
CloudsStorm: An Application-driven DevOps Framework for Managing
Networked Infrastructures on Federated Clouds

Huan Zhou∗‡, Cees de Laat∗ and Zhiming Zhao∗
∗Informatics Institute, University of Amsterdam, Amsterdam, Netherlands

‡School of Computer Science, National University of Defense Technology, Changsha, China
Email: {h.zhou, delaat, z.zhao}@uva.nl

Abstract—Most clouds provide dedicated virtual infrastruc-
tures to cloud applications with only limited programmability
and controllability, which enlarges the management gap between
infrastructures and applications. Traditional DevOps (develop-
ment and operations) approaches are not suitable in today’s
cloud environments, because of the slow, manual and error-prone
collaboration between developers and operations personnel. To
address this issue, there have been a number of DevOps tools or
frameworks proposed for cloud. However, most of them focus on
infrastructures without considering the application requirements.
It becomes even more difficult when managing infrastructures
across multiple data centers or clouds. To mitigate this gap,
we have designed CloudsStorm, an application-driven DevOps
framework that allows the application directly program and con-
trol its infrastructure. In particular, it provides multi-level pro-
grammability and controllability according to the applications’
specifications. We evaluate it by comparing its functionality to
other proposed solutions. Moreover, we implement an extensible
TSV-Engine, which is the core component of CloudsStorm for
managing infrastructures’ lifecycle. It is the first to be able to
provision a networked infrastructure among public clouds. At
last, we conduct a set of experiments on actual clouds and
compare with other related DevOps tools. The experimental
results demonstrate our solution is efficient and outperforms
others.

Keywords—application-driven; federal clouds; networked vir-
tual infrastructure

I. INTRODUCTION

The purpose of DevOps is to put application development
and infrastructure runtime operations together to deliver good
quality and reliable software. It encompasses continuous in-
tegration, test-driven development, build/deployment automa-
tion, etc. However, its main focus often is the application
itself. Especially with the trend of migrating applications onto
clouds, operations are not limited to fixed private servers any
more. The virtual infrastructure provided by clouds is dynamic
and on-demand, but often lacks sufficient programmability
and controllability to fully satisfy complex application re-
quirements. From the application perspective, cloud applica-
tions have become complex and large-scale, no longer being
just simple web services. Some dynamic applications, like
IoT (Internet of Things) applications, even need to control
their underlying infrastructure during runtime, for instance to
perform auto-scaling. Hence, it has become vital to fill the
DevOps gap between the cloud application and its virtual
infrastructure in order to better migrate more complex and
demanding applications onto clouds.

Traditional DevOps approaches are slow, manual and error-
prone, which are difficult to make the infrastructure suitable
for the application. In order to settle this problem, some
DevOps tools have been constructed to automate the provision-
ing and running of virtual infrastructure. For example AWS
CloudFormation [1] provided by the Amazon Web Service
cloud, is a useful tool to create and manage AWS resources,
including automated provisioning and update. Nevertheless, it
mainly works for web applications. The other limitation is
that it is a vendor lock-in solution, which can only be used on
Amazon EC2 infrastructure. There are also tools to manage the
infrastructures from different clouds, avoiding vendor lock-in,
such as Libcloud [2], jclouds [3] and fog [4].

All above tools mainly focus on the provisioning perspec-
tive, which consider the stage before applications running.
They unify APIs of different clouds and provide some basic
new APIs, which makes them API-centric. However, they do
not provide functionality to manage the whole infrastructure’s
entire lifecycle. According to this, there are some environment-
centric [5] tools to help developers orchestrate their appli-
cations. They include Puppet [6], Chef [7], Ansible [8],
JuJu [9] and Nimbus [10]. They orchestrate the applications
running on virtual infrastructures, but they more concentrate
on deployment and configuration. In academic research, some
DevOps architectures and systems are proposed, including
CodeCloud [11], CloudPick [12] and CometCloud [13]. Some
of them leverage the concept of managing “Infrastructure as
Code” [14] during DevOps. The code here is preferred to be
used for describing the infrastructure or configuration, such
as Ansible using playbook to unify the configuration process
on different machines. Some of these tools then interpret
the code to do actual provisioning and configuring. However
these static codes can hardly describe how the infrastructure
dynamically adapts to the application. Moreover, these tools
do not manage the networked infrastructure, especially if it
crosses different data centers or clouds. In addition, some of
them afford REST APIs and a centralized service to manage
different infrastructures. This entails a single point of failure
and a possible security vulnerability because of the leaking
cloud credentials to a third-party broker.

In this paper, we propose an application-driven DevOps
framework, CloudsStorm, to enhance the virtual infrastructure
programmability and controllability. Contrary to “Infrastruc-
ture as Code”, we put forward “Code as Infrastructures”. Our
“code” is not only used to describe but also can be directly



executed. Moreover, we manage the federal cloud networked
infrastructure through partitioning them into different sub-
infrastructures. We make the following contributions.

1) CloudsStorm DevOps framework: We design the De-
vOps framework, CloudsStorm. It brings the infrastructure into
the application development phase and enables the applications
to directly program and control their virtual infrastructures
instead of just describing what they desire. It also provides
multiple levels of programmability and controllability accord-
ing to developers’ knowledge of infrastructure.

2) TSV-Engine: We implement a TSV-Engine to manage
our partition-based infrastructures, that are distributed across
different data centers or clouds. It is the key engine of
CloudsStorm. It is also the first one to be able to provi-
sion a networked infrastructure among public clouds. With
these three types of engine at different levels, there are four
advantages: i) Fast. It can control several sub-infrastructures
simultaneously to reduce the management overhead, such as
provisioning, failure recovery and scaling, etc. ii) Extensible.
It is easy for the application to derive its own engine to control
the infrastructure in its private cluster. iii) Schedulable. TSV-
Engine manages the infrastructure through different request
queues, which makes the controlling processes schedulable.
iv) Reliable. It partitions the entire infrastructure into small
sub-infrastructures in multiple data centers. Even if some data
center is down or not accessible, it may not influence the whole
application.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 presents the DevOps
framework and model of CloudsStorm. Then we describe the
implementation of TSV-Engine in Section 4. Section 5 evalu-
ates CloudsStorm from the aspect of performance. Finally, we
conclude and discuss some application scenarios in Section 6.

II. RELATED WORK

In order to mitigate the difficulty of virtual infrastructure
maintenance for cloud applications, there have been substantial
academic research and industrial tools developed in recent
years. However many DevOps tools only focus on some spe-
cific steps in the infrastructure management and provide lim-
ited programmability. For example, Libcloud [2], jclouds [3]
and fog [4] just unify several clouds’ provisioning APIs. They
automate the provisioning, but still need manual configuration
and management on the infrastructure. Conversely, tools such
as Puppet [6], Chef [7] and Ansible [8] all try to manage
infrastructures by turning them into code. However, they are
infrastructure-centric, focusing on configuration and installa-
tion. They standardize the configuration commands among
different systems to make the code reusable, such as the
cookbook of Chef and playbook of Ansible. The Nimbus [10]
team develops a Context Broker and cloudinit.d to create the
“One-Click Virtual Cluster”. Furthermore, they offer scaling
capability allowing users to automatically scale across multiple
distributed clouds [15]. Juju [9] is application-centric which
more focuses on application and services. CodeCloud [11]
consists of a IM [16] (Infrastructure Manager). IM provides

some specific REST APIs to control each individual VM
(Virtual Machine). Based on this, CodeCloud leverages CJDL
(Cloud Job Description Language) to describe the application
and the elasticity of the infrastructure. CloudPick [12] is a
system that considers the high-level constraints of the appli-
cation on the infrastructure, including deadline and budget.
However, these systems work as centralized services asking
users to upload their cloud credentials, which requires trust
in a third party. CometCloud [13] provides a heterogeneous
cloud framework to deploy several programming models, such
as master/worker, map/reduce and workflow. A video analytics
system [17] is a notable application scenario of CometCloud.
But CometCloud needs provisioned resources in advance to
set up a cloud agent for each cloud.

Most of above tools mentioned support multiple clouds,
meaning no vender lock-in for configuration and deployment;
however this does not mean that they are capable of pro-
visioning a federal infrastructure for running applications.
On the other hand, none of above tools consider about
provisioning a networked infrastructure, which the VMs can
be inter-connected with end-to-end private connections. This
is difficult to realize, especially in federated cloud environ-
ments. ExoGENI [18] [19] proposes Networked Infrastructure-
as-a-Service (NIaaS) architecture based on SDN to permit
the customization of network used by the infrastructure.
SAVI [20] [21] builds up a test bed for IoT. It leverages
OpenFlow to consider the network topology of the virtual
infrastructure. However, all these are established on private
data centers, which means the data centers in the federation
must be totally under the control of the proposed solutions.
For instance, these solutions must have direct access to the
switch in the data center to control the network. Kraken [22]
and SWMOA [23] also take network into account when
provisioning over multiple private data centers or clouds. All
of these solutions are not feasible to be applied on public
clouds.

III. DEVOPS FRAMEWORK AND MODEL

In this section, we start by introducing the overview of the
DevOps framework, CloudsStorm. The goal of this framework
is to manage applications in the environment of federated
clouds. Subsequently, we describe its core models in detail.

A. Framework Overview

Figure 1 illustrates the overview of the DevOps framework
we propose. With this framework, cloud applications can
achieve the goal of “Code as Infrastructures”. It means that
cloud application developers are not only able to develop
their own applications but also able to program on the virtual
infrastructures. The infrastructure management can be brought
into the application development phase.

In this framework, there are three kinds of code, including
infrastructure code, application code and runtime control pol-
icy. Cloud applications need only leverage these to control
the whole lifecycle of the infrastructure their applications



Fig. 1: Overview of CloudsStorm framework

rely on, including phases of provisioning, deployment, auto-
scaling and destruction. Among these code types, the infras-
tructure code is the core of the framework. It first allows
application developers to describe the infrastructure they wish,
which also includes the network topology. Then it indicates
which execution code should be running on which node of
the infrastructure. The execution code is the part that the
application developer should initially focus on. It is the main
logic for the cloud application. The difference here is that
the controlling logic can be embedded in the execution code
to allow the application to directly control the infrastructure
on demand. This is explained in Section III-B. At last, the
infrastructure code defines the runtime control policy for
dynamically managing the infrastructure in the runtime.

The networked infrastructure designed by the application
developer can be automatically provisioned through executing
the infrastructure code. The runtime environment for the cloud
application is configured immediately afterwards. Then, the
specified execution code is uploaded to the corresponding
instance to execute. There is a control agent in the whole
infrastructure. It can be explicitly assigned by the developer or
generated by CloudsStorm in an autonomous way. It manages
the infrastructure descriptions and has the whole view of
the infrastructure. On one aspect, it affords REST APIs to
interact with the execution code to receive control requests and
combines the runtime control policy defined by the application
to control the infrastructure, including failure recovery and
auto-scaling, etc. On the other hand, it provides a graphical
user interface for developers to manually check the status
of their infrastructure and control it in a visual way. All
the outward connections of this control agent use public
IP addresses. For federated clouds, we propose partition-
based infrastructure management. The whole topology of the
infrastructure is called the “top-topology”. It is partitioned
into small pieces of infrastructure, each referred to as a
“sub-topology”. Each sub-topology belongs to a data center
domain of a cloud provider. It describes how the nodes are
connected in one data center and the top-topology describes
how the sub-topologies are connected. It is worth mentioning
that all the nodes are connected with private network IP

addresses. The implementation technique and advantage of this
private networked infrastructure are demonstrated in following
sections.

B. Runtime Controlling Model

After executing the infrastructure code, all the infrastruc-
tures are provisioned and different components of the applica-
tion run on the desired nodes. The infrastructure description
is generated by the infrastructure code and uploaded to the
control agent. Then control agent takes over the responsibility
to manage the infrastructure. Here, the control agent is placed
in a separate subNI and its public IP is configured into all
the other nodes for communication.

Figure 2 illustrates the sequence diagram of runtime con-
trolling model. It consists of three controlling scenarios. In
the failure recovery scenario, we assume that there is an auto
failure recovery mechanism provided by cloud provider for
each individual node. Therefore, we more focus on the failure
that the data center is down or the network to data center
is not accessible. The control agent detects the availability
of each subNI . If it is not available, the control agent sets
up a new subNI from another data center DN of cloud
CN to replace the failed one according to the runtime con-
trol policy RCP . Meanwhile, the private network topology
among the infrastructures is preserved. In the auto-scaling
scenario, there are two different modes for the application
to control the infrastructure. One is an active mode, which
means the application actively controls the infrastructure. This
is the responsibility of the controlling logic embedded in the
application code shown in Figure 1. It queries infrastructure
information from the control agent, for example how many
nodes in this data center. Then according to input conditions
such as the input data size, the application decides whether
to scale up or down and sends the request to the control
agent. After receiving the request, the control agent takes the
application-defined RCP into account, for instance budget,
and finally takes control of the infrastructures to scale up
or down by the calculated number num. The other mode
is passive mode. The infrastructures are passively controlled
by the control agent based on RCP and the infrastructure’s
system information.

Fig. 2: Sequence Diagram of Runtime Controlling Model



In this model, the application can invoke REST APIs to
communicate with the control agent. The application also
defines RCP , which is human readable and in YAML format.
The detailed content of RCP is not expressed in this paper.

IV. IMPLEMENTATION

To demonstrate this framework, we implement a prototype
of CloudsStorm. In this section, we introduce the fundamental
techniques to realize the core component of CloudsStorm,
TSV-Engine, which is a partition-based infrastructure control
engine. It is realized in Java and managed on GitHub. Then
we describe the infrastructure lifecycle management based on
TSV-Engine. In addition, TSV-Engine is also responsible for
connecting the VMs to provision a networked infrastructure.
To implement this, we adopt an IP tunnel technique to connect
the VMs, proposed by our previous work [24].

TSV-Engine is the core engine of CloudsStorm, which is
the elementary engine to manage the infrastructure lifecycle.
“TSV” is short for “Top-topology”, “Sub-topology” and “VM”
as shown in Figure 3. A T-Engine is responsible for “Top-
topology” management. In CloudsStorm, every application
has one T-Engine. It helps the application to control the
whole infrastructure and manage the connections among sub-
topologies. During runtime, the application can generate differ-
ent requests to dynamically change the infrastructure, includ-
ing provisioning, recovering, scaling, deleting or stopping. The
T-Engine takes these requests and queries the user database
to set up a specified S-Engine for each cloud, for example,
“S-Engine-EC2” for cloud “EC2”. Meanwhile, the T-Engine
queries the user credential to configure the S-Engine with a
proper credential, which makes the S-Engine able to access
that cloud. Then, the S-Engine manages each individual VM
and its connections via the specified V-Engine. The V-Engine
is responsible for the VM lifecycle from creation to stopping or
deleting VMs. It also controls the connection between the VM
and other VMs. These connections are based on the IP tunnel
mechanism proposed by our previous work [24] to connect
the VMs in different federated clouds with private network.
After provisioning, the V-Engine can run the application-
defined script to configure the runtime environment and deploy
the application. The V-Engine is a basic engine. Different

Fig. 3: Architecture of TSV-Engine

customized V-Engines can be derived from it depending on
the VM’s features, such as “V-Engine-ubuntu” for ubuntu VM,
etc. If the application has specific operations on some VM, it
can also customize its own V-Engine.

In addition, all the S-Engines and V-Engines are running in
multi-thread. It means that the T-Engine can start several S-
Engines at the same time. If these sub-topologies managed by
these S-Engines belong to different data centers, there will no
conflict among them. Then they can totally run in parallel. As
the V-Engine running in a thread, the creation, configuration,
deployment of all the VMs in one sub-topology can proceed
simultaneously. In other words, TSV-Engine accelerates the
controlling process. Other advantages of CloudsStorm based
on TSV-Engine is analyzed in Section V.

V. EVALUATION

In this section, we compare CloudsStorm with other related
DevOps tools and evaluate it from two aspects, functionality
and performance.

A. Performance Evaluation

To evaluate the performance, we first analyze the reliability
of CloudsStorm’s infrastructures and then evaluate its control-
lability.

1) Reliability: We assume the infrastructure reliability in
one data center is r, which 0 < r < 1. The entire infrastructure
reliability NIcon set up by CloudsStorm is rcon. NIcon
distributes the infrastructures among k data centers. Accord-
ingly their reliabilities are r0, r1, ..., rk−1. As the infrastructure
reliability depends on the data center’s available time, the
failure possibility of a infrastructure in that data center is 1−rj ,
∀j ∈ [0, k). Considering these data centers are independent,
the failure possibility of entire NIcon is

∏k−1
i=0 (1 − ri). We

assume that most infrastructures are replicated parts. For
example, there are many replicated slaves in a “Master/Slave”
framework. If some of them fails, the application can still
run. Therefore, rcon = (1 −

∏k−1
i=0 (1 − ri)). Obviously,∏k−1

i=0 (1−ri) < (1−rj), ∀j ∈ [0, k). Then we get Equation 1.

rcon = (1−
k−1∏
i=0

(1− ri)) > rj ,∀j ∈ [0, k) (1)

It demonstrates that the infrastructures provisioned by
CloudsStorm has higher reliability than the reliability of the
entire infrastructure only in one data center.

2) Auto-scaling and failure recovery: These two are the
key controllability of CloudsStorm. We design the experi-
ment on ExoGENI to test the auto-scaling performance. In
this experiment, there are two sub-topologies in the begin-
ning, subNI1 containing 1 VM and subNI2 containing 8
“XOMedium” VMs. Each VM in subNI2 is connected with
the VM in subNI1 via a private network link. This is a typical
“Master/Slave” distributed framework. subNI2 is defined as
a scaling group. According to the scaling request, the infras-
tructure can scale up to other data centers based on one or
multiple copies of subNI2. At the same time, all the network



links between the scaled copies and subNI1 are connected.
These connections leverage private addresses, which can be
defined before actual provisioning. Hence, the “Master” in
subNI1 can always know where are the scaled resources are.
Figure 4 illustrates that we scale up the 8 VMs of subNI2
accordingly at 1, 2, 3, 4, 8 and 16 times. Each scaled subNI2
is provisioned in independent data centers simultaneously.
Therefore, the flat dashed line is the ideal scaling performance
in theory. However, the provisioning performances of different
data centers are not the same. This is demonstrated by the
varied dashed line, which is the average value of the maximum
provisioning overhead among the scaled subNI2. Moreover,
the end-to-end connections need to be set up. The more
copies of subNI2 requested, the more connections need to be
configured. The solid line in the figure shows total cost. For
each scale, we conduct 10 repeated experiments. The error
bar denotes the standard deviation. It demonstrates that the
scaling overhead does not grow at the same proportion as
the number of VMs being created. Therefore, it is able to
complete large-scale auto-scaling in a short time. In addition,
most clouds have limitations on the resource allocation. For
instance, ExoGENI only allow one user to apply a maximum
of 10 VMs from one data center. The limitation for EC2 is 20.
Nevertheless, with CloudsStorm, we can break through these
limits to realize large-scale scaling by combining resources
from different data centers and even clouds.

Fig. 4: Auto-scaling
performance

Fig. 5: Failure recovery
performance

Figure 5 shows the experimental result on failure recovery.
In this experiment, there are still two sub-topologies in the
beginning, subNI1 and subNI2. Each of them contains only
one VM, n1 and n2. These two nodes are connected with the
private network. Then we simulate the case where the data
center of subNI2 is not available. CloudsStorm recovers the
same sub-topology from another data center or cloud. Finally,
the private network is resumed. Hence, the application is not
aware of this infrastructure modification. We get the detaching
overhead from CloudsStorm, which is the time for subNI1
to disconnect the original link. It is illustrated by the bar
covered with dots. On the other aspect, we continually test
the private link from n1 of subNI1 to n2 of subNI2 and
record the time from lost connection to the time that the link
is resumed. This is the total recovery overhead. We conduct
this experiment on 3 clouds currently supported and pick

6 data centers from them. In order to compare, n2 always
has 2 cores and around 8G memory with “Ubuntu 14.04”.
Correspondingly, they are “t2.large” of EC2, “XOLarge” of
ExoGENI and “mem medium” of EGI. The results show
ExoGENI has a relative higher recovery overhead and some
of its data centers are not stable. The performance of EC2 and
EGI are close, however, most data centers of EC2 are more
stable. These information are important to decide where to
recover to satisfy the application QoS, considering about the
recovery overhead and data center geographic information.

3) Comparison: Finally, we conduct a set of experiments
to compare CloudsStorm with other DevOps tools. We pick
jclouds from API-centric tools. It is adopted by a lot of
environment-centric tools to be the basic provisioning engine,
such as CloudPick [12]. From environment-centric tools, we
pick Nimbus team’s cloudinit.d. Other tools like Juju and
IM provide graphical interfaces, which makes it difficult to
measure performance. Both of jclouds and cloudinti.d do not
support networked infrastructure. The ones which support net-
worked infrastructure can only be applied in private data cen-
ters, which CloudsStorm cannot have the access permission,
like SAVI. We pick EC2 to do these experiments, because this
is the most popular cloud provider and commonly supported
by these tools. First, we compare the scaling performance.
The scaling request is to add 5 more “t2.micro” VMs in
EC2 California data center. However, jclouds and cloudinit.d
cannot directly support auto-scaling behavior, we use them to
provision 5 new VMs in California data center to simulate this
scenario. For each operation, we repeated 10 times. Figure 6(a)
illustrates the results. For jclouds, the provisioning process
proceeds in sequence, hence, its scaling overhead is much
more bigger than the other two. If only considering the scaling
performance from initial state, cloudinit.d and CloudsStorm
have similar performance, demonstrated by the bars covered
with slashes. CloudsStorm is a little bit stable than cloudinit.d.
Moreover, EC2 supports stopping a instance. CloudsStorm can
perform auto-scaling from “Stopped” status. It reduces the
overhead, shown by the bars covered with dots. It is worth
to mention that we do not consider deployment overhead in
this experiment. Scaling from “Stopped” status can even omit
the deployment. Through this way, CloudsStorm outperforms
cloudinit.d much better, reducing the scaling overhead by more
than half referring to Figure 6(b)(c).

The second experiment is to compare the provisioning
performance including deployments. All of these three allow
users to define a script to deploy applications immediately after
provisioning. In this experiment, we choose California data
center to provision 5 “t2.micro” VMs and install tomcat on
each of them. Each test is repeated 10 times. Figure 6(b) shows
the results. With jclouds, the application are installed one by
one, which costs plenty of time. For CloudsStorm, there is a
V-Engine responsible for each individual VM to provision and
deploy. Therefore, it achieves the best performance according
to the overhead and stability. The last experiment is based
on the second experiment considering about the deployment
dependency. In this experiment, 4 out of 5 VMs install tomcat



Fig. 6: Performance comparison

and the remaining one installs a mysql database. In this case,
there is a dependency when using jclouds and cloudinit.d,
because they do not provision networked infrastructure and
use public addresses to communicate. Tomcat can only be
deployed after provisioning mysql VM to know the server
address. Hence, jclouds needs to provision mysql VM first in
its sequence. Cloudinit.d defines different levels to realize the
dependency. In this scenario, the first level is the mysql VM
and the second level contains four tomcat VMs. The difference
for CloudsStorm is that it can provision networked infras-
tructure. The nodes are connected with application-defined
private network links. The mysql server address is pre-defined
before actual provisioning. Therefore, all the deployments can
proceed simultaneously even with the dependency. Figure 6(c)
demonstrates that the deployment dependency makes smaller
influence on CloudsStorm’s performance comparing to that
on jclouds and cloudinit.d. We can reason out that if there are
more dependencies, CloudsStorm has a greater advantage over
others.

VI. DISCUSSION

This paper presents an application-driven DevOps frame-
work, CloudsStorm, and implementation of TSV-Engine. In
framework design, we propose “Code as Infrastructures” in-
stead of managing the infrastructure as code. We make the
infrastructure to be part of the application. With its multi-level
programmability and controllability, the application developer
can design its infrastructure along with the application devel-
opment. Though executing the codes, the application can run
on clouds autonomously without pre-existing infrastructures.
In implementation, we propose partition-based infrastructure
management and totally develop new engines, instead of inte-
grating other DevOps tools. For example, CodeCloud [11] uses
Puppet [6] and CloudPick [12] leverages jclouds [3]. Not only
it is the first one to realize networked infrastructure on public
federated clouds but also its performance is demonstrated to
outperform other tools.

There are plenty of application scenarios for CloudsStorm.
To benefit from the networked infrastructure, a lot of pro-
gramming models are easy to deploy, such as Master/Slave
(including docker cluster), Map/Reduce and workflow. To ben-
efit from the sufficient and efficient controllability, it is useful
for IoT applications and sensor-cloud. To benefit from the
application-driven design, we can bring the infrastructure into
the application incremental development phase. For example,

testing the application with several VMs in the beginning and
final release running on a large-scale infrastructure. Therefore,
CloudsStorm narrows the DevOps gap.

REFERENCES

[1] AWS CloudFormation. http://aws.amazon.com/es/cloudformation/
[2] Apache Libcloud. http://libcloud.apache.org
[3] Apache jclouds. https://jclouds.apache.org
[4] Fog. http://fog.io
[5] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann, “Streamlining

devops automation for cloud applications using tosca as standardized
metamodel,” FGCS, vol. 56, pp. 317–332, 2016.

[6] Puppet. https://puppet.com/
[7] CHEF. https://www.chef.io
[8] Ansible. https://www.ansible.com/
[9] Juju. https://jujucharms.com/

[10] K. Keahey and T. Freeman, “Contextualization: Providing one-click
virtual clusters,” in eScience’08. IEEE Fourth International Conference
on, 2008, pp. 301–308.

[11] M. Caballer, C. de Alfonso, G. Moltó, E. Romero, I. Blanquer, and
A. Garcı́a, “Codecloud: A platform to enable execution of programming
models on the clouds,” J. Systems and Software, vol. 93, pp. 187–198,
2014.

[12] A. V. Dastjerdi, S. K. Garg, O. F. Rana, and R. Buyya, “Cloudpick: a
framework for qos-aware and ontology-based service deployment across
clouds,” Software: Practice and Experience, vol. 45, pp. 197–231, 2015.

[13] J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar, “Cometcloud:
Enabling software-defined federations for end-to-end application work-
flows,” IEEE Internet Computing, vol. 19, no. 1, pp. 69–73, 2015.

[14] K. Morris, Infrastructure as code: managing servers in the cloud. ”
O’Reilly Media, Inc.”, 2016.

[15] P. Marshall, H. M. Tufo, K. Keahey, D. La Bissoniere, and M. Woitaszek,
“Architecting a large-scale elastic environment-recontextualization and
adaptive cloud services for scientific computing.” in ICSOFT, 2012.

[16] M. Caballer, I. Blanquer, G. Moltó, and C. de Alfonso, “Dynamic
management of virtual infrastructures.” J. Grid Comput., vol. 13, no. 1,
pp. 53–70, 2015.

[17] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, A. Anjum,
and M. Parashar, “Deadline constrained video analysis via in-transit
computational environments,” IEEE Trans on Services Computing, 2017.

[18] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, and
A. Yumerefendi, “Embedding virtual topologies in networked clouds,”
in Proceedings of the 6th International Conference on Future Internet
Technologies. ACM, 2011, pp. 26–29.

[19] I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo, V. Or-
likowski, C. Heermann, and J. Mills, “Exogeni: a multi-domain
infrastructure-as-a-service testbed,” in The GENI Book. Springer, 2016,
pp. 279–315.

[20] J.-M. Kang, T. Lin, H. Bannazadeh, and A. Leon-Garcia, “Software-
defined infrastructure and the savi testbed,” in International Conference
on Testbeds and Research Infrastructures. Springer, 2014, pp. 3–13.

[21] J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, “Savi testbed: Control
and management of converged virtual ict resources,” in Integrated
Network Management, IFIP/IEEE International Symposium on, 2013,
pp. 664–667.

[22] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in Computer
Communications (INFOCOM), IEEE International Conference on, 2016.

[23] W. Shi, C. Wu, and Z. Li, “An online mechanism for dynamic virtual
cluster provisioning in geo-distributed clouds,” in Computer Communi-
cations (INFOCOM), IEEE International Conference on, 2016.

[24] H. Zhou, J. Wang, Y. Hu, J. Su, P. Martin, C. De Laat, and Z. Zhao,
“Fast resource co-provisioning for time critical applications based on
networked infrastructures,” in Cloud Computing (CLOUD), IEEE Inter-
national Conference on, 2016, pp. 802–805.


