo criu page-server \

--port ${PORT} \

--work-dir ${LOG_DIR} \

--images-dir ${IMAGES_DIR}

Additionally, the page-server is supported by runC as a parameter for the
checkpoint operation as follows:

sudo runc checkpoint \

--page-server ${DST_IP}:${PORT} \

--image-path ${IMAGES_DIR} \

18https://criu.org/Page server
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--work-path ${LOG_DIR} \

${CONTAINER_NAME}

4.2.2. Iterative Migration

Another issue with cold migrations is that the container remains frozen
while the memory is dumped and copied to the destination host. If the
container uses a high amount of memory, this will translate into a big down-
time. We can reduce this time by performing an iterative migration, which
is available in two different flavors, namely pre-copy and post-copy memory
migration.

Pre-copy Migration. Pre-copy memory migration, which is the more common
form of iterative migration, is based on the Linux kernel’s ability to track
memory changes. It features an iterative pre-copy phase while the container
is still running on the source to push its memory to the destination host. In
the first round, all the memory pages are copied. In successive rounds, the
memory pages that changed (became ’dirty’) during the previous round will
be copied again. This process is repeated until the number of dirty pages
becomes small enough or after a maximum number of rounds. At this point,
the container will be paused on the source host, the remaining dirty pages
will be transferred, and the container will be resumed at the destination host.

This is based on the hypothesis that all the heavy work for the checkpoint
(i.e., dumping the memory pages and transferring them) will have already
been done in previous iterations, hence minimizing the application downtime.
This requires that each subsequent dump is smaller than the previous one,
so that the procedure converges and we are not sending the same pages
repeatedly. Memory tracking supports this by marking as dirty the memory
pages written between dumps, which will be the only ones included in the
following transfer. Of course, this will only work if the memory dirtying rate
of the application is lower than the bandwidth available for the transfers.

This procedure for pre-copy iterative migration is supported by runC as
follows. First, it offers a new procedure (a.k.a. pre-dump) to snapshot the
memory of the container without stopping it (tasks will remain running af-
ter pre-dump, unlike a regular dump). This is configured as a parameter
(--pre-dump) for the checkpoint operation as follows. Note that this pa-
rameter automatically configures CRIU with the memory tracking option
(--track-mem) to keep track of the memory changes.

sudo runc checkpoint \
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--pre-dump \

--image-path ${IMAGES_DIR}/1/ \

--work-path ${LOG_DIR} \

${CONTAINER_NAME}

Note that, as the iterative migration can include several dumps, each of
them must refer to its own directory for images (in option --image-path).
Moreover, subsequent dumps must be linked together so that they can be
correctly re-interpreted when restoring the container. runC adds this in-
formation as a parameter (--parent-path) for the checkpoint operation as
follows. Note that this path is relative to the --image-path.

sudo runc checkpoint \

--parent-path ../1/ \

--image-path ${IMAGES_DIR}/2/ \

--work-path ${LOG_DIR} \

${CONTAINER_NAME}

The container can be restored (using the same command described before)
from the latest directory with dumped images.

At this point, it is worth mentioning that the result of an iterative check-
point is a layered stack of memory images in which some data is duplicated
(i.e., the same memory page is present in multiple images). RunC provides
support for deduplicating such data (by providing the --auto-dedup op-
tion to the checkpoint command) by punching holes in parent images (using
fallocate() syscall with FALLOC FL PUNCH HOLE flag)19 where the child im-
age is replacing an existing page, effectively freeing used disk space.

Finally, note that iterative and diskless migrations can be used together.
For that purpose, runC also supports the --page-server parameter when
pre-dumping containers. Similarly, starting the page-server also supports the
--auto-dedup option.

Post-copy Migration. Post-copy memory migration (a.k.a. lazy memory mi-
gration) aims to minimize the downtime by transferring only the minimal
execution state needed to resume the container in the destination host. Ini-
tially, the memory pages are kept in the source host and will be transferred

19https://criu.org/Memory images deduplication
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in the background without stopping the restored container. If the container
accesses a not yet received page during its execution, the page is faulted in
from the source host over the network and injected into the running task
address space (i.e., remote page fault).

This procedure for post-copy iterative migration is supported by runC as
follows. First, the --lazy-pages parameter must be added to the checkpoint
operation so that it dumps the container without writing its memory pages
into the image files. In addition, the --page-server option must be used to
start a page-server that will be serving the page requests from the lazy-pages
daemon in the destination host. The --status-fd parameter can be used
to know when the page-server is ready, as CRIU will write ’\0’ to that fd.

sudo runc checkpoint \

--lazy-pages \

--status-fd ${FD} \

--page-server ${SRC_IP}:${PORT} \

--work-path ${LOG_DIR} \

--image-path ${IMAGES_DIR} \

${CONTAINER_NAME}

In the destination host, we need a lazy-pages daemon that handles the
page faults in the container and injects the corresponding memory pages
into its address space. The --page-server option instructs the daemon to
connect to the page-server in the source host (as indicated by the --address
and --port parameters) to fetch the missing pages.

sudo criu lazy-pages \

--page-server \

--address ${SRC_IP} \

--port ${PORT} \

--work-dir ${LOG_DIR} \

--images-dir ${IMAGES_DIR}

Finally, the restore operation in the destination host must be run with
--lazy-pages option, so that the container is restored without filling out
the memory pages and ready to fill them either on demand when they are
accessed or in the background by connecting to the lazy-pages daemon.
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sudo runc restore \

--lazy-pages \

--image-path ${IMAGES_DIR} \

--work-path ${LOG_DIR} \

-d ${CONTAINER_NAME}

4.3. Networking Migration

The migration of the container’s network identity requires that the IP
addresses used by the container in the source host are also allocated to the
container in the destination host. This should be managed by the container
engine by means of the CNI plugin. In our case, as runC does not deal
with the container’s networking, we interact with the plugin by ourselves to
configure the container’s networking in the destination host, by following the
procedure described before in Section 2.3. In particular, we create a network
namespace with the same name, we use the CNI plugin to populate it with
the MACVLAN network device and interface (with the same IP address) and
we instruct runC to use that network namespace to restore the container.
Other container’s networking resources (such as interfaces, routing tables,
etc.) could be migrated similarly.

To checkpoint successfully a container running in a network namespace,
we must also indicate to CRIU to treat it as an external namespace, that
is, to leave it out of the dumped state assuming that a third-party tool will
take care of restoring it in the destination host. The information about
external namespaces can be passed to CRIU with parameter --external

net[<inode>]:<key>. Luckily, runC manages this automatically when it is
asked to checkpoint a container running in an external namespace.

Restoration of a container into an existing network namespace works sim-
ilarly. CRIU expects the information about the namespace via the parameter
--inherit-fd fd[<fd>]:<key>. Again, runC configures this automatically
when it finds an external namespace to be restored in the checkpoint image
files.

The ability to migrate established TCP connections transparently to their
clients builds mainly on the use of the TCP REPAIR socket option [6], which
was included in the Linux kernel version 3.5. This option sets an active socket
into a special ’repair’ mode, in which it can be manipulated without any com-
munication from/to the remote end. It also allows CRIU to gather all of the
information about the current state of the corresponding network connec-
tion which should move with the socket when it is migrated. This includes,
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for instance, the contents of the send and receive queues, the send and re-
ceive sequence numbers, the maximum segment size, the window scale factor,
the selective acknowledgments flag, and the timestamps flag. To restore the
connection, CRIU will create a new socket in the destination host, put it
in ’repair’ mode, populate the connection state with the information from
the origin socket, and reestablish the connection (but without any commu-
nication from the remote end). At this point, the networking protocol (i.e.,
TCP) can restart the traffic and resurrect the data sequence. Note that the
connection-oriented nature of TCP will also take care of the in-flight seg-
ments that were lost during the migration, by means of the corresponding
retransmissions (transparently to the application).

We can enable this behavior in runC by specifying the command-line op-
tion --tcp-established for both the checkpoint and the restore operations.

5. Experiments

5.1. Testbed

The experiments in this paper have been executed in a computer with an
Intel Core i7-8565U processor at 1.80GHz with 4 cores (with 2 hyperthreads
on each one), 16 GB RAM, 512 GB SSD hard disk, and 1-Gigabit Ethernet
network.

VirtualBox 7.0.10 has been used to run three virtual machines with 4
VCPUs, 4 GB RAM, 20 GB disk with ext4 filesystem, and a paravirtualized
(through virtio-net driver) bridged network adapter. All the VMs run the
same software stack, namely LUbuntu 22.04.1 (64 bits) Linux distribution
with kernel 5.19.0-32-generic, runC version 1.1.8, CRIU version 3.1820 (built
from source), and rsync version 3.2.7.

As computation- and memory-intensive HPC benchmarks, we use the
three pseudo-applications part of the NAS Parallel Benchmark21, namely BT
(Block Tri-diagonal matrix solver), LU (Lower Upper Gauss-Seidel solver),
and SP (Scalar Penta-Diagonal solver). The OpenMP version 3.4.2 has been
used for the reported experiments. Each benchmark runs 4 parallel processes
and we use the class sizes A and B. As memory-intensive benchmark, we use

20This version is required at least as former ones can result in lower performance of the
application after restoring: https://github.com/checkpoint-restore/criu/issues/1171

21https://www.nas.nasa.gov/software/npb.html
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the Redis in-memory database22. We use version 7.0.12 of the redis-server,
as well as the redis-benchmark to simulate client load. As network-intensive
benchmark, we make use of iPerf323 tool (version 3.9), which measures the
maximum achievable bandwidth on IP networks.

5.2. Diskless Migration

In this section, we evaluate the performance of diskless migration by
comparing four different scenarios:

• Diskful without page-server

• Diskful with page-server

• Diskless without page-server

• Diskless with page-server

’Diskful’ scenarios use disk-backed directories to store the images, whereas
’Diskless’ scenarios use tmpfs directories.

For each scenario, we measure the time needed i) to dump the container
(’dump’), ii) transfer the image files to the destination host using rsync
(’rsync’), and iii) restore the container (’restore’). For the latter, we dif-
ferentiate the time needed to restore the network namespace (’net-ns’) from
the restoration of the actual runC container within that namespace (’runc’).

The comparison includes classes A and B from the BT, SP, and LU
pseudo-applications from the NPB benchmark, as well as the Redis in-memory
database, which has been pre-loaded with 1000000 and 2000000 keys. We
present the resulting average and standard deviation values of 5 executions
(after filtering outliers) in Figures 3, 4, 5, and 6, respectively. Numeric results
are displayed in detail (including also 95% confidence intervals) in Tables A.2
and A.3 in the appendix.

As shown in the figures, diskless is always equal or better than disk-
ful, especially for the dump of the memory pages and, particularly, when
migrating without a page-server. This was to be expected, as tmpfs gives
better raw read/write performance. Because of that, the benefit increases
with the size of the memory to be migrated. Therefore, diskless migration is

22https://redis.io/
23https://iperf.fr/
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Figure 3: Downtime when migrating a runC container running BT comparing settings
diskful/diskless and with/without a page-server.

recommended, unless there are constraints in the amount of available RAM
memory and/or the container to be migrated uses a lot of memory.

Migration with a page-server clearly outweighs the one without. Although
the dump phase takes longer, because it now encompasses the transfer of the
memory pages, this is compensated with a notable reduction of the rsync
time, which now must only take care of the remaining dump files, which are
considerably smaller. Migration with a page-server has the added overhead
to start the server itself, but this is quickly balanced out as the memory used
by the container increases.

The restore phase is not affected much by the diskful/disless and with/without
page-server settings. Restoring the network namespace always needs the
same amount of time, and whereas restoring the runC container needs more
time as the size of the memory files get bigger, this is not significant in
comparison with the dump and transfer phases.

Summarizing, when migrating memory-intensive applications in a dis-
tributed environment, using a page-server is more determinant than using a
diskless approach based on tmpfs, although a combination of both yields the
best performance.

5.3. Iterative Migration

In this section, we evaluate the performance of the two flavors of iterative
migration, namely pre-copy and post-copy memory migration.

Pre-copy Migration. We evaluate this migration flavor by comparing four
different scenarios:
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Figure 4: Downtime when migrating a runC container running SP comparing settings
diskful/diskless and with/without a page-server.
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Figure 5: Downtime when migrating a runC container running LU comparing settings
diskful/diskless and with/without a page-server.
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Figure 6: Downtime when migrating a runC container running Redis database comparing
settings diskful/diskless and with/without a page-server.
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• Without page-server and without auto-deduplication

• With page-server and without auto-deduplication

• Without page-server and with auto-deduplication

• With page-server and with auto-deduplication

For each scenario, we perform three pre-dumps (’pre1’, ’pre2’, and ’pre3’),
and the final dump (’dump’), waiting one second between each of them.
Again, the comparison includes classes A and B from the BT, SP, and
LU pseudo-applications from the NPB benchmark, as well as the Redis in-
memory database, which has been pre-loaded with 1000000 and 2000000 keys.
For the latter, we include a static scenario in which Redis does not update
the memory during successive dumps, as well as a dynamic one in which,
between each dump, we run a client benchmark that issues as many queries
as the 1% of the initial size of the Redis database using random keys over
a keyspace 20% higher than the initial one. This means that, on average,
the client will update 80% of the initial keys, while adding 20% of new keys.
Again, we present the resulting average and standard deviation values of 5
executions in two sets of figures.

One set displays the size of each memory dump, in particular, the overall
apparent size (in solid color) and real size on disk (in diamond pattern) of
the image-*.img files (which contain the dumps of the container’s memory),
both at the source (’src’) and the destination (’dst’) hosts. See Figures 7, 8,
9, 10, and 11, respectively.

Another set displays the downtime corresponding to the final memory
dump, differentiating the time needed i) to dump the container (’dump’),
ii) transfer the image files to the destination host using rsync (’rsync’), and
iii) restore the container (’restore’). For the latter, we differentiate the time
needed to restore the network namespace (’net-ns’) from the restoration of
the actual runC container within that namespace (’runc’). See Figures 12,
13, 14, 15, and 16, respectively. The downtime numeric results are displayed
in detail (including also 95% confidence intervals) in Tables A.5 and A.6 in
the appendix.

As shown in the figures, pre-dumping the memory pages allows to reduce
the size of the final dump, which determines the downtime of the application,
as this is the only one that needs it to be stopped. The size reduction depends
of the memory usage pattern by the application. For instance, as the NAS
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NPB applications are memory-intensive, a noticeable amount of memory
pages becomes dirty between each pre-dump and, consequently, the size of
successive pre-dumps is still significant. On the other side, we observe that,
as expected, if we make no changes to the container’s memory after the
first dump, as occurs with Redis when there are no clients, the amount of
information to be re-transferred is negligible, barely 300 KB.

The impact of the memory deduplication is very noticeable. Thanks to
this optimization, the intermediate pre-dumps do not use any disk space,
neither in the source nor in the destination hosts. In fact, it guarantees
that each page is only stored once on each host. In some cases (see for
instance Figure 10), some disk space can be saved in the destination host
without deduplicating the memory if the ’--sparse’ option of rsync is used
to transfer the files.

However, memory deduplication has an important impact of the down-
time, which increases notably. This occurs when subsequent dumps replace
existing pages as these pages, which were already transferred after a previous
predump, must be also deduplicated at the destination host, thus involving
additional transfers.

The impact of the page-server is also obvious in the figures, as no files
are dumped in the source host. Although there is no difference in the size of
the memory dump files with or without the page-server, we demonstrated in
Section 5.2 that using a page-server for the migration decreases the downtime.

Summarizing, we conclude that iterative migration by means of mem-
ory tracking can minimize the downtime with computation-intensive appli-
cations, and alleviate it even with memory-intensive ones. Likewise, memory
deduplication and using a page-server minimize the amount of disk space used
on both the source and the destination hosts, but at the cost of increasing
the downtime, especially for memory-intensive applications.

Post-copy Migration. We evaluate this migration flavor by measuring the
downtime, particularly, the time needed i) to dump the container (’dump’),
ii) transfer the image files to the destination host using rsync (’rsync’), and
iii) restore the container (’restore’). For the latter, we differentiate the time
needed to restore the network namespace (’net-ns’) from the restoration of
the actual runC container within that namespace (’runc’).

Again, the comparison includes classes A and B from the BT, SP, and
LU pseudo-applications from the NPB benchmark, as well as the Redis in-
memory database, which has been pre-loaded with 1000000 and 2000000
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Figure 7: Size of the memory dump when migrating iteratively a runC container running
BT comparing settings with/without auto-dedup and with/without a page-server.
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Figure 8: Size of the memory dump when migrating iteratively a runC container running
SP comparing settings with/without auto-dedup and with/without a page-server.
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Figure 9: Size of the memory dump when migrating iteratively a runC container running
LU comparing settings with/without auto-dedup and with/without a page-server.
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Figure 10: Size of the memory dump when migrating iteratively a runC container run-
ning Redis database (without clients) comparing settings with/without auto-dedup and
with/without a page-server.

26



 0

 20

 40

 60

 80

 100

 120

☐ page-server
☐ auto-dedup

☑ page-server
☐ auto-dedup

☐ page-server
☑ auto-dedup

☑ page-server
☑ auto-dedup

m
e

m
o

ry
 d

u
m

p
 s

iz
e

 [
M

B
]

pre1 (src)
pre2 (src)

pre3 (src)
dump (src)

pre1 (dst)
pre2 (dst)

pre3 (dst)
dump (dst)

REDIS (initial size 1000000 keys, keyspace 1200000, 10000 SETs)

(a) Redis (1000000 keys)

 0

 40

 80

 120

 160

 200

 240

☐ page-server
☐ auto-dedup

☑ page-server
☐ auto-dedup

☐ page-server
☑ auto-dedup

☑ page-server
☑ auto-dedup

m
e
m

o
ry

 d
u
m

p
 s

iz
e
 [
M

B
]

pre1 (src)
pre2 (src)

pre3 (src)
dump (src)

pre1 (dst)
pre2 (dst)

pre3 (dst)
dump (dst)

REDIS (initial size 2000000 keys, keyspace 2400000, 20000 SETs)

(b) Redis (2000000 keys)

Figure 11: Size of the memory dump when migrating iteratively a runC container run-
ning Redis database (with clients) comparing settings with/without auto-dedup and
with/without a page-server.
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Figure 12: Downtime when migrating iteratively a runC container running BT comparing
settings with/without auto-dedup and with/without a page-server.
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Figure 13: Downtime when migrating iteratively a runC container running SP comparing
settings with/without auto-dedup and with/without a page-server.
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Figure 14: Downtime when migrating iteratively a runC container running LU comparing
settings with/without auto-dedup and with/without a page-server.
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Figure 15: Downtime when migrating iteratively a runC container running Redis (without
clients) comparing settings with/without auto-dedup and with/without a page-server.
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Figure 16: Downtime when migrating iteratively a runC container running Redis (with
clients) comparing settings with/without auto-dedup and with/without a page-server.

keys. We present the resulting average and standard deviation values of 5
executions (after filtering outliers) in Figures 17 and 18, respectively. Nu-
meric results are displayed in detail (including also 95% confidence intervals)
in Table A.4 in the appendix.

As shown in the figures, the times corresponding to the ’dump’ and ’rsync’
phases are now proportionally lower in comparison with the ’restore’, as only
the minimal execution state needed to resume the container in the destination
host is dumped and transferred at this point. Consequently, this approach
shows the lowest overall downtime. However, note that this downtime does
not account for the impact on the performance of the transfer of the memory
pages from the source host when there is a remote page fault. This will be
evaluated in Section 5.5. Finally, it is worth mentioning that the downtime
does not show relevant differences depending on the migrated application, be-
cause their execution states have similar sizes, unlike the size of the memory
dumps, which can differ heavily among applications.

5.4. Migration of Established TCP Connections

In this section, we evaluate the performance of the capability to migrate
established TCP connections.

We start an iPerf3 server within a container, and we run the iPerf3 client
against this server. After 10 seconds, we dump the server’s container and
we restore it immediately on the same host (and using the same network
namespace). Then, 10 seconds later, we dump the server again, but now, we
restore it in another host after transferring the dump files. All of this is done
transparently to the client, whose connection is never closed.
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Figure 17: Downtime when migrating lazily a runC container running LU and SP.
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Figure 18: Downtime when migrating lazily a runC container running BT and Redis
database (without clients).
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Figure 19: Throughput of a runC container running iPerf3 in the event of a migration to
the same host at time 10, and a migration to a different host 10 seconds later.

We present the client’s perceived throughput as a function of time in
Figure 19. During the downtime, we also differentiate the time taken to dump
the container (’D’), perform the rsync transfer of the dump files (’T’), and
restore the container (’R’). As shown in the figure, during the local migration
the measured throughput downtime does not exceed 0.5 seconds. During the
remote migration the downtime increases to 1.2 seconds, obviously because
the dump files must be now transferred to the destination host, but also
because the network namespace must be also created in that node before
restoring the container.

Given the behavior of the TCP protocol, we also hypothesize that the
established TCP connections might need some additional time to be fully
recovered after the restoration of the container if the downtime was long (as
could occur when the checkpoint files are huge and/or the network bandwidth
is low). In order to confirm this, we repeated the previous experiment, but
with an added delay of 3 seconds before starting the container’s restoration.
As shown in Figure 20, which displays the corresponding client’s throughput
for this experiment, it takes more than 2 seconds after the restoration to get
the connection back to full speed. This is because of the behavior of the iPerf
client at the TCP layer. The client is sending as many packets as possible
and reporting the measured capacity. During the downtime, those packets
are just discarded by the network filters. But for the client, as the socket is
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Figure 20: Throughput of a runC container running iPerf3 in the event of a migration to
the same host at time 10, and a migration to a different host 10 seconds later, both with
an added 3-second delay before restoring.

never closed, those packets remain as unacknowledged, and hence the client
will request them to be retransmitted. The specification of the TCP protocol
[20] determines that the retransmission timeout must be doubled every time
a packet is not acknowledged, therefore the recurrent outage of ACKs might
cause the client to back-off for increasing periods.

Summarizing, if the container can be restored soon after the memory
dump, the downtime values are small. We think that given these low values
together with the fact that the iPerf3 benchmark is very network-intensive,
this migration can be considered really ’live’ and suitable for most client-
server scenarios with negligible impact in the overall quality of service.

5.5. Impact of Migration on Application Performance

In this section, we put all the building blocks together, and we evaluate
the impact of diskless, iterative (pre-copy and post-copy), and connection-
persistent migration on the performance of the applications.

We choose the most favorable configurations according to the previous
experiments and, consequently, we configure live migrations with the tmpfs
filesystem and with page-server (w/ PS), and the iterative pre-copy migration
with one pre-dump and without auto-deduplication. We also configure all
the migrations to restore established TCP connections.
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We set up an experiment in which each application runs for 10 seconds,
then we dump it and restore it immediately in another host after transferring
the dump files. There, the application runs until completion. For Redis, this
means serving all the queries from a redis-benchmark asking to SET 1000000
keys. As before, the client’s connection is never closed.

Table 1 displays the downtime and the elapsed time (mean, standard
deviation, and 95% confidence interval of 5 executions) in seconds to execute
LU, SP, BT, and Redis applications with several live migration scenarios,
namely ‘No migration’, ‘Live migration (w/ PS)’, ‘Pre-copy live migration
(w/ PS)’, and ‘Post-copy live migration’. As shown in the table, NAS NPB
applications are only between 1.1 and 2.4 seconds slower when performing
the ’live migration w/ PS’. Most of this time (between 1.3 and 1.9 seconds)
corresponds to the downtime due to the migration, which is higher as we
increase the size of the application. NPB applications are between 1.5 and
2.9 seconds slower when performing the ’pre-copy live migration w/ PS’.
Between 1.3 and 1.7 seconds are the actual downtime due to the migration,
which is lower than with ’live migrations w/ PS’, while the rest come from the
performance interference while pre-dumping the application. Finally, NPB
applications are between 1.8 and 8.5 seconds slower when performing the
’post-copy live migration’. Whereas this type of migration shows the lowest
downtime (between 1.1 and 1.2 seconds), there is a notable performance
penalty, especially for memory-intensive applications, to transfer the memory
pages from the source to the destination host when there are remote page
faults.

Redis shows a similar behavior, but with slightly higher downtimes and
performance impact of the migration. In particular, it is between 2.5 and
4 seconds slower when performing the ’live migration w/ PS’, between 3.7
and 6.6 seconds slower when performing the ’pre-copy live migration w/
PS’, and between 3 and 4 seconds slower when performing the ’post-copy
live migration’. In this case, apart from the impact of the actual downtime
(between 1.2 and 2.5 seconds), the pre-dump interference, and the added
overhead to transfer memory pages from the source host when doing a post-
copy migration, an additional period to bring the connection to full speed
again is needed (as explained in Section 5.4).
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Table 1: Downtime and elapsed time (mean (M), standard deviation (SD), 95% confidence
interval (CI)) in seconds to execute LU, SP, BT, and Redis applications comparing different
migration approaches.

downtime elapsed time

M SD 95% CI M SD 95% CI

LU (class A)

No migration 12.46 0.21 (12.20, 12.72)
Live migration (w/ PS) 1.36 0.08 (1.26, 1.46) 13.51 0.12 (13.36, 13.66)
Pre-copy live migration (w/ PS) 1.26 0.05 (1.19, 1.32) 13.97 0.12 (13.82, 14.12)
Post-copy live migration 1.14 0.05 (1.07, 1.20) 14.47 0.15 (14.28, 14.66)

LU (class B)

No migration 50.02 0.05 (49.96, 50.08)
Live migration (w/ PS) 1.72 0.04 (1.66, 1.77) 51.6 0.13 (51.44, 51.77)
Pre-copy live migration (w/ PS) 1.63 0.04 (1.58, 1.67) 52.3 0.2 (52.06, 52.55)
Post-copy live migration 1.24 0.03 (1.21, 1.28) 57.04 0.4 (56.55, 57.53)

SP (class A)

No migration 10.98 0.05 (10.92, 11.04)
Live migration (w/ PS) 1.46 0.04 (1.42, 1.51) 12.34 0.03 (12.31, 12.37)
Pre-copy live migration (w/ PS) 1.28 0.08 (1.18, 1.38) 12.72 0.25 (12.40, 13.03)
Post-copy live migration 1.16 0.06 (1.08, 1.24) 12.78 0.29 (12.42, 13.13)

SP (class B)

No migration 48.32 0.27 (47.99, 48.66)
Live migration (w/ PS) 1.94 0.09 (1.83, 2.04) 50.08 0.15 (49.90, 50.27)
Pre-copy live migration (w/ PS) 1.68 0.08 (1.59, 1.78) 51.06 0.32 (50.66, 51.46)
Post-copy live migration 1.21 0.1 (1.08, 1.34) 56.83 0.88 (55.74, 57.91)

BT (class A)

No migration 20.46 0.38 (19.98, 20.94)
Live migration (w/ PS) 1.46 0.02 (1.43, 1.49) 22.11 0.12 (21.96, 22.27)
Pre-copy live migration (w/ PS) 1.33 0.03 (1.30, 1.37) 22.22 0.08 (22.12, 22.33)
Post-copy live migration 1.12 0.04 (1.07, 1.17) 22.54 0.12 (22.39, 22.69)

BT (class B)

No migration 85.38 0.39 (84.90, 85.86)
Live migration (w/ PS) 1.88 0.07 (1.80, 1.96) 87.76 0.36 (87.30, 88.21)
Pre-copy live migration (w/ PS) 1.73 0.05 (1.67, 1.80) 88.31 0.29 (87.95, 88.68)
Post-copy live migration 1.17 0.06 (1.09, 1.24) 91.74 0.73 (90.83, 92.65)

REDIS (initial size 1000000 keys, keyspace 1200000, 1000000 SETs)

No migration 98.66 0.6 (97.92, 99.40)
Live migration (w/ PS) 2.15 0.07 (2.06, 2.23) 101.19 0.87 (100.11, 102.27)
Pre-copy live migration (w/ PS) 1.89 0.08 (1.80, 1.99) 102.35 0.28 (101.99, 102.70)
Post-copy live migration 1.18 0.09 (1.06, 1.30) 101.72 0.91 (100.60, 102.85)

REDIS (initial size 2000000 keys, keyspace 2400000, 1000000 SETs)

No migration 98.78 0.77 (97.82, 99.73)
Live migration (w/ PS) 2.48 0.07 (2.39, 2.57) 102.79 0.36 (102.34, 103.24)
Pre-copy live migration (w/ PS) 2.36 0.07 (2.27, 2.44) 105.4 0.45 (104.84, 105.95)
Post-copy live migration 1.20 0.06 (1.12, 1.28) 102.83 0.44 (102.29, 103.37)
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6. Conclusions

In this paper, we have explored the use of CRIU’s advanced features to
implement diskless, iterative (pre-copy and post-copy) migrations of runC
containers with external network namespaces and established TCP connec-
tions, so that memory-intensive and connection-persistent HPC applications
can live-migrate. Our extensive experiments to characterize the performance
impact of those features have demonstrated that using a page-server is deter-
minant to reduce the downtime as well as the disk space used in the source
host, although using a diskless approach based on tmpfs can also yield bene-
fit when the application’s memory footprint is high. Iterative migration also
minimizes the downtime of computation- and network-intensive applications
by reducing the size of the last dump. It can also help with memory-intensive
applications depending on their memory usage footprint. Likewise, memory
deduplication minimizes the amount of disk space used by ensuring that each
memory page is store only once but at the cost of increasing the downtime.
Finally, the ability to migrate external network namespaces and established
TCP connections allows hiding the small downtimes to the clients, especially
when the container can be restored soon after the memory dump. All in
all, we have shown that properly-configured live migrations incur low ap-
plication downtime and memory/disk usage and are indeed practicable in
containerized HPC Clouds.

As future work, we plan to experiment with live container migrations in
larger scale HPC Clouds. We also aim to take advantage of live migration
to implement resource management and scheduling policies for HPC Clouds.
We will also explore the problem of coordinated checkpoint/restore using
CRIU for distributed computations.

Acknowledgment

We acknowledge Carlos Segarra for his work in the prospective proto-
type of our migration system [22]. This research was partially supported
by the Spanish Government under contract PID2019-107255GB-C22, by the
Generalitat de Catalunya under contract 2021-SGR-00478, and by the EU-
HORIZON programme under grant agreement 101092646.

Competing Interests

The authors declare that they have no competing interests.

35



Appendix A. Detailed Numeric Experimental Results

36



Table A.2: Downtime in ms (mean (M), standard deviation (SD), 95% confidence interval (CI)) when migrating a runC
container running LU, SP, and BT comparing settings diskful/diskless and with/without a page-server (PS).

dump rsync restore net-ns restore runc

M SD 95% CI M SD 95% CI M SD 95% CI M SD 95% CI

LU (class A)

diskful w/o PS 495.2 19.2 (471.3, 519.1) 750.2 51.5 (686.2, 814.2) 248.4 14.8 (230.0, 266.2) 114.4 4.9 (108.3, 120.5)
diskful w/ PS 701.2 19.9 (676.5, 725.9) 184.6 10.8 (171.2, 198.0) 237.4 8.7 (226.6, 248.2) 116.2 2.9 (112.6, 119.8)
diskless w/o PS 416 48.2 (356.1, 475.9) 732.8 39.7 (683.5, 782.1) 259.6 10.1 (247.0, 272.2) 114.6 8.2 (104.5, 124.7)
diskless w/ PS 686 10.8 (672.6, 699.4) 181.2 3.9 (176.4, 186.0) 247.8 12.1 (232.8, 262.8) 117.2 7.5 (107.9, 126.5)

LU (class B)

diskful w/o PS 608.8 36.6 (563.4, 654.2) 1585.6 35.7 (1541.3, 1629.9) 271.6 6.4 (263.6, 279.6) 185.8 2.3 (182.9, 188.7)
diskful w/ PS 1041 40.6 (990.6, 1091.4) 182.4 5.2 (176.0, 188.8) 235.8 13.6 (219.0, 252.6) 176.8 7.2 (167.9, 185.7)
diskless w/o PS 552.8 21 (526.7, 578.9) 1512.6 124.6 (1357.9, 1667.3) 251.6 17.2 (230.3, 272.9) 185.8 5.2 (179.3, 192.3)
diskless w/ PS 994.8 51.5 (930.9, 1058.7) 180 5.3 (173.4, 186.6) 238 5.4 (231.3, 244.7) 191.6 9 (180.4, 202.8)

SP (class A)

diskful w/o PS 505 24.4 (474.7, 535.3) 836.6 26.8 (803.4, 869.8) 251.4 8 (241.5, 261.3) 126.2 7.3 (117.1, 135.3)
diskful w/ PS 682.6 67.2 (599.2, 766.0) 181 4 (176.0, 186.0) 236 5.9 (228.6, 243.4) 119 4.3 (113.6, 124.4)
diskless w/o PS 424.4 84.1 (319.9, 528.9) 769 52.8 (703.4, 834.6) 235.8 15.7 (216.4, 255.2) 118.6 8.8 (107.7, 129.5)
diskless w/ PS 664.8 71.7 (575.8, 753.8) 186.2 9.6 (174.2, 198.2) 239.2 15.5 (219.9, 258.5) 129.6 7.2 (120.7, 138.5)

SP (class B)

diskful w/o PS 709.8 7.3 (700.7, 718.9) 1919 112.7 (1779.1, 2058.9) 261 24.6 (230.5, 291.5) 209 10.7 (195.7, 222.3)
diskful w/ PS 1161.4 24.4 (1131.1, 1191.7) 181.8 6.8 (173.4, 190.2) 240.2 10 (227.8, 252.6) 214 6 (206.6, 221.4)
diskless w/o PS 568.4 30.3 (530.7, 606.1) 1643.4 76.3 (1548.7, 1738.1) 262.6 12.2 (247.4, 277.8) 212 11.4 (197.8, 226.2)
diskless w/ PS 1144.8 51.8 (1080.5, 1209.1) 179 4.1 (173.9, 184.1) 247.6 10.2 (234.9, 260.3) 232.8 8.3 (222.5, 243.1)

BT (class A)

diskful w/o PS 487.6 27.4 (453.6, 521.6) 803.8 41.7 (752.1, 855.5) 246.8 13 (230.7, 262.9) 117 10.1 (104.4, 129.6)
diskful w/ PS 729.8 15.7 (710.3, 749.3) 179.8 2.9 (176.2, 183.4) 235 14.3 (217.2, 252.8) 113.4 8 (103.5, 123.3)
diskless w/o PS 394.6 36.9 (348.8, 440.4) 725 43.1 (671.5, 778.5) 252.6 12.4 (237.2, 268.0) 117.4 6.9 (108.8, 126.0)
diskless w/ PS 668.4 47.2 (609.8, 727.0) 187.6 7.9 (177.8, 197.4) 246.4 8.6 (235.7, 257.1) 127.8 2.3 (124.9, 130.7)

BT (class B)

diskful w/o PS 651.2 59.1 (577.8, 724.6) 1910.4 125.6 (1754.4, 2066.4) 252 10.8 (238.6, 265.4) 205.2 6.7 (196.9, 213.5)
diskful w/ PS 1093.2 62.8 (1015.2, 1171.2) 183.6 10.6 (170.4, 196.8) 243.6 14.9 (225.2, 262.0) 198.6 9 (187.4, 209.8)
diskless w/o PS 582 30.3 (544.4, 619.6) 1580 53.7 (1513.4, 1646.6) 269.6 14.3 (251.9, 287.3) 211.6 13.9 (194.3, 228.9)
diskless w/ PS 1019.6 63.7 (940.5, 1098.7) 181.6 6 (174.2, 189.0) 245 8.3 (234.7, 255.3) 219.6 7.2 (210.6, 228.6)
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Table A.3: Downtime in ms (mean (M), standard deviation (SD), 95% confidence interval (CI)) when migrating a runC
container running Redis (without clients) comparing settings diskful/diskless and with/without a page-server (PS).

dump rsync restore net-ns restore runc

M SD 95% CI M SD 95% CI M SD 95% CI M SD 95% CI

REDIS (initial size 1000000 keys)

diskful w/o PS 436.2 14.1 (418.6, 453.8) 1083.4 39.6 (1034.3, 1132.5) 292.6 9.9 (280.3, 304.9) 159.4 7.2 (150.5, 168.3)
diskful w/ PS 756.8 21.0 (730.7, 782.9) 95.4 3.4 (91.2, 99.6) 251.6 7.9 (241.7,261.5) 153.2 7.5 (143.9, 162.5)
diskless w/o PS 373.0 20.7 (347.3, 398.7) 903.6 33.4 (862.1, 945.1) 294.4 11.1 (280.6, 308.2) 156.8 9.2 (145.4, 168.2)
diskless w/ PS 744.6 33.8 (702.6, 786.6) 93.6 2.6 (90.4, 96.8) 245.8 12.4 (230.4, 261.2) 162 6.8 (153.5, 170.5)

REDIS (initial size 2000000 keys)

diskful w/o PS 532.0 13.4 (515.3, 548.7) 1811.8 34.6 (1768.8, 1854.8) 291.6 13.6 (274.8, 308.4) 214.4 7.1 (205.6, 223.2)
diskful w/ PS 1062.8 27.8 (1028.3, 1097.3) 95.4 2.7 (92.0, 98.8) 245 11.1 (231.2,258.8) 216.2 7 (207.5, 224.9)
diskless w/o PS 392 68.5 (306.9, 477.1) 1645.4 50.6 (1582.6, 1708.2) 279.2 13.6 (262.3, 296.1) 214.4 11.4 (200.2, 228.6)
diskless w/ PS 1058.4 30.7 (1020.3, 1096.5) 93.6 1 (92.3, 94.9) 245.2 9.3 (233.7, 256.7) 240.4 5.3 (233.8, 247.0)

Table A.4: Downtime in ms (mean (M), standard deviation (SD), 95% confidence interval (CI)) when migrating lazily a runC
container running LU, SP, BT, and Redis (without clients).

dump rsync restore net-ns restore runc

M SD 95% CI M SD 95% CI M SD 95% CI M SD 95% CI

LU

class A 508.6 10.0 (496.2, 521.0) 211.8 9.2 (200.3, 223.3) 246.4 11.9 (231.7, 261.1) 90.4 3.6 (85.9, 94.9)
class B 528.8 34.6 (485.8, 571.8) 212.4 10.6 (199.3, 225.5) 249.2 8.1 (239.2, 259.2) 89 4.3 (83.6, 94.4)

SP

class A 470.4 57.5 (399.0, 541.8) 216.8 9.6 (204.9, 228.7) 260.6 9.7 (248.6, 272.6) 93.4 2.6 (90.2, 96.6)
class B 472.4 86.5 (365.0, 579.8) 222 17.3 (200.5, 243.5) 256 5.8 (248.8, 263.2) 94.6 5.9 (87.3, 101.9)

BT

class A 447.2 72.3 (357.5, 536.9) 211.2 5 (205.0, 217.4) 254 11 (240.3, 267.7) 90.6 2.9 (87.0, 94.2)
class B 455.6 79.4 (357.0,554.2) 206.2 2.1 (203.5, 208.9) 257 13.1 (240.7, 273.3) 88.4 4.4 (82.9, 93.9)

REDIS

1000000 keys 328.4 15.4 (309.3, 347.5) 133.4 4.6 (127.7, 139.1) 267.6 10.5 (254.6, 280.6) 94.8 6.4 (86.9, 102.7)
2000000 keys 326.8 14 (309.5, 344.1) 133.8 3 (130.1, 137.5) 261.2 12.9 (245.2, 277.2) 94.2 6.6 (86.0, 102.4)
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Table A.5: Downtime in ms (mean (M), standard deviation (SD), 95% confidence interval (CI)) when migrating iteratively a
runC container running LU, SP, and BT comparing settings with/without auto-dedup (AD) and page-server (PS).

dump rsync restore net-ns restore runc

M SD 95% CI M SD 95% CI M SD 95% CI M SD 95% CI

LU (class A)

w/o PS w/o AD 356 20.5 (330.6, 381.4) 449.2 22.4 (421.3, 477.1) 258 12 (243.1, 272.9) 116.8 5.3 (110.3, 123.3)
w/ PS w/o AD 597.8 11.4 (583.6, 612.0) 175.8 5.6 (168.8, 182.8) 233.2 10.9 (219.7, 246.7) 111.2 6.2 (103.5, 118.9)
w/o PS w/ AD 455.6 20.7 (429.8, 481.4) 1280.4 45.6 (1223.8, 1337.0) 252.2 13 (236.1, 268.3) 115.4 7.3 (106.3, 124.5)
w/ PS w/ AD 635.2 44.7 (579.7, 690.7) 181.4 4.8 (175.4, 187.4) 246.8 13.1 (230.6, 263.0) 117.2 5 (110.9, 123.5)

LU (class B)

w/o PS w/o AD 490.4 39.3 (441.6, 539.2) 1064.4 81.3 (963.4, 1165.4) 284.0 27.3 (250.1, 317.9) 177.2 5.3 (170.6, 183.8)
w/ PS w/o AD 992 82.4 (889.7, 1094.3) 181.4 15.7 (162.0, 200.8) 238.4 16.9 (217.4, 259.4) 176 3.5 (171.6, 180.4)
w/o PS w/ AD 622.8 77.1 (527.1, 718.5) 4609.8 93.7 (4493.5, 4726.1) 245.6 17.4 (224.1, 267.1) 187.2 6.2 (179.5, 194.9)
w/ PS w/ AD 1093.6 38.4 (1045.9, 1141.3) 180 4.9 (174.0, 186.0) 237 7.6 (227.5, 246.5) 182.8 6.8 (174.4, 191.2)

SP (class A)

w/o PS w/o AD 406.6 16.9 (385.6, 427.6) 571 50.6 (508.2, 633.8) 236 11.3 (222.0, 250.0) 121.4 5.3 (114.8, 128.0)
w/ PS w/o AD 661 23.6 (631.7, 690.3) 181.2 6.1 (173.6, 188.8) 241.6 12.1 (226.5, 256.7) 120.8 7.1 (111.9, 129.7)
w/o PS w/ AD 463.2 12.8 (447.3, 479.1) 905.4 54 (838.3, 972.5) 240.4 6 (232.9, 247.9) 119.8 10.1 (107.2, 132.4)
w/ PS w/ AD 644.8 78.1 (547.9, 741.7) 183.2 3.1 (179.4, 187.0) 242 14.7 (223.8, 260.2) 128.8 11.5 (114.5, 143.1)

SP (class B)

w/o PS w/o AD 557.8 51.3 (494.2, 621.4) 1592.4 222.4 (1316.3, 1868.5) 252 22.8 (223.7, 280.3) 207 8 (197.0,217.0)
w/ PS w/o AD 1594.2 121.2 (1443.7, 1744.7) 177.4 4 (172.4, 182.4) 232.6 21.9 (205.4, 259.8) 204.4 5.6 (197.4, 211.4)
w/o PS w/ AD 790 57.6 (718.4, 861.6) 2616.6 118.4 (2469.6, 2763.6) 244.4 18.7 (221.2, 267.6) 210 10.6 (196.9, 223.1)
w/ PS w/ AD 1388.2 56.1 (1318.6, 1457.8) 183.4 5 (177.2, 189.6) 247.4 8.5 (236.9, 257.9) 215.6 6.7 (207.3, 223.9)

BT (class A)

w/o PS w/o AD 378 10.6 (364.9, 391.1) 547.6 26.2 (515.1, 580.1) 245 12.2 (229.8, 260.2) 118.4 4.4 (112.9, 123.9)
w/ PS w/o AD 646.6 23.8 (617.0, 676.2) 178.8 9.8 (166.6, 191.0) 226.4 13.9 (209.2, 243.6) 111.8 8.1 (101.7, 121.9)
w/o PS w/ AD 466.4 10.7 (453.2, 479.6) 852.2 25.6 (820.4, 884.0) 248 5.8 (240.8, 255.2) 120.4 4.8 (114.4, 126.4)
w/ PS w/ AD 700.8 11.2 (686.9, 714.7) 184.8 9.1 (173.5, 196.1) 238.2 10.5 (225.2, 251.2) 118.2 2 (115.7, 120.7)

BT (class B)

w/o PS w/o AD 529.4 32.3 (489.3, 569.5) 1491.2 162.3 (1289.7, 1692.7) 240.4 10.7 (227.1, 253.7) 202.2 6.3 (194.3, 210.1)
w/ PS w/o AD 972 53.4 (905.7, 1038.3) 181 7.2 (172.0, 190.0) 242.4 10.1 (229.9, 254.9) 210.4 19 (186.8, 234.0)
w/o PS w/ AD 762 19.5 (737.8, 786.2) 2526.2 142.7 (2349.0, 2703.4) 248 12.8 (232.1, 263.9) 202.4 4.6 (196.7, 208.1)
w/ PS w/ AD 1398.4 94.9 (1280.5, 1516.3) 181.6 3.1 (177.8, 185.4) 259.6 13.9 (242.4, 276.8) 212.4 5.5 (205.6, 219.2)
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Table A.6: Downtime in ms (mean (M), standard deviation (SD), 95% confidence interval (CI)) when migrating iteratively a
runC container running Redis (with/without clients) comparing settings with/without auto-dedup (AD) and page-server (PS).

dump rsync restore net-ns restore runc

M SD 95% CI M SD 95% CI M SD 95% CI M SD 95% CI

REDIS (initial size 1000000 keys)

w/o PS w/o AD 58.6 7.9 (248.7, 268.5) 90.8 5.2 (84.4, 97.2) 250.4 5.9 (243.1, 257.7) 157.4 7.7 (147.8, 167.0)
w/ PS w/o AD 429.0 9.1 (417.7, 440.3) 98 5 (91.8, 104.2) 245.6 12.5 (230.1, 261.1) 159 7.8 (149.3, 168.7)
w/o PS w/ AD 246.2 5.5 (239.4, 253.0) 820.2 41.2 (769.1, 871.3) 249.6 5.7 (242.5, 256.7) 155.6 4.9 (149.5, 161.7)
w/ PS w/ AD 426.8 18.2 (404.2, 449.4) 97.2 1.9 (94.8, 99.6) 257.8 12.0 (242.9, 272.7) 160.2 5 (154.0, 166.4)

REDIS (initial size 2000000 keys)

w/o PS w/o AD 262 5.9 (254.6, 269.4) 94.8 5.8 (87.5, 102.1) 250 13.2 (233.6, 266.4) 209.4 4.9 (203.3, 215.5)
w/ PS w/o AD 443.2 15.5 (424.0, 462.4) 96 3.3 (91.9, 100.1) 240.8 8.4 (230.4, 251.2) 210.4 4.1 (205.3, 215.5)
w/o PS w/ AD 264.4 11.1 (250.7, 278.1) 1632.2 100.7 (1507.1, 1757.3) 252 19.4 (227.9, 276.1) 208.8 2.8 (205.3, 212.3)
w/ PS w/ AD 442 6.5 (433.9, 450.1) 94.8 1.5 (93.0, 96.6) 236 9.9 (223.7, 248.3) 212.4 9.7 (200.3, 224.5)

REDIS (with clients) (initial size 1000000 keys, keyspace 1200000, 10000 SETs)

w/o PS w/o AD 442.2 52.6 (376.9, 507.5) 571.8 28 (537.0, 606.6) 248.6 7.3 (239.6, 257.6) 397.8 12 (382.9, 412.7)
w/ PS w/o AD 651.6 58 (579.6, 723.6) 96.6 3.5 (92.3, 100.9) 245.6 15 (227.0, 264.2) 453.6 39.5 (404.5, 502.7)
w/o PS w/ AD 2821.2 141.7 (2645.3, 2997.1) 2133.4 95 (2015.4, 2251.4) 253 9.4 (241.4, 264.6) 395.4 10.6 (382.2, 408.6)
w/ PS w/ AD 2652.2 120.6 (2502.4, 2802.0) 95.8 4.4 (90.3, 101.3) 252.6 17.5 (230.8, 274.4) 387.8 10.6 (374.6, 401.0)

REDIS (with clients) (initial size 2000000 keys, keyspace 2400000, 20000 SETs)

w/o PS w/o AD 582.6 38.2 (535.2, 630.0) 1719.4 201.7 (1468.9, 1969.9) 244 12.9 (228.0, 260.0) 368.2 6 (360.7, 375.7)
w/ PS w/o AD 1570.2 153.4 (1379.8, 1760.6) 94.4 2.6 (91.2, 97.6) 233 6.2 (225.3, 240.7) 369 6 (361.6, 376.4)
w/o PS w/ AD 2101.2 192.9 (1861.8, 2340.6) 4960 92.7 (4844.9, 5075.1) 246.2 10.1 (233.7, 258.7) 372.4 15.1 (353.7, 391.1)
w/ PS w/ AD 2772.2 34.1 (2729.9, 2814.5) 92.4 2 (90.0, 94.8) 242 5.2 (235.6, 248.4) 367.6 8.7 (356.8, 378.4)
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