
GINJA: One-dollar Cloud-based Disaster Recovery for Databases
Joel Alcântara, Tiago Oliveira, Alysson Bessani
LaSIGE – Faculdade de Ciências, Universidade de Lisboa

Portugal

Abstract
Disaster Recovery (DR) is a crucial feature to ensure availability
and data protection in modern information systems. A common DR
approach requires the replication of services in a set of virtual ma-
chines running in the cloud as backups. This leads to considerable
monetary costs and managing efforts to keep such cloud VMs. We
present GINJA, a DR solution for transactional database manage-
ment systems (DBMS) that uses only cloud storage services such
as Amazon S3. GINJA works at file-system level to efficiently cap-
ture and replicate data updates to a remote cloud storage service,
achieving three important goals: (1) reduces the costs for maintain-
ing a cloud-based DR to less than one dollar per month for relevant
databases’ sizes and workloads (up to 222× less than the traditional
approach of having a DBMS replica in a cloud VM); (2) allows a
precise control of the operational costs, durability and performance
trade-offs; and (3) introduces a small performance overhead to the
DBMS (e.g., less than 5% overhead for the TPC-C workload with ≈
10 seconds of data loss in case of disasters).

CCS Concepts • Computer systems organization → Depend-
able and fault-tolerant systems and networks; • Information sys-
tems → Data replication tools;

Keywords Disaster recovery, Databases, Cloud

ACM Reference format:
Joel Alcântara, Tiago Oliveira, Alysson Bessani. 2017. GINJA: One-dollar
Cloud-based Disaster Recovery for Databases. In Proceedings of Middleware

’17, Las Vegas, NV, USA, December 11–15, 2017, 13 pages.
DOI: 10.1145/3135974.3135985

1 Introduction
The occurrence of disasters introduces some serious challenges to
the design of IT systems. In opposition to other sources of failures,
disasters affect the whole (or at least a big part of the) infrastructure
where the system is hosted, resulting in greater damage to the service
provided. Consequently, the ability to tolerate disasters requires
specific data protection mechanisms and careful planning [32].

More specifically, tolerating disasters requires placing backup
resources in a geographically separated location so that the same
disaster does not affect the primary and the backup infrastructures.
Such approach results in significant additional costs, and thus it is
not used by budget-constrained services.

The emergence of cloud computing made it possible to imple-
ment disaster recovery (DR) with a small fraction of the costs of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’17, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4720-4/17/12. . . $15.00
DOI: 10.1145/3135974.3135985

a dedicated infrastructure [49]. System operators can thus rely on
cloud providers to host a portion (or even full copies) of their system
and, if the primary site goes offline, they can quickly assume the
service provision.

Cloud-based disaster recovery mechanisms require different ap-
proaches to deal with stateless and stateful services. For the former,
administrators only have to store server VM images to enable the
services to be started when required. For stateful services such as
databases, there are basically two options: periodically storing state
snapshots, or maintaining a warm backup on the cloud [34]. The
first approach is known as Backup and Restore while the later is
sometimes called Pilot Light, in the sense that this backup replica
can spark a whole backup infrastructure if needed [41]. The repli-
cation protocol for maintaining such replica in the cloud can be
implemented at different layers, such as within the service itself [11,
14, 33], in the virtualization platform [40, 50], or at the storage
level [31, 39].

Despite all these options, data loss is still a common event with
severe consequences. Although statistics about data losses and its
effects are sometimes misleading [27], recent surveys showed that
data loss costs $1.7 Trillion per year for medium and big compa-
nies [35]. Few years ago a survey by Symantec showed that 40%
of Small and Medium Enterprises (SMEs) do not do regular back-
ups [44]. We believe the situation improved in the last years, but
it is unlikely that this protection gap disappeared. A more recent
survey revealed that 58% of the SMEs could not sustain any amount
of data loss [29], and that 62% of these companies do not backup
their data on a daily basis. These numbers clearly indicate that even
simple backup routines are still a challenge for SMEs, and reveal
that fully automated disaster recovery solutions are not yet widely
deployed. This landscape is even worse if one considers new data
loss threats, such as ransomware [18, 45]. Lack of budget and au-
tomation are usually pointed as key challenges for implementing
effective business continuity plans [1].

In this paper, we improve this situation, specially for SMEs and
other organizations that cannot afford the cost and complexity of
geo-replication and existing DR solutions, through the exploitation
of two facts. First, non-VM-based (also called “serverless”) cloud
services have the potential of reducing the costs and management
complexity1 of a disaster recovery solution. Second, most businesses
critical data is stored in database management systems (DBMS),
therefore, it is paramount for any serious DR solution to protect
these systems.

We present GINJA, a disaster recovery system for transactional
DBMS based on popular cloud object storage services such as Ama-
zon S3, Azure Blob Storage or Google Storage. GINJA was designed
with five objectives in mind: low operational costs, fine-grained con-
trol over the data that can be lost due to a disaster, low performance
overhead, ease of use, and portability among different DBMS.

1It’s worth to recall that having a database replica on a cloud VM requires, besides the
DBMS configuration, a proper setup of a public IP, firewalls, security updates, etc.

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Joel Alcântara, Tiago Oliveira, Alysson Bessani

To the best of our knowledge, GINJA is the first system to exploit
a new region in the design space of disaster tolerance/recovery
systems, right between Backup and Restore and Pilot Light solutions.
In particular, it has costs close to the former (i.e., maintaining backup
database snapshots in the cloud, without requiring running a VM)
with the same control over data loss and performance of the later
(i.e., having a warm database replica in a cloud VM). To do that in
a portable way, we had to overcome several challenges: (1) define
means to capture all the relevant I/O from the DBMS, (2) map these
updates to a data model that fits the clouds object storage interface,
and (3) provide algorithms for controlling the behavior of the system
to match different requirements and budgets.

Although there is a large body of work on database replication for
fault tolerance [33], these works are mostly orthogonal to GINJA as
they consider the coordination of database replicas. In contrast, our
challenges are more related with the practical aspects of capturing
database disk updates and writing them in a passive remote storage
in a cost-efficient way, keeping a tight control over the cost vs.
performance vs. maximum data loss trade-off.

Besides the obvious benefits that GINJA brings to small-to-medium
DBMS users, it can also be employed for improving the availabil-
ity of cloud database services. Currently, services like Amazon
Relational Database Service offers Multi-AZ (Availability Zone)
instances that synchronously replicate database updates to another
availability zone within the same region [3]. However, the cost of this
setup is roughly twice the cost of running a single-AZ instance and
it does not support more severe failure scenarios that would require
replication across regions or providers. GINJA supports provider-
scale disaster tolerance [19] by exploiting the object storage services
available in most cloud providers, protecting thus cloud databases
from cloud outages [28].

We have implemented and evaluated a prototype of GINJA sup-
porting PostgreSQL [13] and MySQL [10] to show that our solution
is feasible, cost-efficient, and presents acceptable performance over-
heads. For instance, we are able to provide DR for many database
setups relevant to SMEs (e.g., databases with up to 40GB of size
and tens of updates/minute) costing only one dollar/month, which is
48× less than the cost of running the cheapest EC2 VM indicated
for small to mid-size databases (m3.medium [2]) for a month. Fur-
thermore, our results show that the use of GINJA leads to a small
DBMS performance loss when running the TPC-C benchmark, and
minor additional CPU and memory usage on the database server.
Although our current implementation only supports PostgreSQL and
MySQL, it can be extended to support other DBMS.

In summary, this paper makes the following contributions:

1. It shows that cloud storage services like Amazon S3 are
not only cost-effective infrastructures for keeping remote
backups, but also solutions for low-cost tightly-controlled
DBMS disaster recovery (§3);

2. A set of algorithms for replicating database transactions
and checkpoints to a remote cloud storage with fine-grained
control of the cost vs. performance vs. data loss trade-off
(§5);

3. A detailed monetary cost model for implementing cloud-
backed disaster recovery of transactional databases (§7);

4. An implementation supporting the two most popular open-
source relational databases (§4 and §6) and its evaluation
using a real cloud provider (§8).

2 Disaster Recovery
A Disaster is an event that has a negative impact on organizations
business continuity and/or finances [41]. Examples of disasters in-
clude network and power outages, hurricanes, earthquakes, floods,
and so forth. Disaster Recovery is the area that makes IT systems
tolerant and recoverable from the damages caused by disasters. This
is mainly achieved by having a Primary Site infrastructure to re-
spond in normal operation, plus a Secondary Site (or backup site) in
a geographically-distant location [24, 32].

Yet, different systems have different disaster recovery require-
ments [39]. Such requirements include recovery time, consistency
degree of the data recovered, performance impact during normal
operation, distance between primary and secondary sites, and costs.
In practice such requirements define two parameters [24]: Recovery
Point Objective (RPO), which is the amount of updates (measured in
time) that can be lost due to a disaster; and Recovery Time Objective
(RTO), which refers to the duration of downtime that is acceptable
before a system recovers from a disaster.

There are several ways to implement a disaster recovery strat-
egy [32]. The classical approach is the Backup and Restore [42].
This technique consists of periodically taking consistent snapshots
of the data (optionally interspersed with incremental backups), and
writing them in storage devices kept off site. Although this approach
is attractive for being low-cost, it has the disadvantages of having
long recovery time and always restoring the system to an outdated
state, as backup intervals are typically long. An alternative strategy
is Remote Mirroring [31]. In this approach, the system continuously
replicates its data to an online remote mirror (also called Pilot Light),
which ensures the continuity of the system if a disaster occurs. De-
spite being usually more expensive, this technique can substantially
reduce both the RPO and RTO when compared with the Backup and
Restore.

The data replication between sites can be performed essentially
in two ways: synchronously or asynchronously [22, 50] (also called
eager and lazy replication in the database community [33]). In Syn-
chronous Replication, the system loses performance as the primary
site can only return successfully from a write operation after it has
been acknowledged by the secondary site. In Asynchronous Repli-
cation the primary site is allowed to proceed its execution without
waiting for the synchronization between sites to complete. This type
of replication overcomes the performance limitations of synchronous
replication at the expense of allowing recent updates to be lost if a
failure occurs.

Public clouds are an appealing solution for implementing DR
mechanisms. The main reasons are their large portfolio of services
(e.g., object storage, computing, networking, database, queue ser-
vices), relatively user-friendliness, security, multi-site availability,
and the pay-as-you-go cost model. These factors allow the design of
DR solutions suitable for each organization regarding its objective
(RPO and RTO) and budget [41]. The simplest (and probably the
cheapest) example is the storage of data backups in cloud storage
services such as Amazon S3. A more evolved (and expensive) so-
lution considers a subset of services replicated in VMs running in
the cloud (e.g., on Amazon EC2), providing lower data loss and
recovery time in case of a disaster.

Some public clouds also provide disaster recovery services that
typically use their infrastructures as a secondary site. Examples of

Ginja: One-dollar Cloud-based Disaster Recovery for Databases Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

such services are Azure Site Recovery [8] and vCloud Air Disas-
ter Recovery [16]. These services automate the configuration and
management of the cloud backup infrastructure, but their cost is
equivalent or even higher than maintaining plain backup VMs in the
cloud. It is also possible to run the primary site of a system entirely
in a cloud. However, this approach does not eliminate the need for
disaster recovery since cloud-wide outages, although rare, are a po-
tential threat to systems that rely entirely on one cloud infrastructure
to perform its functions [28].

The more cloud resources a system requires in failure-free oper-
ation, the higher will be the costs of the DR solution. Even if the
costs during failover are slightly higher in cloud-based solutions, the
overall costs can still be smaller since disasters are supposed to be
rare events [49].

3 Low-cost Cloud-based Disaster Recovery
In this paper, we advocate that current cloud-based disaster recovery
solutions are much more expensive and difficult to manage than
they should be. In this sense, we believe that a full-fledge database
disaster recovery system could be implemented without requiring
any dedicated VM in the cloud. Such a system can work as follows.
Initially, a copy of all database files is uploaded to a cloud storage
service (e.g., Amazon S3), and then, as updates are committed to the
log file, the system sends them to the cloud as commit objects. As
new updates keep being performed, the DBMS executes a checkpoint
to update the table files and to clean its commit log. In this situation,
the system updates the database files in the cloud and removes
outdated commit objects. In case of disaster, the recovered database
needs to be able to figure out the pre-disaster state using the objects
stored in the cloud.

Such a system can be extremely cheap if one accepts to lose a
few recent updates in case of a disaster (as in most DR solutions).
This would enable the DR system to send batches of updates to the
cloud periodically.

As an illustrative example, consider that someone wants to spend
a maximum of $1 per month in a database DR solution. In May
2017, Amazon S3 standard storage costs are $0.023 per GB/month,
$0.005 per 1000 file uploads, and free upload bandwidth and delete
operations [4].2 Considering this, it is possible to plot the capacity
of a database (in terms of size and number of cloud synchronizations
per hour) for such one-dollar budget, as shown in Figure 1.

In the figure, every point below the line represents a setup costing
less than $1 per month. For example, this budget is enough to pro-
tect a database with 4.3GB with four synchronizations per minute
(setup C), or a 20GB database with two synchronizations per minute
(setup B), or even a 35GB database synchronized once every 72 sec-
onds (setup A). Importantly, an organization whose activity happens
mostly from 9AM to 5PM (which is the case for many non-online
business) can have roughly three times more synchronizations per
hour during this period.

Notice that these setups still provide acceptable RPOs for many
medium-size organizations. In any case, by understanding what one
can have with $1 per month, it is possible to assess the cost of more
demanding setups (i.e., larger databases or smaller RPOs).

2Other services such as Azure Storage, Google Storage, and Rackspace Files offer
similar price models. GINJA can be used with any of them.

 0

 6

 12

 18

 24

 30

 36

 42

 0 50 100 150 200 250

D
a
ta

b
a
s
e
 s

iz
e
 (

G
B

)

Number of cloud synchronizations per hour

 0

 6

 12

 18

 24

 30

 36

 42

 0 50 100 150 200 250

> $1/month

< $1/month

A

B

C

Figure 1. Database size and number of cloud synchronizations per
hour in an S3-based DR solution with a $1 monthly budget.

The system presented in this paper, GINJA, exploits this oppor-
tunity to enable any small and medium organization running a re-
lational DBMS to have a DR solution almost for free, and with
close-to-zero management effort.

4 Transactional Database I/O
GINJA is a DR solution for database management systems. The
integration between our system and the DBMS happens at the file
system level. This allows us to intercept every file system call per-
formed by the DBMS on the database-related files. In this section,
we describe the kind of DBMS our system assumes and discuss how
PostgreSQL and MySQL fit in this model.

We consider transactional databases that implement data durabil-
ity using a set of table files and a Write-Ahead Log (WAL) divided in
several segment files [25, 37]. The I/O on these files is performed on
the granularity of a page, which is composed by many records, each
one storing a database update. Every time a transaction is committed,
the only important I/O performed is a synchronous write to a WAL
file segment. All the table pages remain in memory until a periodic
checkpoint occurs. When this happens, the pages are written to the
table files, and a special record is inserted in the WAL marking that
everything before this record is already in durable memory.

Implementing a DR solution with fine-grained control of the
database RPO without changing the DBMS requires a deep under-
standing on how databases access these files. More precisely, there
are at least three types of events that need to be detected. The first
one is an update commit, when a record is written to the WAL. The
second one corresponds to the write that marks the beginning of a
checkpoint. The last type of event we need to detect is the last write
of a checkpoint, i.e., the last write after which it is safe to delete old
WAL entries. Table 1 describes these events for the databases we
use in this paper: PostgreSQL and MySQL.

PostgreSQL [14, 43] keeps its log segments in a set of x_log files
(with pages of 8kB), and periodically (with a configurable period),
writes the dirty pages (also 8kB) to the table files. Additionally,
it uses a pg_log file to store the status of each transaction (the
checkpoint starts with a write in this file) and a small pg_control
file to store a pointer to the last checkpoint record in the WAL,
marking the starting point on the WAL upon a recovery. A write to
pg_control marks the end of a checkpoint.

MySQL supports different types of storage engines. In this work
we consider only InnoDB, the standard engine for supporting ACID
semantics [10]. MySQL/InnoDB (or simply MySQL) writes all com-
mitted transactions to an ib_logfile file (in pages of 512 bytes),

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Joel Alcântara, Tiago Oliveira, Alysson Bessani

Table 1. How GINJA detects the three most important DBMS events in PostgreSQL and MySQL. * Except the header of the ib_logfile0.

Event PostgreSQL MySQL
Update commit sync. write to a pg_xlog file sync. write in one of the ib_logfile files*

Checkpoint begin sync. write to a pg_clog file sync. write to one of the data files (ibdata, .ibd, and .frm)
Checkpoint end sync. write to the global/pg_control file sync. write in the offset 512 and/or 1536 of the ib_logfile0 file

and executes checkpoints quite differently from PostgreSQL. More
specifically, the system can flush modified database pages (of 16kB)
to their respective files at any moment, in small batches. This mech-
anism is known as fuzzy checkpoint [9]. The fact checkpoints are
“opportunistic” makes their write pattern a bit more complicated
and variable than the ones in PostgreSQL. However, as can be seen
in Table 1, it is possible to detect the begining and end of these
checkpoints by verifying a handful of conditions.

It is important to highlight that even with the most write-intensive
workloads, the capture of these events always allow the recovery
of the database to its “committed” state right before the occurrence
of a crash. This happens because, by capturing these events before
a crash, it is possible to reconstruct the table and segment files in
such a way that the DBMS can rebuild its state using its crash-
recovery capabilities. For example, the DBMS can read (in the
pg_control file for PostgreSQL and in the offset 512 or 1536 of
the ib_logfile0 file for MySQL) where the last checkpoint is, and
then apply all the WAL records after that.

5 Ginja
GINJA can be seen as a transparent middleware that intercepts the
I/O performed by the DBMS and backs up the relevant data to
a cloud storage service in a cost-efficient manner. Although our
implementation consists in an application-specific FUSE file system
(see §6 for details) able to capture the semantics of the database’s
I/O operations without having to change the DBMS, our design is
generic and only assumes that the events of Table 1 are intercepted.
Therefore, nothing prevents it from being integrated on a database
or even implemented on the kernel of an operating system.

GINJA relies on cloud storage services (e.g., Amazon S3, Azure
Blob Storage) to store its data in a remote site. As described before,
we choose such services as secondary infrastructure because they
have the potential of lowering both the monetary and management
costs of our DR solution.

This design puts GINJA apart from existing works on cloud dis-
aster recovery [31, 36, 39, 50], and impacts our system in three
important ways. First, storage clouds provide REST interfaces con-
taining only a few basic operations (PUT, GET, LIST, and DELETE).
Consequently, we have to implement all DR control at the primary
side (i.e., at the client side). Second, we must make as few assump-
tions as possible about the underlying storage clouds, so that our
clients can choose the cloud provider they want with few or no mod-
ifications to our code. Finally, it is crucial that we take into account
the pricing model of the cloud storage services when performing
cloud operations, to reduce costs as much as possible.

It is worth to remark that GINJA is not a complete disaster re-
covery solution. For instance, our system does not consider the
detection of a failure on the primary infrastructure and the switching
to a backup. Although there are works that address this problem
(e.g., [40]), the deployment of a fully-automated disaster recovery

system is highly dependent on the services being protected and the
procedures defined in the organization disaster recovery plan.

5.1 Controlling Costs and Data Losses
GINJA deals with the fundamental trade-off between performance
and data protection by allowing users to decide the maximum amount
of recent updates that can be lost when a disaster occurs. Thus,
instead of following a completely synchronous or asynchronous
approach, we define a model that allows users to choose the desired
synchronization level. Furthermore, as sending data to the cloud has
its costs, our model also delegates to users the performance-cost
trade-off. This model includes two parameters:

• Batch – the maximum number of database updates included
in each cloud synchronization;

• Safety – the maximum number of database updates that can
be lost in the event of a disaster.

These parameters define a threshold of database updates that
trigger GINJA to perform its actions. More precisely, Batch defines
how often WAL writes are sent to the cloud, whereas Safety defines
the durability guarantees provided by GINJA.

Batch and Safety can be defined both in terms of number of
updates – B and S – and time – TB and TS – working as follows. A
batch of updates is sent to the cloud if B updates are executed or if
there are some updates to be sent to the cloud and TB seconds have
elapsed since the last synchronization ended. Similarly, a WAL write
performed by the database blocks if there are more than S updates
that are not confirmed to have been written to the cloud or if there
are some updates to be sent to the cloud and TS seconds have elapsed
since the first non-synchronized update was executed. Notice that
in write-intensive workloads, only B and S will be relevant since
timeouts will not be triggered.

Figure 2 illustrates how these parameters work. Whenever B
operations are executed in the DMBS, GINJA performs a cloud syn-
chronization and allows the database management system to proceed
its normal operation. On the other hand, when the Sth database up-
date since the last successful synchronization is submitted (U21 in
the figure), our system blocks the DBMS until the pending cloud
synchronizations are confirmed.

Ideally, B should be substantially lower than S so that GINJA does
not block or interfere with the DBMS performance during regular
operation.

5.2 Data Model
GINJA data model allows the synchronization of file updates as they
are issued locally, and the reconstruction of those files from the
objects present in the cloud when necessary. This model aims to
reduce the total volume of data kept in the cloud, and to minimize

Ginja: One-dollar Cloud-based Disaster Recovery for Databases Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

Client	

Database	

Cloud	

U1	 U2	 U3	 U4	 ... U20	

Block	

U21	

[U1	,U2]	
[U3	,U4]	 ACK1,2	 ACK3,4	

B=2	

S=20	

Figure 2. Influence of B (Batch) and S (Safety) in the execution of
GINJA. In this example B = 2, thus each cloud backup includes two
database updates. GINJA blocks the DBMS whenever more than
S = 20 database updates are executed without being acknowledged
by the cloud.

the number of cloud operations executed. The data model considers
two types of objects:3

• WAL Objects contain data written to the local WAL segments.
The content of each local WAL segment is stored in several
WAL objects (one for up to B updates). The WAL objects
are named following the format WAL/<ts>_<filename>_
<offset>, in which the ts establishes total order on the
WAL objects, filename is the name of the corresponding
WAL segment, and offset is the position of its content in
the segment.

• DB Objects store information relative to all relevant database
files excluding the WAL segments. There are two types of
DB objects: dumps and incremental checkpoints. The DB
objects are named following the format DB/<ts>_<type>_
<size>, containing thus its ts, type (“dump" or “check-
point"), and size. In this case, the ts corresponds to the
timestamp of the last uploaded WAL object before the be-
ginning of the checkpoint.

5.3 Algorithms
This section details GINJA algorithms for initialization and recovery,
update processing, and checkpoint management.

Initialization. Algorithm 1 describes how GINJA is initialized in its
different modes (Boot, Reboot and Recovery). When started, and
before engaging in one of its three initialization modes, the system
initializes an empty cloudView data structure (used to keep track of
the WAL and DB objects in the cloud) and starts all the required
threads in the system (Lines 2–6).

The Boot mode is used to create a dump of an existing database
on the cloud. Concretely, the system creates a set of WAL objects
(one for each local WAL segment), and one dump DB object (Lines
7–18). Only after all the objects are successfully uploaded to the
cloud the file system is mounted and the DBMS can be started.

The Reboot mode should be used to restart the system after a safe
stop of the DBMS. This mode assumes that the data on the cloud
is synchronized with the local files of the database. Therefore, the
only required step is to update the cloudView by listing the objects

3We limit the maximum size of each cloud object to a configurable limit (20MB by
default) to optimize the upload latency [30]. This feature is not shown in the algorithms
for the sake of simplicity.

Algorithm 1: Initialization tasks.

1 cloudView← /0; // Used in all Algs.

2 TaskTB.startTimer(TB); // Used in Alg. 2

3 TaskTS.startTimer(TS); // Used in Alg. 2

4 for 1≤ i≤ nT hreads do
5 CommitThreadi.start(); // Used in Alg. 2

6 CheckpointThread.start(); // Used in Alg. 3

7 Mode Boot begin
8 currentTs← 0;
9 for each f ile in Local WAL Segments, in increasing order do

10 objName←“WAL/"+currentT s+“_"+ f ile.name+“_0";
11 cloud.PUT (objName,file.content);
12 cloudView.addWAL(currentTs,file.name,0);
13 currentTs← currentTs+1;

14 dbOb ject← /0;
15 for each f ile in Local DB Files do
16 dbObject.add(file.name,file.content);

17 cloud.PUT (“DB/0_dump_"+dbObject.size,dbObject);
18 cloudView.addDB(0,“dump",dbObject.size);

19 Mode Reboot begin
20 cloudList← cloud.LIST ();
21 for each obj in cloudList do
22 cloudView.add(obj);

23 Mode Recovery begin
24 cloudList← cloud.LIST ();
25 for each obj in cloudList do
26 cloudView.add(obj);

27 dump← cloud.GET (mostRecentDump(cloudList.dbObjects));
28 for each file in dump do
29 writeLocally(file.name,0,file.content);

30 checkpoints← newerThan(cloudList.dbObjects,dump.ts);
31 maxCkptTs← dump.ts;
32 for each obj in checkpoints, in increasing ts order do
33 currentCkpt← cloud.GET (obj);
34 for each file in currentCkpt do
35 writeLocally(file.name,file.offset,file.content);

36 maxCkptTs← obj.ts;

37 segments← newerThan(cloudList.walObjects,maxCkptTs);
38 for each obj in segments, sortedby ts and with no gaps do
39 content← cloud.GET (obj);
40 writeLocally(obj.filename,obj.offset,obj.content);

present in the cloud (Lines 19–22). Notice that even this step might
be removed if this data structure is persisted during a safe stop.

The Recovery mode is used to rebuild the database files from the
objects stored in the cloud. The first step is to list the objects in the
cloud and update the cloudView data structure (Lines 24–26). Then,
the database files are reconstructed from the most recent dump in
the cloud (Lines 27–29) and, afterwards, these files are updated with
the incremental checkpoint objects (Lines 30–36). Finally, GINJA

downloads the WAL data objects written after the last checkpoint
and rebuild the local WAL segments following the ts ordering so
that the DBMS can be restarted (Lines 37–40).

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Joel Alcântara, Tiago Oliveira, Alysson Bessani

Algorithm 2: Database Commits.

1 commitQueue← /0; // Holds all the pending synchronizations

2 timeoutTS← false;
3 timeoutTB← false;
4 When write(WAL_segment, offset, content) is intercepted begin
5 writeLocally(WAL_segment,offset,content);
6 commitQueue.put(⟨WAL_segment,offset,content⟩);
7 wait until commitQueue.size≤ S and timeoutTS = false;

8 CommitThread Execution begin
9 Loop

10 wait until commitQueue.size≥ B or timeoutTB = true;
11 updates← commitQueue.getNextBatch();
12 aggUpdates← aggregateUpdates(updates);
13 for each u in aggUpdates do
14 ts← cloudView.getNextWALts();
15 cloud.PUT (“WAL/"+ts+“_"+u.filename+“_"+u.offset);
16 cloudView.addWAL(ts,u.filename,u.offset);

17 TaskTB.resetTimer();
18 timeoutTB← false;
19 wait until commitQueue.lastBatchElements() = updates;
20 commitQueue.removeLastNElements(updates.size);
21 TaskTS.resetTimer();
22 timeoutTS← false;

23 TaskTB (upon timeout) begin
24 if commitQueue.size > 0 then
25 timeoutTB← true; // Trigger an upload

26 TaskTS (upon timeout) begin
27 if commitQueue.size > 0 then
28 timeoutTS← true; // Block the DBMS

Database Update Commits. Algorithm 2 describes how GINJA pro-
cesses the intercepted writes to WAL segment files without violating
the parameters B, S, TB, and TS.

When the system intercepts an update to a WAL segment file, it
writes the data on the local copy of the file and enqueues the update
to be sent to the cloud (Lines 4–6). The operation only returns to the
DBMS if the S and TS parameters are not violated, otherwise the
systems blocks (Line 7) until the pending writes are uploaded.

Lines 8–22 show how commits are processed. First, the writes
are aggregated respecting B and TB (Lines 9–12), resulting in one or
more WAL objects, depending on the number of segments affected
by the committed writes.4 After being aggregated, they are sent to
the cloud (Lines 13–16).

The aggregation is important because the DBMS write to the
log on the granularity of a page, and many times these pages are
overwritten with more updates. Consequently, by aggregating them
we coalesce many updates in a single cloud object upload. This
reduces the storage used and the total number of PUT operations
executed in the cloud, resulting in a significant decrease in the
monetary cost of our DR solution.

GINJA uses multiple CommitThreads to upload objects to the
cloud in parallel (see Lines 4–5 of Algorithm 1), achieving great
benefits in terms of performance [30]. However, this parallelism

4WAL segments are typically much larger than the page size (e.g., 16MB vs. 8kB in
PostgreSQL and 48MB vs. 16kB in MySQL). Consequently, this aggregation typically
results in only one cloud object.

Algorithm 3: Checkpoints and Garbage Collection.

1 checkpointQueue← /0;
2 timestamp← /0;
3 When write(dbFile, offset, content) is intercepted begin
4 if ⟨dbFile,offset,content⟩ is the first write in checkpoint then
5 timestamp← cloudView.getLastWALts();

6 writeLocally(dbFile,offset,content);
7 dbObject← addAndAggregate(⟨dbFile,offset,content⟩);
8 if ⟨dbFile,offset,content⟩ is the last write in checkpoint then
9 if cloudView.getTotalDBSize() ≥ 150%× local DB size then

10 dbObject← create dump from local DB files;
11 dbObject.type← “dump";
12 else
13 dbObject.type← “checkpoint";

14 dbObject.ts← timestamp;
15 checkpointQueue.add(dbObject);
16 dbObject← /0;

17 CheckpointThread Execution begin
18 Loop
19 wait until checkpointQueue.size > 0;
20 obj← checkpointQueue.remove();
21 cloud.PUT (“DB/"+obj.ts+“_"+obj.type+“_"+obj.size,obj);
22 cloudView.addDB(obj.ts,obj.type,obj.size);
23 for each walObject ∈ cloudView : walObject.ts≤ obj.ts do
24 cloud.DELETE(walObject.objectName);
25 cloudView.delete(walObject);

26 if obj.type =“dump" then
27 for each dbObject ∈ cloudView : dbObject.ts < obj.ts do
28 cloud.DELETE(dbObject.objectName);
29 cloudView.delete(dbObject);

makes it no longer guaranteed that WAL objects are uploaded fol-
lowing their timestamp order (i.e., the ts obtained on Line 14). In the
worst case scenario, a disaster may occur in the moment when the
most recent WAL updates are already replicated in the cloud, while
others with smaller timestamps are still in transmission. During Re-
covery, GINJA deals with this incomplete state by downloading only
the WAL objects that have consecutive timestamps. Consequently,
to limit the maximum number of updates lost in case of failure to S,
GINJA blocks the DBMS until all WAL objects with consecutive ts
values are uploaded. This can be observed in Algorithm 2: the vari-
ables that control these parameters (specifically commitQueue.size,
timeoutTS, and the timer of TaskTS) are reseted (unblocking the
DBMS) if all WAL objects previously uploaded can be used to
recover from a disaster that would occur immediately (Lines 20–22).

Checkpoints and Garbage Collection. Algorithm 3 describes how
GINJA handles checkpoints. As performance is one of our key con-
cerns, we decouple as much as possible the (local) DBMS check-
points from the writing of checkpoints to the cloud (Lines 6, 20–21).
Therefore, checkpoint data is collected as the files are updated dur-
ing a checkpoint (Lines 3–16) and, when the checkpoint is finished
locally, a separate thread is used to send the updates to the cloud
as DB objects (Lines 17–29). Notice the checkpoint begin and end
conditions (see Table 1) are verified in Lines 4 and 8, respectively.

Ginja: One-dollar Cloud-based Disaster Recovery for Databases Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

There are two ways of sending checkpoint data to the cloud: as a
checkpoint or as a dump. Whenever the total size of the DB objects
in the cloud is greater than or equal to 150% of the local database
size, GINJA creates a new database dump (Lines 9–11). Otherwise,
it creates an incremental checkpoint. In the first case, GINJA will not
execute any write in the local DB files while the dump object is being
created, to guarantee that the database is dumped in a consistent way.
This does not block database commits as WAL file writes are mostly
independent of checkpoint processing (at least in the two databases
we support).

Every time a DB object with timestamp ts is completely uploaded
to the cloud, GINJA removes all WAL objects with timestamps up to
ts (Lines 4–5 and 23–25). This is safe because such WAL objects
contain information that will not be used in a recovery. Additionally,
when the uploaded DB object is a dump, all the previous DB objects
(incremental checkpoints and the previous dump) are deleted as well
(Lines 26–29).

5.4 Additional Features
In the following we describe some extensions to the algorithms
presented in previous section.

Compression, encryption and integrity. GINJA supports the com-
pression and/or encryption of WAL and DB objects before their write
to the cloud. Compression decreases the data size and is straight-
forward to implement. Encryption, on the other hand, requires the
management of a local secret key that cannot be stored in the cloud
to preserve the database confidentiality. GINJA uses a key generated
from a password (assumed to be kept secure) provided during the
initialization of the system. At runtime, this key is kept in memory
and never written to any local or remote file.

Our system also implements some basic integrity protection by
storing a MAC of each object together with it. If encryption is
enabled, the provided password is also used to generate the MAC
key, otherwise, a default string (a configuration parameter) is used
to generate this key.

Point-in-time recovery. The garbage collection algorithm discussed
in the previous section deletes all outdated objects when a new
checkpoint is written to the cloud. However, the algorithm can be
modified to delete only certain objects and keep others to allow the
recovery of the system to a certain point in time. More specifically,
Lines 23–29 of Algorithm 3 can be modified to keep the database
state on date-time T by finding the first object o stored in the cloud
after T and keeping (1) the most recent dump d written before this
object, (2) all incremental checkpoints written between d and o, and
(3) all WAL objects written between the last incremental checkpoint
and o.

As expected, storing snapshots for point-in-time recovery might
substantially increase the cloud storage costs, especially for large
databases. However, this is fundamental for ensuring some protec-
tion against operator mistakes and even ransomware attacks, such as
the recent WannaCry virus, that ravaged many companies [18].

Backup verification. One of the key concerns in every disaster re-
covery plan is how to ensure the plan will actually work when a
disaster strikes. An important feature of GINJA is that it allows the
verification of a database backup in an easy and cheap way, without
interfering with the production system.

To do that we just need to start a replica of the database in recov-
ery mode and run a set of service-specific tests. This implies in a
sequence of three validations:

1. GINJA validates the integrity of every object downloaded
from the cloud through its MAC verification;

2. When restarting the system, the DBMS itself verifies the
integrity of the tables and WAL segments rebuilt by GINJA;

3. Once the DBMS is started, a pre-prepared script can run a
series of queries to assess if recent updates are available on
the database. This verification can be made automatically
using some service-specific heuristic and the result of the
script can be sent to an administrator for verification.

The cost of database verification is basically the cost of download-
ing the database objects to a local machine or the cost of running a
VM in the same cloud (if appropriate). In any case, the verification
procedure can be fully automated.

6 Implementation
GINJA was implemented as a File System in User Space [46] us-
ing approximately 4000 lines of Java code distributed in 32 files.
Most of this code is DBMS-agnostic and there are only two small
modules that are specific for processing I/O from PostgreSQL and
MySQL/InnoDB, with around 200 lines of code each. The cloud
synchronization module is based on an external library capable of
accessing multiple cloud storage providers [38]. Although not dis-
cussed in this paper, our system supports the replication of objects in
multiple clouds, for tolerating provider-scale failures [19]. Further-
more, our current prototype implements compression using ZLIB
configured for fastest operation, encryption using AES with 128-bit
keys, and MACs using SHA-1.

Figure 3 presents the internal architecture of GINJA. The FS
Interpreter implements a FUSE-J interface [6], and is responsible
for three main tasks: (1) intercept the file system calls performed
by the DBMS; (2) execute the FS operation in the local disk; and
(3) forward a well-formatted data to the database processor. In this
way, GINJA can be easily extended to support other DBMS by
implementing new processors.

The implementation of a processor is a relatively simple and
straightforward procedure. However, this requires an in-depth knowl-
edge of the DBMS I/O management. The processor uses two differ-
ent queues to put the data received from the file system: one for the
WAL writes and another for the checkpoint writes.

The write operations performed in the WAL are sent to a queue
named CommitQueue. This data structure has a maximum capacity
of S elements, and only supports getting B elements at a time. Any
attempt to put an element into a full CommitQueue will block. Like-
wise, attempts to take elements from a CommitQueue with less than
B elements will result in blocking until the TB timer expires.

The Aggregator thread is responsible to read sets of B updates
from this queue (without removing them), aggregate those writes
into a single object, and submit the resulting data to a second queue.
A number of Uploader threads will retrieve elements from this
queue and upload them in parallel as WAL objects, submitting an
acknowledgment to a third queue whenever a cloud upload com-
pletes. Last but not least, a thread called Unlocker will remove sets
of up to B elements from the head of CommitQueue, according
to the acknowledgments received by the Uploader threads. In the

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Joel Alcântara, Tiago Oliveira, Alysson Bessani

FUSEVFS Local	Storage
Device Cloud

Kernel
User	Space

DBMS PG	Processor

FS	Interpreter

FUSE-J

Checkpointer

CheckpointQueue

Safety

Batch
CommitQueue

Aggregator

Unlocker Uploader1 Uploadern...

Figure 3. Architecture of GINJA.

end, the Aggregator, Uploader, and Unlocker threads implement
Algorithm 2.

The write operations performed during checkpoints are enqueued
to the CheckpointQueue so that a thread called Checkpointer aggre-
gates the data and uploads it to the cloud in the form of DB cloud
objects, implementing Algorithm 3.

7 Cost Evaluation
A key objective of our work is to reduce the operational cost of
database disaster recovery. In this section, we model and evaluate
the operational cost of running GINJA.

7.1 Ginja Cost Model
The factors that influence the operational cost of GINJA in the ab-
sence of disasters are the storage used to keep WAL and DB objects
in the cloud, and the amount of PUT operations used to upload
such objects to the cloud. Thus, the monthly operational cost of our
system is given by the following equation:

CTotal =CDB_Storage +CDB_PUT +CWAL_Storage +CWAL_PUT

This equation (and the evaluation presented next) does not con-
sider the additional storage required for point-in-time recovery. The
cost of such storage can be approximated by multiplying the storage
costs of the WAL and DB objects by the number of snapshots to be
maintained.

Let us now explore in detail how each of the four factors of this
equation can be calculated.

Storage of DB objects. GINJA uploads the information of the data-
base files in the form of DB objects. The cost of storing these objects
is given by the following equation:

CDB_Storage =
DBSize×1.25

CR
×CStorage

The DB_Size is measured in GBs and the CStorage in $/GB/month.
The main factor that influences this cost is the size of the database.
Recall that GINJA ensures that the maximum volume that the DB
objects can take in the cloud is 150% of the local database size (due
to the incremental checkpoints). As a result, the average DB storage
in the cloud will be 25% greater than the database size. Additionally,
the DB data size can be further reduced by using compression (the
compression rate, CR in the equation).

PUT operations of DB objects. The number of PUT operations
used to upload DB objects depends essentially on how often check-
points occur, the average checkpoint size, and the price of each PUT
operation. The cost of this component can be calculated as follows:

CDB_PUT =
30×24×60

CkptPeriod
×
⌈

CkptSize
20MB

⌉
×CPUT

The first fraction of this equation gives us the number of check-
points that the DBMS performs per month (note that CkptPeriod
is given in minutes). The second fraction determines the number
of PUT operations executed in each checkpoint, i.e., number of
uploaded DB objects split in files of up to 20MB.

Storage of WAL objects. The third cost factor of GINJA is the vol-
ume of the WAL objects present in the cloud, calculated as follows:

CWAL_Storage =

(⌈
W ×CkptTime

RecPerPage

⌉
+1

)
× PageSize

CR
×CStorage

The first part of the equation determines the maximum number of
WAL segments that can be in the cloud at any moment. Recall that
WAL objects written before a checkpoint are deleted from the cloud
as soon as the checkpoint is completely uploaded. Consequently, the
amount of storage is directly proportional to the number of updates
per minute (W – assuming each update uses a record), and to the
CkptTime, which includes the checkpoint period, its duration, and the
amount of time that it takes to be uploaded to the cloud.

The total number of updates performed between checkpoints is
divided by the number of records per WAL page (RecPerPage), as
we coalesce multiple writes to the same page, reaching the number
of WAL segments uploaded to the cloud. The “+1" considers the
worst case scenario – the situation in which the first WAL write after
a checkpoint is performed in the last record of a WAL segment.

Finally, PageSize is the size in GB of each WAL page, CR is the
compression rate, and CStorage is the storage cost.

PUT operations of WAL objects. Finally, the cost associated with
the number of PUT operations of WAL objects is represented by
CWAL_PUT . This cost depends essentially on the database workload
and the value of the parameter B, and is given by the following
equation:

CWAL_PUT =
W ×60×24×30

B
×CPUT

Every time B database updates are executed in the DBMS, a
WAL object is uploaded to the cloud. Thus, the CWAL_PUT is calcu-
lated using the number of database updates executed per month and
multiplying this value by the price charged for each PUT operation.

7.2 The Cost of Running Ginja
Figure 4 presents the operational monetary costs of GINJA with
different values of B and under different workloads. The values
presented consider the usage of Amazon S3, and a database of 10GB
with pages of 8kB containing 75 WAL records. We also consider
that a checkpoint happens every 60 minutes and has a duration of 20
minutes, and a compression rate of 1.43 (i.e., every 1MB becomes
700kB).

The results show that the parameter B has a severe impact on the
total monetary cost of GINJA. This can be explained by the fact that

Ginja: One-dollar Cloud-based Disaster Recovery for Databases Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

 0.1

 1

 10

10 100 1000

C
o

s
t

($
/M

o
n

th
)

Workload (Updates/Minute)

B=1000
B=100
B=10

Figure 4. Effect of different configurations and workloads in
GINJA’s monetary cost for a 10GB database and Amazon S3.

B reduces the number of executed cloud synchronizations (i.e., PUT
operations). Additionally, we can also observe that this relation is
even more evident when considering more demanding update-heavy
workloads.

It is worth to mention that the size of our database (10GB) implies
in a fixed CDB_Storage of $0.20. If one wants to consider, for instance,
a 10× bigger database, this cost will be $2.

These results show that there are plenty of possible configurations
that cost less than $1 per month. For reference, the cheapest VM
indicated for databases in Amazon EC2 (m3.medium with Linux)
costs $48.24/month in May 2017 [2].

Real application. We now present an evaluation of the costs of
GINJA considering the database used in a real clinical analysis
system deployed in more than 100 institutions in Europe. Table 2
presents the monetary costs of performing disaster recovery in the
cloud (specifically, Amazon Web Services) using GINJA with one
(RPO ≈ 1 minute) and six (RPO ≈ 10 seconds) cloud synchroniza-
tions per minute. For comparison purposes, the table also shows
the cost of a DR solution based on a single backup database VM
on Amazon EC2, as a Pilot Light for recovering the system [41].
We consider two database configurations: one hospital with a 1TB
database and a workload of 630 transactions per minute, and a clini-
cal laboratory with a 10GB database that processes 30 transactions
per minute. Among these transactions, only 20% are updates. These
results are averages obtained through a month.

In the laboratory scenario, GINJA has an operational cost between
62× to 222× smaller when compared with the cost of using a backup
replica in a VM. The dominant factor in this scenario is the cost of
uploading WAL objects to the cloud, i.e., CWAL_PUT . In the hospital
scenario, GINJA has a cost 14× smaller than the cost of running
a backup database on a VM instance in the cloud. The benefits of
GINJA in this case are not so expressive as the cost is dominated by
the storage of the database.

These results show that using GINJA is substantially cheaper
than maintaining VM instances in the cloud, especially for small to
medium databases, which are expected to be the norm in SMEs.

Although relatively impressive, one may argue that saving $60-
$270 per month is not so important, even for small companies. How-
ever, much more important than these cloud-related economical
advantages, our system is arguably much simpler to manage than
the alternative solution, which requires configuring a VM and a
connection to the local facility (e.g, VPN, public IPs). The simplicity
of operation is a key feature of our solution, which aims to make
disaster recovery simpler than taking backups.

Table 2. Costs of performing cloud-based disaster recovery with
AWS using GINJA or database replication with VMs. Calculated
using https://calculator.s3.amazonaws.com in May 2017.

Configuration GINJA with S3 EC2 VMs
Laboratory $0.42 (1 sync./m) m3.medium + VPN +

(10GB, 6 up/min) $1.50 (6 sync./m) EBS 100IOS = $93.4
Hospital $20.3 (1 sync./m) m3.large + VPN +

(1TB, 138 up/min) $21.4 (6 sync./m) EBS 500IOS = $291.5

7.3 The Cost of Recovery
The cost of recovering a database backed-up using GINJA is basi-
cally defined by the cost of downloading all DB and WAL objects.
Currently, the costs of downloading one GB of data is almost 4×
higher than the cost of storing it for a month in Amazon S3 [4].
Therefore, the cost of recovering a database can be approximated
by 4× (CDB_Storage +CWAL_Storage) plus the costs of the GET oper-
ations used to download these files (not significant). For instance,
the costs of recovering from a disaster on the real clinical databases
mentioned before would be $112.5 and $1.125 for the Hospital and
the Laboratory, respectively. Importantly, if the database is recovered
to an EC2 VM in the same location as the data, this cost goes to
zero, as downloads from S3 to EC2 in the same region are free of
charge [4].

Notice that reestablishing the local infrastructure after a disaster
using the data stored in the cloud is roughly the same in GINJA,
in VM-based solutions (Pilot Light), and in cloud-based backups
(Backup and Restore), as the database will need to be downloaded
from the cloud.

Another important aspect of the cost of recovery is the application-
specific cost of downtime. A disadvantage of GINJA when compared
with a VM-based solution is the potentially slower recovery. As we
shown in §8.3, recovering even a modest GINJA-backed database in
a cloud VM can take few minutes. For small databases (e.g., 10GB
or less) this is not problematic because starting other VMs for web
and application services and configuring network services such as
DNS can take roughly the same amount of time than recovering the
database. This would make the RTO (Recovery-Time Objective) of
a GINJA-based solution similar to a VM-based DR solution. For
bigger databases, it is expected that the RTO of GINJA to be larger
than the one obtained with a VM-based solution. In fact, this is the
main trade-off of our design: low-cost fault-free operation potentially
leads to a greater recovery time.

8 Experimental Evaluation
In this section we present an experimental evaluation of GINJA

using PostgreSQL 9.3 [13] and MySQL 5.7 with InnoDB [10]. The
objective is to assess the performance overhead due to the use of
GINJA and to understand its cloud and server resources usage.

The experiments were executed in two Dell Power Edge R410 ma-
chines (one for the DBMS and GINJA and another for the benchmark
software) located in our academic infrastructure, in Lisbon. Each
machine has two Intel Xeon E5520 CPUs (quad-core, HT, 2.27Ghz),
32GB of RAM, and a 15k-RPMs Hard Disk Drive with 146GB. The
operating system used was Ubuntu Server (14.04 LTS, 64-bits), with
kernel 3.5.0-23-generic and Java 1.8.0 (64-bits). Both PostreSQL

https://calculator.s3.amazonaws.com

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Joel Alcântara, Tiago Oliveira, Alysson Bessani

 0

 1.5

 3

 4.5

 6

 7.5

ext4 FUSE 1000 100 10 1 100 10 1 10 1 1 No-Loss

T
ra

n
s
a
c
ti
o

n
s

P
e
r

M
in

.
(x

1
0

0
0
)

Tpm-C

Tpm-Total

S=10S=100S=1000S=10000

(a) PostgreSQL

 0

 2.5

 5

 7.5

 10

 12.5

ext4 FUSE 1000 100 10 1 100 10 1 10 1 1 No-Loss

Tpm-C

Tpm-Total

S=10S=100S=1000S=10000

(b) MySQL

Figure 5. Influence of different configurations in the performance of GINJA with PostgreSQL and MySQL. The values of B are expressed
immediately below the columns. Exceptions are the first two columns (native file system and FUSE), and the last column (S = B = 1).

 0

 1.5

 3

 4.5

 6

 7.5

Normal Comp Crypt C+C Normal Comp Crypt C+C Normal Comp Crypt C+C

T
ra

n
s
a
c
ti
o

n
s

P
e
r

M
in

.
(x

1
0

0
0
)

Tpm-C

Tpm-Total

B=1000
S=10000

B=100
S=1000

B=10
S=100

(a) PostgreSQL

 0

 2.5

 5

 7.5

 10

 12.5

Normal Comp Cryp C+C Normal Comp Cryp C+C Normal Comp Cryp C+C

Tpm-C

Tpm-Total

B=1000
S=10000

B=100
S=1000

B=10
S=100

(b) MySQL

Figure 6. Effect of compression and cryptography in the performance of GINJA. The columns are grouped by configuration (B and S), and the
values immediately below de columns specify whether compression, cryptography or both (C+C) are active.

and MySQL were run using their default configurations. The cloud
storage service used was Amazon S3 (US East, N. Virginia).

We report average results from five executions running TPC-
C [15] during five minutes. We chose this benchmark for measuring
the overhead of GINJA due to its update-heavy workload (≈ 90% of
updates), as our system is expected to have no impact on read-heavy
workloads. For PostgreSQL, we used the BenchmarkSQL 4.1.1
tool [5] with one warehouse and five terminals, while for MySQL
we used a Java implementation of TPC-C [7] configured with two
warehouses and 60 terminals. We chose these configurations as they
allow the DBMS to reach the highest performance without GINJA.
The reported metrics are the total number of transactions per minute
(Tpm-Total), and the number of newOrder transactions per minute
while the DBMS is also processing other types of transactions (Tpm-
C). In all experiments GINJA was configured with five Uploader
threads, which corresponds to the best setup in our environment.

8.1 Performance Overhead
Performance overhead. Figure 5 shows the effect that different
configurations of B (Batch) and S (Safety) have in the throughput of
PostgreSQL and MySQL running TPC-C on top of GINJA. We also
ran the benchmark on top of the ext4 native file system and a FUSE
local file system to have baselines for comparison.

The first observation to make is that the FUSE file system presents
a throughput decrease of 7% and 12% for PostgreSQL and MySQL,
respectively. Since GINJA is also a FUSE file system, this will be
our baseline.

The most important observation is that, for sufficiently high values
of B and S, GINJA introduces a small performance loss (3.7% and
1.1% for PostgreSQL and MySQL, respectively). Furthermore, small

values of B make the amount of pending updates reach S earlier,
constantly blocking the DBMS and decreasing its performance.

The figure also shows results for GINJA with S = B = 1 (No Loss),
which corresponds to synchronous replication. As expected, this
configurations presents the lowest performance among the ones
we tested: 248 and 348 Tpm-Total, for PostgreSQL and MySQL,
respectively.

Compression and encryption. Figure 6 shows how compression
and encryption influence the performance of GINJA. For PostgreSQL
(Figure 6a), the use of these features made the results vary slightly,
as the latency of uploading compressed data is smaller (see next
section). On the other hand, encryption introduces a minimal over-
head. For MySQL (Figure 6b), there are basically no changes in
performance. This happens because the page size of MySQL WAL
segments are quite small (512 bytes vs. 8kB in PostgreSQL), leading
to diminished effects of compression and encryption in the data
upload latency.

8.2 Resource Usage
Cloud usage and its implications. Table 3 shows the number of
PUT operations, the size of the objects written, and the observed
upload latency during the execution of the TPC-C benchmark for
five minutes. We focus our discussion on PostgreSQL results, but
the insights are similar for MySQL.

The results show that increasing the batch from 10 to 100 de-
creases the number of PUT operations performed by 80%, while an
additional tenfold increase further decreases this number by almost
70%. In the same way, increasing the batch increases the object size
and, consequently, the latency to write the object to the cloud. How-
ever, this increase is not linearly proportional with the increase of the
object size due to coalescing of writes during the page aggregation.

Ginja: One-dollar Cloud-based Disaster Recovery for Databases Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

Table 3. GINJA’s use of storage cloud. All results are averages col-
lected during five executions of five minutes of TPC-C for different
configurations with both PostgreSQL (PG) and MySQL (MS).

Configuration
Num. PUTs Object Size PUT latency

(5 min) (kB) (millisec.)
PG MS PG MS PG MS

10/100 plain 1789 3864 386 26 692 391
10/100 C+C 1990 3994 237 11 562 376
100/1000 plain 364 1046 3018 180 2880 698
100/1000 C+C 383 1063 1908 78 2007 610
1000/10000 plain 119 139 10081 1309 7707 1552
1000/10000 C+C 119 137 6339 606 4422 1354

Table 4. Database server (eight cores with hyper-threading and
32GB of RAM) resource usage with and without GINJA.

Configuration PostgreSQL MySQL
CPU Memory CPU Memory

Native FS 6.4% 4.3% 13.7% 1.2%
FUSE FS 6.9% 4.9% 14.9% 1.7%
100/1000 7.8% 6.9% 15.3% 8.1%
100/1000 Comp 11.6% 9.7% 15.8% 12.1%
100/1000 Crypt 9.1% 7.2% 16.4% 9.7%
100/1000 C+C 13.4% 9.9% 16.0% 11.1%

The table also shows that using compression (and encryption)
reduces the object size by 37%, reducing the PUT latency, and
bringing the benefits discussed before.

Database server resource usage. Table 4 presents the resource us-
age of a database server running a TPC-C workload under different
configurations with and without GINJA.

For PostgreSQL, the table shows that using a Native or FUSE
file system already require around 8% of the machine CPU and less
than 1.6GB of memory (5%). When using GINJA, the server CPU
and memory usage increase by 1% and 2%, respectively, when com-
pared with a FUSE FS. Additionally, compression and encryption
introduce some CPU load: +4.5% and +1.5%, respectively. In terms
of memory, these features increase the memory usage by 3% (com-
pression) and 0.3% (encryption). When compression and encryption
are used, the overheads of these features are summed up.

For MySQL, the CPU usage is basically the same, independently
of the enabled features (under the standard deviation of≈ 10%). The
memory usage follows the same trends as in PostgreSQL: compres-
sion demands more memory than encryption.

In the end, using GINJA with compression and encryption requires
at most +7% of CPU (for PostgreSQL, which is less than a core in
our server) and +10% of memory (for MySQL, less than 3.2GB) of
our 8-core server with 32GB of memory. We consider these costs
would not be a deterrent for using GINJA.

8.3 Recovery Time
Our last experiment measure the recovery time of GINJA after ex-
periencing a failure when executing TPC-C for five minutes. The
experiment was done with PostgreSQL, but the results for MySQL
would be similar as the key factor here is the database download
time from the storage service.

 0

 1

 2

 3

 4

1 5 10

R
e

c
o

v
e

ry
 T

im
e

 (
m

in
.)

Number of TPC-C Warehouses

On-premises server
Amazon EC2 VM

Figure 7. Recovery times of GINJA for different database sizes using
a local server and a VM in the same location as the data.

We ran the experiment for three different database sizes, by vary-
ing the number of warehouses in TPC-C [15] (with a maximum
database size of 1.5GB) and executed the recovery process in a ma-
chine in our infrastructure, and in an Amazon EC2 VM (located in
the same region where GINJA stored the data).

As expected, the recovery time grows with the database size as
more data has to be downloaded. Furthermore, the recovery time can
be remarkably reduced by executing GINJA in a computing instance
located in the same cloud region where the data is stored.

9 Related Work
Database replication and disaster tolerance. There is a large body
of work related with database replication for fault tolerance (see [33]
for a concise survey, and [23] for a criticism). For example, one of
the earliest works on database disaster tolerance [34] describes a
method for mirroring database nodes on a secondary, backup site.
These works are mostly orthogonal to GINJA as they consider that
there will be replicas to be synchronized, while we are concerned
with the capture and replication of database updates on a passive
remote storage in a cost-efficient way. There are database-specific
middleware products such as Oracle GoldenGate [12] that capture
updates from database logs and send them to a remote node or disk.
However, these systems do not provide means for controlling the
tradeoff between durability, costs and performance. Furthermore,
they do not take into consideration the cloud storage cost and ser-
vice model. Nonetheless, in the following we discuss some features
provided by PostgreSQL and MySQL for implementing disaster
tolerance.

PostgreSQL provides two mechanisms for helping disaster toler-
ance [14]. The first one, Continuous Archiving, consists of perform-
ing a file-system-level backup of the database directory and setting
a process (the archiver) that periodically backs up completed WAL
segments. This mechanism could be used to tolerate disasters by
configuring the archiver process to copy the log files to a geographi-
cally remote facility such as a cloud storage service. However, the
archiver process only operates over completed WAL segments, and
thus it does not provide any fine-grained control over the RPO. The
second mechanism is named Streaming Replication, and allows a
primary server to replicate, in a synchronous or asynchronous way,
the changes made to its database to a backup server.

MySQL also offers replication solutions very similar to Post-
greSQL streaming replication, supporting asynchronous, delayed
or synchronous primary-backup replication [11]. In both databases,
these mechanisms could be used as a disaster tolerance solution by

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA Joel Alcântara, Tiago Oliveira, Alysson Bessani

placing the backup replica in a cloud VM. As discussed before, this
implies substantially higher costs than what we achieve with GINJA.

PostgreSQL and MySQL can also be protected by a third-party
solution named Zmanda [17], which is a bit more closer to GINJA.
This tool extends both systems backup features by allowing the
specification of backup schedules and point-in-time recovery in a
simple way. Zmanda also allows the execution of (full or incremen-
tal) online backups to Amazon S3 or Google Storage. Since Zmanda
only backs up the state of the databases at the schedule time, it can
not provide the control over the RPO that GINJA provides, as it
does not work at the transaction commit level. Furthermore, being
a commercial service, the costs of using Zmanda are much higher
than running GINJA.

Filesystem mirroring. A common way of having disaster tolerance
is by replicating data at the storage level. By continuously backing
up the relevant files to remote storage facilities, a system is no longer
susceptible to lose all its data if a disaster occurs in its primary
infrastructure.

Two examples of such systems are SnapMirror [39] and Seneca
[31]. Both use asynchronous replication in order to avoid any signif-
icant loss of performance. The main difference between these two
solutions is that the first replicates consistent file system snapshots,
while the second sends batches of updates to the remote site.

The most important advantage of such solutions is that they allow
any application to protect its data, without requiring changes to its
source code. However, they do not consider the semantics of the
applications, which can result in inconsistent states after recovery.
Additionally, these solutions require computing instances running
on the backup site, which implies higher costs than running GINJA.

Virtual machine replication. The virtualization of IT resources is
one of the key features of modern DR strategies [41, 49]. Here we
discuss some works for transparent VM replication that could be
used for disaster recovery in database systems.

RemusDB [36] is an extension for the Remus VM replication sys-
tem [26] that provides high availability for DBMS in a transparent
way. This is achieved by running the DBMS in a virtual machine,
making the virtualization layer perform the tasks related with data
replication, failure detection, and recovery. A key limitation of Re-
musDB is that it was not designed for wide-area replication, and the
higher latencies can render the system impractical.

SecondSite [40] is another extension for Remus, specifically de-
signed for disaster recovery. The system continuously replicates the
entire state of virtual machines in a primary site to backup VMs in a
different geographic location, which can transparently assume the
responsibility of providing the service if a disaster strikes. Second-
Site deals with the limitations of wide-area replication by making
a better use of bandwidth through checkpoint compression, and by
using quorums of servers for detecting failures.

PipeCloud [50] is a cloud-based disaster recovery system for
multi-tier client-server applications running on a set of VMs. This
system runs in the virtual machine monitor of each cloud physical
server and replicates all disk writes to geographically distant backup
servers.

All these virtualization-based approaches have the advantage of
performing fast failover since they include a backup VM running in
a secondary site ready to take over when a disaster is detected in the
primary infrastructure. Such additional computing resources implies
higher operational and management costs.

Cloud-backed storage services. Although the following solutions
were not explicitly conceived for disaster recovery, the mechanisms
they employ are often similar to the ones we use in GINJA.

Brantner et al. [21] presents a DBMS core that uses Amazon S3
as its storage subsystem. This core allows retrieving pages from
S3, buffering them locally (in memory or disk), updating them, and
writing them back to the cloud. All cloud operations are coordinated
by a page manager, on top of which there is a record manager
that provides a record-oriented interface to the applications. The
work proposes several protocols for accessing cloud services with
different guarantees, but its design does not prioritizes either cost
or performance. Furthermore, integrating this solution with existing
DBMS requires a substantial reengineering effort, on the contrary of
GINJA.

Cumulus [47] is a utility that performs efficient file system back-
ups to cloud storage services. Thus, it can be used to take snapshots
of the data directory where DBMS writes preventing the failure of
the local infrastructure.

Cloud-backed file systems such as BlueSky [48] and SCFS [20]
translate local file system operations to a cloud storage service with
a minimum or no use of cloud VMs. SCFS in particular provides
strong consistency and durability guarantees and thus could be used
to provide disaster recovery for a database running on top of it.
However, the system implements only synchronous or asynchro-
nous replication of whole files, which means that the database files
replication will be very inefficient.

10 Conclusion
We presented GINJA, a transactional DBMS disaster recovery mid-
dleware that uses public cloud storage services for offering efficient
and low-cost DR. Our current prototype supports PostgreSQL and
MySQL, and the experimental results show that using our system
degrades the database performance by less than 5% when running
TPC-C, with less than 10% additional CPU and memory load on our
server. Furthermore, GINJA is between 14× to 222× cheaper than
having a VM-based cloud disaster recovery service for a database
used in a real application.

Acknowledgments. We thank Paulo Sousa from MaxData Software
for providing statistics about the laboratory and hospital databases.
This work was supported by FCT through projects LaSIGE (UID/
CEC/00408/2013) and IRCoC (PTDC/EEI-SCR/6970/2014), and
by the European Commission through the H2020 SUPERCLOUD
project (643964).

References
[1] 2016. Business continuity trends and challenges 2016. (Jan. 2016).

http://www.continuitycentral.com/index.php/news/business-continuity-
news/776-business-continuity-trends-and-challenges-2016.

[2] 2017. Amazon EC2 Instance Types. (2017). https://aws.amazon.com/ec2/

instance-types/.
[3] 2017. Amazon RDS Multi-AZ Deployments. (2017). https://aws.amazon.com/

rds/details/multi-az/.
[4] 2017. Amazon S3 pricing. (2017). https://aws.amazon.com/s3/pricing/.
[5] 2017. BenchmarkSQL. (2017). https://bitbucket.org/openscg/benchmarksql.
[6] 2017. FUSE-J. (2017). http://fuse-j.sourceforge.net/.
[7] 2017. Java TPC-C. (2017). https://github.com/AgilData/tpcc.
[8] 2017. Microsoft Azure Site Recovery. (2017). https://azure.microsoft.com/en-

us/services/site-recovery/.
[9] 2017. MySQL - The InnoDB Storage Engine. (2017). http://dev.mysql.com/

doc/refman/5.7/en/innodb-storage-engine.html.
[10] 2017. MySQL 5.7 Documentation. (2017). http://dev.mysql.com/doc/refman/

5.7/en/.

http://www.continuitycentral.com/index.php/news/business-continuity-news/776-business-continuity-trends-and-challenges-2016
http://www.continuitycentral.com/index.php/news/business-continuity-news/776-business-continuity-trends-and-challenges-2016
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/s3/pricing/
https://bitbucket.org/openscg/benchmarksql
http://fuse-j.sourceforge.net/
https://github.com/AgilData/tpcc
https://azure.microsoft.com/en-us/services/site-recovery/
https://azure.microsoft.com/en-us/services/site-recovery/
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/
http://dev.mysql.com/doc/refman/5.7/en/

Ginja: One-dollar Cloud-based Disaster Recovery for Databases Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

[11] 2017. MySQL Replication. (2017). http://dev.mysql.com/doc/refman/5.7/en/
replication.html.

[12] 2017. Oracle GoldenGate. (2017). http://www.oracle.com/technetwork/

middleware/goldengate/overview/

[13] 2017. PostgreSQL. (2017). http://www.postgresql.org/.
[14] 2017. PostgreSQL Documentation. (2017). http://www.postgresql.org/docs/.
[15] 2017. TPC-C Benchmark. (2017). http://www.tpc.org/tpcc/.
[16] 2017. VMware vCloud Air Disaster Recovery. (2017). https:

//www.vmware.com/cloud-services/infrastructure/vcloud-air-disaster-

recovery.
[17] 2017. Zmanda Recovery Manager for MySQL. (2017). http://

www.zmanda.com/.
[18] BBC News. 2017. WannaCry ransomware cyber-attacks slow but fears remain.

(May 2017). http://www.bbc.com/news/technology-39920141.
[19] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo

Sousa. 2013. DepSky: dependable and secure storage in a cloud-of-clouds. ACM
Transactions on Storage 9, 4 (2013).

[20] Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel Correia,
Marcelo Pasin, and Paulo Verissimo. 2014. SCFS: a shared cloud-backed file
system. In Proceedings of the 2014 USENIX Annual Technical Conference (ATC

’14).
[21] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim

Kraska. 2008. Building a database on S3. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data (SIGMOD’08).

[22] Peter Brouwer. 2011. The Art of Data Replication. (2011). Oracle Technical
White Paper.

[23] Emmanuel Cecchet, George Candea, and Anastasia Ailamaki. 2008. Middleware-
based Database Replication: The Gaps Between Theory and Practice. In Proceed-
ings of the 2008 ACM SIGMOD international conference on Management of data
(SIGMOD’08).

[24] Rafal Cegiela. 2006. Selecting technology for disaster recovery. In International
Conference on Dependability of Computer Systems (DepCos-RELCOMEX’06).

[25] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson. 2013. From
ARIES to MARS: Transaction Support for Next-generation, Solid-State Drives. In
Proceedings of 24th ACM/SIGOPS Symposium on Operating Systems Principles
(SOSP’13).

[26] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’08).

[27] Sharon Fisher. 2014. On the Quest for the Mysterious Source of
the “Data Loss Causes Company Failure” Statistic. (Feb. 2014).
http://itknowledgeexchange.techtarget.com/storage-disaster-recovery/

on-the-quest-for-the-mysterious-source-of-the-data-loss-causes-company-

failure-statistic/.
[28] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria, J. Adityatama,

and K. J. Eliazar. 2016. Why does the Cloud Stop Computing? Lessons from
Hundreds of Service Outages. In Proceedings of the 7th ACM Symposium on
Cloud Computing (SoCC’16).

[29] Pedro Hernandez. 2014. Small Business IT Survey: No Backup, No Data, No
Business. (May 2014). http://www.smallbusinesscomputing.com/biztools/

small-business-it-survey-no-backup-no-data-no-business.html.
[30] B. Hou, F. Chen, Z. Ou, R. Wang, and M. Mesnier. 2016. Understanding I/O

Performance Behaviors of Cloud Storage from a Client’s Perspective. In Proceed-
ings of the 32th IEEE International Conference on Massive Storage Systems and
Technology (MSST’16).

[31] Minwen Ji, Alistair C Veitch, John Wilkes, and others. 2003. Seneca: remote
mirroring done write. In Proceedings of the 2003 USENIX Annual Technical
Conference (ATC’03).

[32] Kimberly Keeton, Cipriano A Santos, Dirk Beyer, Jeffrey S Chase, and John
Wilkes. 2004. Designing for disasters. In Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies (FAST’04).

[33] Bettina Kemme, Ricardo Jimenez-Peris, and Marta Patiño-Martínez. 2010. Data-
base Replication. Morgan & Claypool.

[34] Richard P. King, Nagui Halim, Hector Garcia-Molina, and Christos A. Polyzois.
1991. Management of a Remote Backup Copy for Disaster Recovery. ACM
Transactions on Database Systems 16, 2 (1991).

[35] Edward Kovacs. 2014. Downtime and Data Loss Cost Enterprises $1.7 Trillion
Per Year: EMC. (Dec. 2014). http://www.securityweek.com/downtime-and-

data-loss-cost-enterprises-17-trillion-year-emc.
[36] Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf Aboulnaga,

Kenneth Salem, and Andrew Warfield. 2013. RemusDB: Transparent high avail-
ability for database systems. The VLDB Journal 22, 1 (2013).

[37] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
1992. ARIES: a transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM Transactions on Database
Systems 17, 1 (1992).

[38] Tiago Oliveira, Ricardo Mendes, and Alysson Bessani. 2016. Exploring Key-
Value Stores in Multi-Writer Byzantine-Resilient Register Emulations. In Proceed-
ings of the 20th International Conference On Principles Of DIstributed Systems
(OPODIS’16).

[39] Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve Kleiman,
and Shane Owara. 2002. SnapMirror: file system based asynchronous mirroring
for disaster recovery. In Proceedings of the 1st USENIX Conference on File and
Storage Technologies (FAST’02).

[40] Shriram Rajagopalan, Brendan Cully, Ryan O’Connor, and Andrew Warfield.
2012. SecondSite: disaster tolerance as a service. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments (VEE’12).

[41] Glen Robinson, Attila Narin, and Chris Elleman. 2014. Using Amazon Web
Services for Disaster Recovery. (Dec. 2014). Amazon Web Services white paper.

[42] Susan Snedaker. 2013. Business continuity and disaster recovery planning for IT
professionals. Newnes.

[43] Michael Stonebraker and Lawrence A Rowe. 1986. The design of Postgres. In
Proceedings of the 1986 ACM SIGMOD international conference on Management
of data (SIGMOD’86).

[44] Symantec. 2009. SMB (Small and Medium Business) security and data protection:
survey shows high concern, less action. (2009). White paper: SMB Survey.

[45] Symantec. 2016. Ransomware and Business 2016. (2016). ISTR Special Report.
[46] Vasily Tarasov, Abhishek Gupta, Kumar Sourav, Sagar Trehan, and Erez Zadok.

2015. Terra Incognita: On the Practicality of User-Space File Systems. In Pro-
ceedings of the 7th USENIX workshop on hot topics in Storage and File Systems
(HotStorage’15).

[47] Michael Vrable, Stefan Savage, and Geoffrey M Voelker. 2009. Cumulus: Filesys-
tem backup to the cloud. ACM Transactions on Storage 5, 4 (2009).

[48] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. 2012. BlueSky: A
Cloud-backed File System for the Enterprise. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies (FAST’12).

[49] Timothy Wood, Emmanuel Cecchet, KK Ramakrishnan, Prashant Shenoy, Jacobus
Van Der Merwe, and Arun Venkataramani. 2010. Disaster recovery as a cloud
service: Economic benefits & deployment challenges. In Proceedings of the 1st
USENIX workshop on hot topics in cloud computing (HotCloud’10).

[50] Timothy Wood, H Andrés Lagar-Cavilla, KK Ramakrishnan, Prashant Shenoy,
and Jacobus Van der Merwe. 2011. PipeCloud: using causality to overcome
speed-of-light delays in cloud-based disaster recovery. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (SoCC’11).

http://dev.mysql.com/doc/refman/5.7/en/replication.html
http://dev.mysql.com/doc/refman/5.7/en/replication.html
http://www.oracle.com/technetwork/middleware/goldengate/overview/
http://www.oracle.com/technetwork/middleware/goldengate/overview/
http://www.postgresql.org/
http://www.postgresql.org/docs/
http://www.tpc.org/tpcc/
https://www.vmware.com/cloud-services/infrastructure/vcloud-air-disaster-recovery
https://www.vmware.com/cloud-services/infrastructure/vcloud-air-disaster-recovery
https://www.vmware.com/cloud-services/infrastructure/vcloud-air-disaster-recovery
http://www.zmanda.com/
http://www.zmanda.com/
http://www.bbc.com/news/technology-39920141
http://itknowledgeexchange.techtarget.com/storage-disaster-recovery/on-the-quest-for-the-mysterious-source-of-the-data-loss-causes-company-failure-statistic/
http://itknowledgeexchange.techtarget.com/storage-disaster-recovery/on-the-quest-for-the-mysterious-source-of-the-data-loss-causes-company-failure-statistic/
http://itknowledgeexchange.techtarget.com/storage-disaster-recovery/on-the-quest-for-the-mysterious-source-of-the-data-loss-causes-company-failure-statistic/
http://www.smallbusinesscomputing.com/biztools/small-business-it-survey-no-backup-no-data-no-business.html
http://www.smallbusinesscomputing.com/biztools/small-business-it-survey-no-backup-no-data-no-business.html
http://www.securityweek.com/downtime-and-data-loss-cost-enterprises-17-trillion-year-emc
http://www.securityweek.com/downtime-and-data-loss-cost-enterprises-17-trillion-year-emc

	Abstract
	1 Introduction
	2 Disaster Recovery
	3 Low-cost Cloud-based Disaster Recovery
	4 Transactional Database I/O
	5 Ginja
	5.1 Controlling Costs and Data Losses
	5.2 Data Model
	5.3 Algorithms
	5.4 Additional Features

	6 Implementation
	7 Cost Evaluation
	7.1 Ginja Cost Model
	7.2 The Cost of Running Ginja
	7.3 The Cost of Recovery

	8 Experimental Evaluation
	8.1 Performance Overhead
	8.2 Resource Usage
	8.3 Recovery Time

	9 Related Work
	10 Conclusion
	References

